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Abstract: Bio-enzymatic grafting phenolic acid to chitosan derivative is an efficient and environmen-
tally friendly molecular synthesis technology. In the present study, N-carboxymethyl chitosan (CMCS)
was grafted with gallic acid (GA) using recombinant bacterial laccase from Streptomyces coelicolor as a
catalyst. GA and CMCS were successfully grafted as determined by measuring amino acid content,
Fourier transform infrared (FTIR) spectroscopy and ultraviolet-visible (UV-Vis) spectroscopy. Then,
the effect of GA-g-CMCS coating on the freshness of strawberries at 20 ± 2 ◦C was explored. The
physiological and biochemical quality indicators of strawberries during storage were monitored. The
1.5% GA-g-CMCS coating helped to protect the antioxidant properties and nutrients of strawberries
and extend the shelf life. Specifically, it reduced the weight loss of strawberries during preservation
(originally 12.7%) to 8.4%, maintained titratable acidity content (TA) residuals above 60% and reduced
decay rate from 36.7% to 8.9%. As a bioactive compound, GA-g-CMCS has the potential to become
an emerging food packing method. These results provide a theoretical basis and reference method
for the subsequent synthesis and application of CMCS derivatives.

Keywords: bacterial laccase; N-carboxymethyl chitosan; gallic acid; grafting; strawberry preservation

1. Introduction

With globalization and growing of consumer demand, fruit is circulating on a large
scale, taking longer to transport and store. Rapid changes in the structure and biochemical
properties of fruits after harvest may accelerate fruit decay and nutrient loss [1]. Nutrient
loss during storage of fruits is mainly caused by oxidase and reactive oxygen species
(ROS) [2]. ROS is a reactive substance that can cause damage to biomolecules, including
proteins, lipids and nucleic acids [3]. Fruits have antioxidant defenses to protect important
biomolecules from damage from ROS, such as superoxide dismutase (SOD) [4]. However,
ROS buildup exacerbates cell damage due to the continuous depletion of antioxidants
during storage [5]. This makes it challenging to maintain fruit quality during transportation
and storage.

Strawberries have high nutritional value that may help reduce the risk of cardiovas-
cular events due to their rich ellagic acid and flavonoids, as well as powerful antioxidant
properties [6]. But strawberries are not easy to store due to low firmness. If stored improp-
erly, the loss of ascorbic acid and anthocyanin in strawberries will be aggravated, and the
antioxidant activity in vitro will be negatively affected [7]. Therefore, it is urgent to develop
packaging materials that can delay the loss of antioxidant substances in strawberries.

The chemical residues and low biodegradability of traditional petroleum-based pack-
aging materials used in food have caused serious damage to the environment and hu-
mans [8,9]. Active edible coatings are a promising alternative to extending the shelf life of
fruits [10]. Coating treatment can maintain harvest freshness by reducing moisture loss,
respiration rate, gas exchange and oxidation reaction rate [11].

Carboxymethyl chitosan (CMCS) is a water-soluble derivative of chitosan (CS) that is
used in biomedicine and environmental remediation because of its good degradability and
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biocompatibility [12–15]. Compared with the weak ultraviolet blocking performance and
high-water vapor transmission rate of CS film [16], CMCS with good plasticizing effect on
the film is a strawberry storage packaging material with more potential [17]. CMCS mainly
includes O-CMCS and N-CMCS [18], and the hygroscopicity of N-CMCS is lower than that
of the former, which is more conducive to fruit preservation [19].

As a material that is easy to modify, the antioxidant capacity of CMCS can be enhanced
by grafting functional substances such as phenolic acids [20,21]. Currently, there are four
main methods for phenolic acid grafting, including carbodiimide coupling, enzymatic
grafting, free radical-mediated grafting and electrochemical methods [22]. Compared
with other methods, enzymatic grafting is simple, safe, environmentally friendly [23] and
relatively low cost [24].

Laccase (EC 1.10.3.2) is a copper-based polyphenol oxidase that efficiently catalyzes the
oxidation of phenols, aromatic amines and aliphatic amines [25,26]. It is an environmentally
friendly biocatalyst that only requires oxygen as a co-substrate and releases water as the
only by-product [27]. Laccase plays key roles in various areas of food industries, including
beverage processing, ascorbic acid determination, baking, as biosensor and to improve food
sensory parameters [28,29]. Thus, the preparation of fruit preservation materials catalyzed
by laccase is a promising, effective and safe method.

At present, there is no research on the use of laccase to catalyze the grafting of
phenolic acid and CMCS in food preservation. Therefore, we wanted to use gallic acid
(GA) as the model phenolic acid to explore the feasibility of CMCS complex applied to
fruit preservation.

In this study, GA was grafted onto N-CMCS (GA-g-CMCS) with small laccase (SLAC)
derived from Streptomyces coelicolor. In order to explore the effect of GA-g-CMCS coating
on strawberry preservation, the physiological and biochemical indicators of strawberry
were measured. This research aims to develop new, safe and bio-based packaging mate-
rials prepared from CMCS and phenolic acids for emerging food processing. The results
will provide theoretical basis and reference for the further synthesis and application of
bioactive compounds.

2. Results and Discussion

The commonly used method of conjugation synthesis of phenolic acids, CS and CMCS
is to add chemicals to initiate polymerization of hydroxyl or carboxyl radicals in the
system [22]. In the field of food processing, safety and environmental protection are a key
concern for consumers. Therefore, laccase-catalyzed phenolic acids and CMCS conjugated
products for food packaging are more acceptable to consumers.

2.1. Characterization of GA-g-CMCS
2.1.1. Amino Content

CMCS and GA were grafted with SLAC to obtain a stable brown product, which
became a yellowish powder after lyophilization. The absorption value of GA-g-CMCS
at 570 nm was 0.89, and that of CMCS was 1.23. Lower absorption value means lower
residual amino group. As shown in Figure 1A,B the decrease in amino content may be due
to the formation of covalent bonds by GA grafted to the free amino group of the CMCS via
laccase [30].

2.1.2. UV-Vis and FTIR Analyses

In order to further explore the grafting of GA and CMCS, the spectroscopic properties
were determined. The ultraviolet-visible (UV-vis) spectra of CMCS and GA-g-CMCS are
shown in Figure 2A. There was no absorption peak in the UV-vis spectrum of CMCS,
which may be due to the lack of chromosphere. However, GA-g-CMCS displayed two
distinct peaks at 213 nm and 260 nm. This result is consistent with that of GA grafted with
O-CMCS [31]. This difference could be attributed to the introduction of the benzene ring of
GA [32], confirming the successful reaction between GA and CMCS.
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Figure 1. Mechanism of CMCS and GA grafting and working for strawberry preservation. (A) The 
mechanism of synthesis of GA-g-CMCS by laccase-catalyzed grafting reaction. (B) The schematic 
diagram of strawberry preservation treated with GA-g-CMCS coating. GA: gallic acid, N-CMCS: N-
carboxymethyl chitosan, GA-g-CMCS: GA grafted onto N-CMCS, WLP: weight loss percentage, 
SSC: Soluble solids content, TA: titratable acidity, AsA: ascorbic acid. 
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new peaks compared to CMCS (Figure 2B). There were five smaller absorption peaks at 
3444, 3369, 3125, 3068 and 2885 nm, which were caused by the stretching vibration of phe-
nolic ring -OH in GA [33]. The absorption peak at 1258 nm was generated by the stretching 
vibration of -COOH in GA. There was a strong absorption peak at 1053 nm caused by the 
twisted vibration of the -C-N- bond in CMCS. There were five small shoulder peaks be-
tween 1000-750 nm, generated by the shaking vibration of H2O. This indicated that alt-
hough the GA-g-CMCS had been freeze-dried, they were not completely dried and re-
tained a small amount of water. At the same time, it was confirmed that CMCS and GA 
did indeed crosslink to form a new polymer.  

 
Figure 2. (A) UV-vis and (B) FTIR spectrogram of CMCS and GA-g-CMCS.  

Figure 1. Mechanism of CMCS and GA grafting and working for strawberry preservation. (A) The
mechanism of synthesis of GA-g-CMCS by laccase-catalyzed grafting reaction. (B) The schematic
diagram of strawberry preservation treated with GA-g-CMCS coating. GA: gallic acid, N-CMCS:
N-carboxymethyl chitosan, GA-g-CMCS: GA grafted onto N-CMCS, WLP: weight loss percentage,
SSC: Soluble solids content, TA: titratable acidity, AsA: ascorbic acid.
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The Fourier transform infrared (FTIR) result showed that GA-g-CMCS had many new
peaks compared to CMCS (Figure 2B). There were five smaller absorption peaks at 3444,
3369, 3125, 3068 and 2885 nm, which were caused by the stretching vibration of phenolic
ring -OH in GA [33]. The absorption peak at 1258 nm was generated by the stretching
vibration of -COOH in GA. There was a strong absorption peak at 1053 nm caused by
the twisted vibration of the -C-N- bond in CMCS. There were five small shoulder peaks
between 1000–750 nm, generated by the shaking vibration of H2O. This indicated that
although the GA-g-CMCS had been freeze-dried, they were not completely dried and
retained a small amount of water. At the same time, it was confirmed that CMCS and GA
did indeed crosslink to form a new polymer.

2.1.3. Antioxidant Activity

As shown in Figure 3, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging
capacity of samples increased with increasing concentration. When the concentration was
increased from 0.5 mg/mL to 2 mg/mL, the DPPH radical scavenging capacity of CMCS
and GA-g-CMCS increased to 4.5% and 5.4%, respectively. At the same concentration, the
value of GA-g-CMCS was higher than that of CMCS. This indicated that GA-grafted CMCS
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has better DPPH radical scavenging ability than CMCS. The results are consistent with the
reports [31,34] that the DPPH radical scavenging ability is positively correlated with GA
contents in CMCS.
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Figure 3. DPPH free radical scavenging capacity of CMCS and GA-g-CMCS.

2.2. Coating Strawberries with GA-g-CMCS

As shown in Figure 1B, the strawberries were coated. By measuring the physiological
and biochemical indicators changes in a constant temperature and humidity room (20 ◦C,
RH 50%) for 4 days, the effect of coating treatment on strawberry freshness was explored.

2.3. Physiological Analysis of Strawberries
2.3.1. Respiration Rate

The change in respiration rate of strawberries during storage is shown in Figure 4A. A
change in color from orange to purple indicated that the respiration rate has changed from
weak to strong. With the prolongation of storage time, the respiration rate first increased
and then decreased, reaching the maximum on the second day of storage. Because the
strawberries were not fully ripe, a post-ripening effect occurred during storage, resulting
in an increased respiration rate. When the strawberries were fully ripe during storage, the
respiration rate decreased.
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Figure 4. (A) Variation in respiration rate and firmness, (B) WLP and decay rate and (C) decay rate
relative to firmness of strawberries at storage time of 0, 1, 2, 3 and 4 days.

Figure 4A also showed that the respiration rate of different treatments strawberries
differed for the same storage time. The respiration rate of the control group was much
higher than in the other treatment groups, indicating that the control group consumed
too many nutrients, while there was no significant difference between the coated groups.
Therefore, the coating treatment can effectively inhibit the respiration rate of strawberries
and reduce their loss of nutrients.
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2.3.2. Firmness

Fruit firmness is one of the important indicators for evaluating fruit ripeness and
storage quality [35]. During the ripening and aging of the fruit, the firmness gradually
decreases. Firmness reflects the degree of ripening and softening after ripening, and can
therefore provide guidance for the proper storage of the fruit. Figure 4A,B show that the
firmness of strawberries in all treatment groups decreased with longer storage time. In the
same storage time, the control group had the lowest firmness and the most severe degree
of softening, while the 1.5% treatment group had the highest firmness.

A decrease in the firmness of strawberries may occur after ripening or by respiration.
It was found that respiration rate and loss of firmness of the coated strawberries were both
relatively slowed down compared to the uncoated. The film formed on the surface after
coating may inhibit normal respiration, resulting in a slowdown in firmness and delay
the ripening of strawberries. Therefore, treating strawberries with GA-g-CMCS coating
solution of 1.5% has a good freshness preservation effect and is conducive to storage.

2.3.3. Weight Loss Percentage

Figure 4B shows the change in the weight loss percentage (WLP) of strawberries
during storage. A change in color from green to red indicated that WLP changed from low
to high. WLP for all groups of strawberries increased gradually throughout the storage
period. However, the WLP values in the treatment groups were lower than that in the
control group. At the end of storage, the control group had the highest WLP (12.7%), while
strawberries treated with 1.5% GA-g-CMCS had the lowest WLP (8.4%). This is superior
to the WLP of strawberries treated with genipin-crosslinked N-2-hydroxypropyl-3-butyl
ether-O-carboxymethyl chitosan (HBCC) film (about 13%) [36], and is basically the same
as the WLP of strawberries with preservatives that hybridize CMCS with metal–organic
frameworks (MOFs) [37], but the cost of GA-g-CMCS is relatively lower.

WLP in strawberries is mainly associated with respiration and moisture evaporation
through the peel of the fruit. The rate at water loss depends on the water pressure gradient
between the fruit tissue and the surrounding atmosphere and the storage temperature [38].
The coating is a selective barrier that alters the internal atmosphere and helps to retard the
respiration rate of fruit, thereby reducing WLP [39].

2.3.4. Decay Rate

Figure 4B,C shows that the decay rate of strawberries increased with the extension
of storage time, and the control group was significantly higher than that of the treatment
groups. At concentrations of 1.0%, 1.5% and 2.0%, the decay rates of GA-g-CMCS coated
strawberries were 10.0%, 8.9% and 12.2%, respectively, which were higher than that of 2%
CMCS. CMCS induces the activity of defense-related enzymes, causing plants to produce
disease-resistant substances such as phenols and participate in defense mechanisms, thereby
delaying decay [40]. After combining GA, its resistance to decay was strengthened.

2.3.5. Color

L represents the whiteness of the sample, with a larger value indicating whiter; a
represents the redness/greenness of the sample, with larger value indicating redder; and b
represents the yellowness/blueness of the sample, with larger value indicating yellower.
The chroma of strawberries from different treatment groups during storage was charac-
terized, and the values of L, a and b values are given in Figure 5. Obviously, the value of
L does not change significantly, and the values of a and b decreased with storage time for
coated strawberries, while they showed much weaker change for the control group.

After storage, the ∆E of the control group was about one-third that of other treatment
groups. This indicated that the coating treatment had little effect on the maintenance of the
color of the strawberries. However, the color of the strawberry skin in the control group in
Figure 5E was darker. Therefore, the measured data characterized the overall color change
of the strawberry. This showed that the effect of coating treatment on the surface color
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of strawberries was small. The reason for the darkening color inside the strawberry pulp
remains to be explored.
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2.4. Biochemical Analysis of Strawberries
2.4.1. Soluble Solids Content

Soluble solids content (SSC) is one of main parameters for evaluating the quality and
nutritive value of strawberry, which is related to consumers’ taste preferences [41,42]. In
general, the SSC of fruit increases gradually during maturation, but may decrease during
aging. Therefore, SSC is an important indicator of good storage resistance.

With the increase of storage time, the SSC of strawberries in all groups decreased
(Figure 6A). SSC residues were slightly higher in the treatment groups than in the control
group. Strawberries treated with 2.0% GA-g-CMCS had the highest SSC content at the end
of storage, which means that treatment with GA-g-MCS coating can effectively delay aging.
As suggested by Ali et al., slow breathing delays metabolite synthesis and use, resulting in
lower SSC [43]. This is also consistent with the results of Figure 4.

2.4.2. Titratable Acidity Content

The content of organic acids in strawberries has an important impact on their taste,
flavor, sugar acid ratio, pH and processing properties [44]. The change in titratable acidity
content (TA) content of strawberries during storage is shown in Figure 6B. The TA content
decreased continuously during storage due to the consumption of organic acids by the
physiological activities of strawberries. The TA content of the treatment groups was higher
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than that of the control group, indicating that the coating treatment could inhibit the
respiration of strawberries, thereby reducing nutrient losses.

The 2.0% CMCS and 1.5% GA-g-CMCS coating treatments had the best protective
effect on the TA content of strawberries. After coating, the residual amount of TA exceeded
60%. Strawberries treated with chitosan-whey protein isolate coating lost about 58% TA
after similar storage conditions [45], indicating that GA-g-CMCS is better for protecting
strawberry TA.
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2.4.3. Ascorbic Acid Content

Ascorbic acid (AsA) can be used as a key indicator of oxidative degradation of fruits
and is also important for human health [46]. AsA has been reported to have the ability to
scavenge superoxide and hydroxyl radicals, as well as to regenerate α-tocopherol [47].

Figure 6C shows that the AsA content of all strawberries gradually decreased during
storage. Under the same storage time, the AsA content of the control group was lower than
that of the other treatment groups. The coating treatment of 1.5% G-G-CMCS significantly
reduced the loss of AsA in strawberries. After 4 days of storage, the remaining amount of
AsA was 53.8%, which was similar to the results of strawberries treated with carboxymethyl
cellulose with chitosan composite coating [48]. However, the respiration intensity of the
latter was not effectively inhibited, and the loss of AsA may increase with the extension
of storage time. Combined with Figure 4, it can also be found that AsA was significantly
reduced on the second day when strawberry respiration rate was highest.

Fruit preservation is a process of compound regulation. The coating acts as a protective
layer and controls the permeability of O2 and CO2, thereby reducing the autoxidation
potential of the fruit, which may avoid further exacerbation of the protein damage [49]. GA-
g-CMCS can effectively retain antioxidants, which is conducive to maintaining a complete
cell structure and reducing the rot rate of fruits.
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2.4.4. Reduced Glutathione Content

The change in the GSH content in strawberries during storage is shown in Figure 6D.
This suggests that the content of GSH decreased overall but fluctuated as storage time
increased. This dynamic change may be due to the fact that glutathione is involved in the
detoxification of reactive oxygen species in fruits [50]. As storage time prolongs and reactive
oxygen species accumulate, strawberries continue to consume and produce glutathione to
maintain cell viability. This may be caused by the constant consumption and production of
GSH in the strawberries during storage.

2.4.5. Catalase, Ascorbate Peroxidase and Superoxide Dismutase Activity

Changes in antioxidant enzymes (CAT, APX and SOD) in strawberries are shown
in Figure 7. CAT activity in strawberries decreased with storage time, and all treatment
groups had smaller decreases than those in the control group (Figure 7A). The CAT of
strawberries treated with 1.5% G-G-CMCS coating was superior to other groups. This may
be due to the deterioration of the quality of strawberries during storage, resulting in the
production of hydrogen peroxide. CAT reduces the damage of hydrogen peroxide to cells,
thereby reducing its enzyme activity.
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Antioxidant enzymes play a very important role in inhibiting oxidative stress [51].
Strawberries constantly produce substances that are harmful to cells, such as hydrogen
peroxide. To reduce cell damage, strawberries need to produce more antioxidant enzymes
to remove harmful substances. GA-g-CMCS had higher activity of CAT, APX and SOD at
the end of storage than the control and CMCS groups, indicating that this coating treatment
was effective for the preservation of strawberries.
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3. Materials and Methods
3.1. Materials

Recombinant Escherichia coli strain BL21 (DE3) harboring plasmids pET-23a (Novagen,
Darmstadt, Germany), containing the SLAC gene from Streptomyces coelicolor A3 (2) (Gen-
Bank No. NC_003888.3), were constructed previously [52]. The SLAC gene was expressed
through Isopropyl-β-D-thiogalato-pyranoside (IPTG) (100 µM) induction, and the laccase
was purified with Ni-NTA Super flow Cartridges (Sangon Biotech, Shanghai, China) as pre-
viously reported [53]. The activity of SLAC was measured at 45 ◦C for using 2,2-azino-bis
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate. One unit of activity was
defined as the amount of laccase required to oxidize 1 µM ABTS per min.

IPTG, ABTS and DPPH were purchased from Sigma Aldrich (St. Louis, MO, USA).
CAT, APX and SOD activity detection kits were purchased from Beijing Solarbio Science
& Technology Co., Ltd. (Beijing, China). The high-viscosity N-carboxymethyl chitosan
(C8H14NO6) (degree of deacetylation ≥ 85%, 220 Mw) and GA (purity ≥ 98%) were pur-
chased from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). The strawberries
(variety: Beauty) were purchased from the Nanjing fruit farm (Nanjing, China). All other
chemicals were standard reagent grade.

3.2. Preparation of GA-g-CMCS

The enzymatic synthesis of GA-g-CMCS was performed based on the heterogeneous
grafting method with some minor modification [38]. CMCS powder and GA were dissolved
in phosphate buffer (pH 6.5) and methanol, respectively. Then 40 mL CMCS solution
(25 mg/mL) was mixed with 5 mL of GA solution (4 mg/mL), and 5 mL of SLAC (5 U/mL)
was added. The mixture was reacted with continuous stirring (100 rpm) at 40 ◦C for 1 h
and then placed in a boiling water bath for 10 min to inactivate SLAC. The product was
collected by centrifugation for 15 min (8000× g, 4 ◦C) with a centrifuge (Thermo Fisher
Scientific, Waltham, USA). To remove any free GA, the product was washed with ethanol
and water separately and centrifuged. GA-g-CMCS were prepared by lyophilizing the
washed product and stored at 4 ◦C for later analysis.

3.3. Characterization of GA-g-CMCS
3.3.1. Determination of Amino Content

The amino contents of CMCS and GA-g-CMCS were determined based on a reported
method with slight modification [54]. CMCS and GA-g-CMCS were separately dissolved
in deionized water to a concentration of 1 mg/mL. A total of 2 mL of ninhydrin solution
(50 mg/mL, ninhydrin in dimethylformamide) and 0.5 mL of acetate buffer (0.2 M, pH 5.5)
were added to 0.5 mL of the sample solution. After reacting in boiling water for 30 min,
the samples were cooled to room temperature. The absorbance at 574 nm was measured
to compare changes in amino content of CMCS and GA-g-CMCS using a UV-2450/2550
spectrophotometer (Shimadzu, Kyoto, Japan).

3.3.2. UV-Vis and FTIR Analyses

The CMCS and GA-g-CMCS powders were individually dissolved in deionized water
at a concentration of 0.5 mg/mL. The UV-vis spectrum was recorded by scanning samples
from 200 to 600 nm with a spectrophotometer (Shimadzu, Kyoto, Japan).

The Fourier transform infrared (FTIR) spectrum of samples was determined by Nicolet
iS50 spectroscopy (Madison, WI, USA) in the frequency range of 4000–500 cm−1. Each
sample (1 mg) was mixed with KBr (100 mg) and ground evenly by agate mortar. The
grafting situation of the GA and CMCS was determined by bond analysis.

3.3.3. Antioxidant Activity

The antioxidant activity was assayed using the scavenging activity of the DPPH radical
based on a reported method [55]. A volume of 2 mL of DPPH ethanol solution (0.1 mM) was
mixed with 2 mL of sample solution with different concentrations (0.5–2.0 mg/mL). After
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full shaking, the sample was incubated for 30 min at room temperature in the dark. The
absorbance of the sample was measured at 517 nm with a spectrophotometer (Shimadzu,
Kyoto, Japan). The control used deionized water instead of a sample solution. The DPPH
free radical scavenging capacity was calculated as follows:

DPPH scavenging ability(%) =
(

1 − Asample/Acontrol

)
× 100% (1)

where Asample is the absorption value of the sample at 517 nm and Acontrol is the absorption
value of the control.

3.4. Coating Strawberries with the CMCS and GA-g-CMCS

The strawberries were washed in physiological saline and then selected for uniformity
of size, shape and color. Any fruit with defects, injuries or blemishes was discarded. The
strawberries were randomly divided into 5 groups, and the control group was uncoated.
The treatment groups were immersed in solutions of CMCS (2.0%, w/v), and GA-g-CMCS
(1.0%, 1.5% and 2.0%, w/v) at 25 ◦C for 1 min. After drying with cold air, the strawberries
were stored in a constant temperature and humidity chamber (Stik, FL, USA) at 20 ◦C and
RH 50% for 4 days. Samples were taken daily until the end of storage. All experiments
were performed in triplicate.

3.5. Physiological Analysis of Strawberries
3.5.1. Respiration Rate

The respiration rate of the samples was measured based on a previously reported
method [56]. Strawberries were placed in a dryer for 0.5 h with sodium hydroxide (NaOH)
solution (0.4 M, 10.0 mL) placed at its base. Then the saturated BaCl2 solution (5 mL) and
1% phenolphthalein were added to the solution. The oxalic acid solution (0.2 M) was used
for titration to determine the amount of CO2 absorbed by the NaOH solution from the
strawberries. The same method was used for a control titration. The respiration rate was
calculated as follows:

Respiration rate = (V1 − V2)× M × 44W × h × 100% (2)

where V1 is the titration volume of the control group (mL), V2 is the titration volume of the
sample (mL), M is the oxalic acid concentration (M), 44 represents the molecular weight of
CO2, W is the sample weight (kg) and h is the determination time. The respiration rate was
expressed as mg CO2/(kg·h).

3.5.2. Firmness

The firmness of the samples was tested using an FHM-5 texture analyzer (Takemura,
Kudamatsu, Japan). Five strawberries from each treatment group were randomly selected
then their firmness was measured on the equatorial zone on three sides of each fruit.
Puncture tests involved the use of a 6 mm cylinder probe to a penetration depth of 5 mm.

3.5.3. Weight Loss Percentage

The weight loss percentage (WLP) of the samples was determined by weighing the
strawberries daily using an electronic scale (Huazhi, Fuzhou, China). The WLP of straw-
berries was calculated as the ratio (%) of the weight difference to the initial weight.

3.5.4. Decay Rate

The decay rate of the samples was counted from the number of rotten strawberries
each day. The decay rate was calculated as the ratio (%) between the number of rotten
strawberries and the initial number.
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3.5.5. Color Indices

The change in color value of the strawberries was tested by L, a and b values using
a CR-400 Minolta Color Reader (Minolta, Osaka, Japan). This was calibrated using a
white plate before use (L = 86.3, a = 0.3165 and b = 0.3142). For these measurements, five
strawberries were randomly selected from each group, and each sample was measured
three times. The color difference of ∆E was calculated as follow:

∆E =
√

∆L2 + ∆a2 + ∆b2 (3)

where L is the luminance value of the sample, a is the redness/greenness value of the
sample and b is the yellowness/blueness value of the sample.

3.6. Biochemical Analysis of Strawberries
3.6.1. Soluble Solids Content

The samples were cut into pieces and homogenized immediately with a blender.
After filtration, the juice was collected in sterile conical flasks. The soluble solids con-
tent (SSC) values were determined using a PAL-BX/ACID 5 digital refractometer (Atago,
Kyoto, Japan).

3.6.2. Titratable Acidity Content

The titratable acidity (TA) content was determined according to the principle of acid-
base neutralization. A total of 10 g of homogenized strawberries were added to 100 mL of
deionized water, rested for 30 min and then filtered. Phenolphthalein indicator (1%) were
added to 20 mL filtrate, which was then titrated with calibrated NaOH solution (0.1 M).
The TA content of samples was calculated according to the consumption of NaOH, and
expressed as the mass fraction (%).

3.6.3. Ascorbic Acid Content

The ascorbic acid (AsA) content was determined using the 2,6-dichlorophenol in-
dophenol (DCIP) titration method with modification [57]. A total of 10 g of homogenized
strawberries were added to 50 mL of acetic acid solution (1%). The mixture was centrifuged
(5000× g) at 4 ◦C for 15 min. Then the supernatant was titrated against the DCIP solution
until the reaction liquid turned a pink color which persisted for 30 s. The DCIP solution
was standardized using AsA (0.1 g/L). The acetic acid solution (1%) was set as the blank
control. The results were expressed as g/100 kg.

3.6.4. Reduced Glutathione Content

Trichloroacetic acid solution (50 g/L) containing EDTA disodium (5M) was added to
the samples, which were centrifuged (12,000× g) at 4 ◦C for 20 min. A total of 1.0 mL of
supernatant and 1.0 mL of phosphate buffer (0.1 M, pH 7.7) were added to different tubes.
DTNB solution (0.5 mL, 4 mM) and phosphate buffer (0.5 mL, 0.1 M, pH 6.8) were added
to the corresponding tubes, respectively. The reaction was kept at 25 ◦C for 10 min. The
solution containing distilled water, phosphate buffer and DTNB solution was used as blank
control. The absorbance of 412 nm was determined using a spectrophotometer (Shimadzu,
Kyoto, Japan). The GSH content was expressed as mmol/kg.

3.6.5. Catalase, Ascorbate Peroxidase and Superoxide Dismutase Activity

Extraction buffer was added to the samples, which were ground, homogenized and
then centrifuged (12,000× g) at 4 ◦C for 30 min. The supernatant was the enzyme ex-
tract. Distilled water was set the control. The CAT, APX and SOD activities were deter-
mined according to the instructions of the enzyme activity kit. The activity unit for CAT
(0.01 ∆OD240·min−1·g−1) and APX (0.01 ∆OD290 ·min−1·g−1) were defined as a 0.01 de-
crease in the absorbance value of the reaction system per gram of the sample at wave-
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length of 240 nm and 290 nm, respectively. One SOD activity unit (U) was defined as a
50% inhibition of NBT photochemical by the reaction system per gram strawberry per min.

3.7. Statistical Analysis

The one-factor analysis of variance (ANOVA) and Duncan’s test were used for multiple
comparisons by SPSS 22 (IBM, New York, NY, USA). The difference was considered to
be statistically significant if p < 0.05. The figures were drawn with R package of ggplot2
developed by Wickham [58].

4. Conclusions

In this study, GA was successfully grafted into CMCS catalyzed by recombinant bacte-
rial laccase from Streptomyces coelicolor as determined by measuring amino acid content,
UV-Vis and FTIR spectroscopy. As the research has demonstrated that the GA-g-CMCS
coating helped protect the antioxidant properties and nutrients of strawberries and pro-
longed shelf life relative to the control group. The 1.5% GA-g-CMCS coating reduced the
WLP of strawberries during storage (initially 12.7%) to 8.4% and the decay rate from 36.7%
to 8.9%. It also reduced the nutrient loss, including SSC, TA and ASA, and maintained
the antioxidant enzyme activity, such as keeping TA content above 60%. Future studies
are needed to optimize the optimization of catalytic conditions for the synthesis of CMCS
conjugated with phenolic acids for industrial applications. Bacterial laccase-catalyzed
CMCS grafted phenolic acid is simpler to operate than chemical methods, can be used
under milder conditions, and is safe and effective, which is conducive to the application
of fruit preservation and provides a reference method for the synthesis and application of
subsequent CMCS derivatives.
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49. Toǧrul, H.; Arslan, N. Carboxymethyl cellulose from sugar beet pulp cellulose as a hydrophilic polymer in coating of mandarin. J.
Food Eng. 2004, 62, 271–279. [CrossRef]

50. Keutgen, A.J.; Pawelzik, E. Influence of pre-harvest ozone exposure on quality of strawberry fruit under simulated retail
conditions. Postharvest Biol. Technol. 2008, 49, 10–18. [CrossRef]

51. Li, L.; Sun, J.; Gao, H.; Shen, Y.; Li, C.; Yi, P.; He, X.; Ling, D.; Li, J.; Liu, G.; et al. Effects of polysaccharide-based edible coatings
on quality and antioxidant enzyme system of strawberry during cold storage. Int. J. Polym. Sci. 2017, 2017, 9746174. [CrossRef]

52. Quan, W.; Zhang, C.; Zheng, M.; Lu, Z.; Lu, F. Whey protein isolate with improved film properties through cross-linking catalyzed
by small laccase from Streptomyces coelicolor. J. Sci. Food Agric. 2018, 98, 3843–3850. [CrossRef] [PubMed]

53. Sun, J.; Zheng, M.; Lu, Z.; Lu, F.; Zhang, C. Heterologous production of a temperature and pH-stable laccase from Bacillus
vallismortis fmb-103 in Escherichia coli and its application. Process Biochem. 2017, 55, 77–84. [CrossRef]

54. Liu, J.; Lu, J.; Kan, J.; Wen, X.; Jin, C. Synthesis, characterization and In Vitro anti-diabetic activity of catechin grafted inulin. Int. J.
Biol. Macromol. 2014, 64, 76–83. [CrossRef] [PubMed]

55. Sun, S.; Lin, Y.; Weng, Y.; Chen, M. Efficiency improvements on ninhydrin method for amino acid quantification. J. Food Compos.
Anal. 2006, 19, 112–117. [CrossRef]

56. Xie, M.; Hu, B.; Wang, Y.; Zeng, X. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological
properties of the copolymer. J. Agric. Food Chem. 2014, 62, 9128–9136. [CrossRef] [PubMed]

57. Yang, J.; Sun, J.; An, X.; Zheng, M.; Zhao, Z.; Lu, F.; Zhang, C. Preparation of ferulic acid-grafted chitosan using recombinant
bacterial laccase and its application in mango preservation. RSC Adv. 2018, 8, 6759–6767. [CrossRef]

58. Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. Available
online: https://ggplot2.tidyverse.org (accessed on 29 November 2022).

http://doi.org/10.1016/j.ijbiomac.2022.06.037
http://doi.org/10.1016/j.carbpol.2020.115848
http://doi.org/10.3390/ijms9071333
http://doi.org/10.1021/am404049x
http://doi.org/10.1016/j.foodchem.2007.03.050
http://doi.org/10.1016/j.scienta.2015.09.018
http://doi.org/10.1016/j.postharvbio.2019.01.009
http://doi.org/10.1016/j.foodchem.2010.06.085
http://doi.org/10.1016/j.plaphy.2022.08.004
http://www.ncbi.nlm.nih.gov/pubmed/35963050
http://doi.org/10.1016/j.foodchem.2020.127213
http://doi.org/10.1080/10408398.2014.900474
http://doi.org/10.1016/j.postharvbio.2013.06.008
http://doi.org/10.1016/S0260-8774(03)00240-1
http://doi.org/10.1016/j.postharvbio.2007.12.003
http://doi.org/10.1155/2017/9746174
http://doi.org/10.1002/jsfa.8900
http://www.ncbi.nlm.nih.gov/pubmed/29363791
http://doi.org/10.1016/j.procbio.2017.01.030
http://doi.org/10.1016/j.ijbiomac.2013.11.028
http://www.ncbi.nlm.nih.gov/pubmed/24315946
http://doi.org/10.1016/j.jfca.2005.04.006
http://doi.org/10.1021/jf503207s
http://www.ncbi.nlm.nih.gov/pubmed/25198516
http://doi.org/10.1039/C7RA12696D
https://ggplot2.tidyverse.org

	Introduction 
	Results and Discussion 
	Characterization of GA-g-CMCS 
	Amino Content 
	UV-Vis and FTIR Analyses 
	Antioxidant Activity 

	Coating Strawberries with GA-g-CMCS 
	Physiological Analysis of Strawberries 
	Respiration Rate 
	Firmness 
	Weight Loss Percentage 
	Decay Rate 
	Color 

	Biochemical Analysis of Strawberries 
	Soluble Solids Content 
	Titratable Acidity Content 
	Ascorbic Acid Content 
	Reduced Glutathione Content 
	Catalase, Ascorbate Peroxidase and Superoxide Dismutase Activity 


	Materials and Methods 
	Materials 
	Preparation of GA-g-CMCS 
	Characterization of GA-g-CMCS 
	Determination of Amino Content 
	UV-Vis and FTIR Analyses 
	Antioxidant Activity 

	Coating Strawberries with the CMCS and GA-g-CMCS 
	Physiological Analysis of Strawberries 
	Respiration Rate 
	Firmness 
	Weight Loss Percentage 
	Decay Rate 
	Color Indices 

	Biochemical Analysis of Strawberries 
	Soluble Solids Content 
	Titratable Acidity Content 
	Ascorbic Acid Content 
	Reduced Glutathione Content 
	Catalase, Ascorbate Peroxidase and Superoxide Dismutase Activity 

	Statistical Analysis 

	Conclusions 
	References

