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Abstract: This review describes recent advances in copper-catalyzed difluoroalkylation reactions. The
RCF2 radical is generally proposed in the mechanism of these reactions. At present, various types of
copper-catalyzed difluoroalkylation reactions have been realized. According to their characteristics,
we classify these difluoroalkylation reactions into three types.
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1. Introduction

Difluorinated compounds such as fludioxonil [1], gemcitabine [2] and maraviroc [3]
play an important role in the agrochemical, pharmaceutical, and materials science industries
due to their special physical and chemical properties (Figure 1) [4–6]. As a consequence,
more and more attention has been paid to the development of simple and efficient methods
for introducing difluoroalkyl groups in recent years. Transition-metal-catalyzed diflu-
oroalkylation via cross-coupling is an efficient and attractive method for this reaction.
Various catalysts (Pd, [7] Ir, [8,9] Cu [10], Ni [11], etc. [12,13]) have been successfully
applied in difluoroalkylation reactions [14–19]. However, it is still a great challenge to
selectively control the catalytic cycle and obtain the desired fluorinated compounds by
directly using classical transition-metal-catalyzed cross-coupling reactions, as some diflu-
oroalkyl metal species have significantly different properties from their nonfluorinated
analogues. They are unstable and can easily protonate, dimerize, and/or produce other
unknown byproducts. Compared with other metal catalysts, copper has the advantages of
low cost, low toxicity, wide availability, etc. Accordingly, copper-catalyzed reactions have
seen much progress [20–30]. As early as 1986, a copper-mediated Ullmann cross-coupling
reaction of halodifluoroacetates with activated (hetero)aryl electrophiles was reported by
the Kobayashi group [10]. However, excess copper was required in this system. With regard
to copper-catalyzed difluoroalkylation reactions, there have been several reports in recent
years. In this review, the progress of difluoroalkylation in the last 3 years is summarized.
According to their differences, these difluoroalkylation reactions were classified into three
types (Figure 2).
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Figure 2. Copper-catalyzed difluoroalkylation reactions.

2. Difluoroalkylation–Cyclization Reactions

Jiang’s group reported the copper-mediated difluoromethylenation between N-arylacry
lamides and benzo-1,3-oxazolic difluoromethylbromide (Scheme 1) [31]. Control exper-
iments were conducted, implying that a radical intermediate was possibly involved in
this transformation. RCF2 radicals, which were generated from the Cu(0)-mediated single-
electron transformation with RCF2Br, could be added to the terminal end of the C=C double
bond of N-arylacrylamide. Subsequently, an intramolecular radical cyclization reaction
occurred to form the final product.
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Scheme 1. The copper-catalyzed difluoromethylenation of N-arylacrylamides.

In 2018, Shi’s group established a facile method to construct diverse difluorinated
quinoline-2,4-diones via the Cu-catalyzed direct difluoromethylation of activated alkenes.
A difluoromethyl radical addition/cyclization reaction mechanism was indicated for this
strategy (Scheme 2) [32]. It is worth noting that this reaction could also be carried out in
the presence of a visible-light photo-redox catalysis.
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Scheme 2. Difluorinated quinoline-2,4-diones catalyzed by copper.

The copper/B2pin2-mediated difluoroalkylation of methylenecyclopropanes with
bromodifluorinated acetates and acetamides was illustrated by Wang and coworkers
(Scheme 3) [33]. Various substrates reacted smoothly in this reaction system. Both the
catalyst and an inert atmosphere are necessary for the successful operation of the reaction. A
Cu(II)/Cu(I) catalyzed tandem radical process, which involved ring-opening/intramolecular
cyclization, was proposed in the reaction mechanism.
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Scheme 3. The copper/B2pin2-catalyzed difluoroalkylation of methylenecyclopropanes.

Difluoroacyl heterocyclic compounds are widely found in various bioactive com-
pounds and agricultural chemicals [34,35]. At present, these reactions have been studied
extensively [36,37]. In 2019, Wu’s group realized the copper-mediated free-radical cy-
clization of naphthalenyl iododifluoromethyl ketones with olefins (Scheme 4) [38]. The
corresponding difluoroacyl compounds with moderate yields were obtained. Mechanistic
investigations suggested that difluorinated radical intermediates, which were generated
from the reduction reaction of RCF2I with Cu(0), were involved in the reaction pathway.
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Wang’s group reported, for the first time, the difunctionalization of unactivated alkenes
through desulfonylation-initiated distal alkenyl migration. Using this method, previously
unknown 3,3-difluoro-5-styrylpiperidin-2-one derivatives with a quaternary stereocenter
can be efficiently constructed (Scheme 5) [39]. A radical mechanism was involved in this
reaction. Initially, a single-electron transfer process occurs between the Cu(I) species and
BrCF2R3 to generate fluoroalkyl radical 5a and Cu(II) species. The less steric terminal olefin
is then selectively attacked by fluoroalkyl radical 5a, yielding a transient alkyl radical 5b.
Radical 5b reacts with the internal double bond to form cyclized radical 5c. Then, radical 5c
undergoes the desulfonylation reaction, forming the critical N-center radical 5d. Finally, the
3, 3-difluoro-5-pyranopridine-2-ketone product was produced via the cyclization reaction.
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Scheme 5. The difunctionalization of unactivated alkenes through desulfonylation.

Song’s group developed an effective method for the synthesis of 3,3-difluoro-2- oxin-
doles by copper/B2pin2-catalyzed C-H difluoroacetylation–cycloamidation of aniline with
ethyl bromodifluoroacetate. (Scheme 6) [40]. In this strategy, amino groups act as directing
groups to regioselectively provide ortho-difluoroacetylated products. In the presence of
a base, LCu(I)-Bpin species 6a was formed by the reaction of LCuX(I) and B2pin2. Then,
species 6a reduced BrCF2CO2R to form the CF2CO2R radical. Subsequently, the CF2CO2R
radical reacted with aniline to produce an amino-oriented intermediate 6c. Finally, the
desired products, 3,3-difluoro-2- oxindole derivatives, were isolated via the SET pathway
and an intermolecular cycloamidation reaction of ester with the amino group.
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The difluoromethylation reaction using aryl-substituted anilines as substrates is chal-
lenging due to the steric disadvantage, as well as due to entropy. The C–H [3 + 2] annulation
of N-aryl or alkyl-substituted anilines with bromodifluoroacetate catalyzed by copper was
realized by Li’s group (Scheme 7) [41]. The corresponding products, 3,3′-disubstituted
oxindoles, can be obtained with moderate to good yields.
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Scheme 7. The copper-catalyzed annulation of N-substituted anilines.

Difluoroalkylation of an olefin/nitrile insertion/cyclization tandem sequence of N-
cyanamide olefins catalyzed by copper was realized by Liao’s group, which provides a
convenient synthesis method for obtaining difluorobicycloamides containing imine groups
in a sustainable manner (Scheme 8) [42]. The protocol has the advantages of a high yield,
wide substrate range and good functional group compatibility. In addition, diverse syn-
thetic transformations have also been demonstrated for preparing various functionalized
difluorinated aza-heterocycles.
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In recent years, the cyclization reaction of alkenyl carboxylic acids with difluoroalkyl
reagents has been established for the synthesis of difluoroalkyl lactones. In 2018, Li’s group
achieved difluoroalkylation of alkenyl carboxylic acids catalyzed by a copper catalyst
under mild reaction conditions (Scheme 9) [43]. The high-value lactones were delivered
containing CF2 with moderate to excellent yields. A catalytic reaction pathway involving
free radicals was proposed. Firstly, the RCF2 radical and Cu(II) species were generated
from an initial single-electron transfer (SET) from Cu(I)Ln 9a to RCF2Br. Subsequently,
the difluoroalkyl radical intermediate 9b was obtained from the addition reaction of the
RCF2 radical with unsaturated carboxylic acid. Then, 9b was oxidized by Cu(II) to give
the carbocation intermediate 9c, and the copper(I) catalyst was regenerated. Finally, an
intramolecular nucleophilic attack reaction could provide the final product (Scheme 36,
path a). Another pathway that forms the final product under basic conditions through the
reductive elimination of Cu(III) intermediate 9d is also possible (Scheme 9, path b). Another
copper-catalyzed difluoroalkylation between alkenyl carboxylic acids and BrCF2R reagents
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for the synthesis of lactone was also demonstrated by Wang and coworkers (Scheme 10) [44].
A similar reaction mechanism which contains a Cu(I)/Cu(II) cycle was suggested for this
transformation.
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Scheme 10. The copper-catalyzed cyclization of unsaturated carboxylic acids.

Wang and Guo’s group established a copper-catalyzed intramolecular oxydifluoroalky-
lation of hydroxyl-containing alkenes and various fluoroalkylated tetrahydrofurans ob-
served in this reaction [45]. In addition to ethyl bromodifluoroacetate, other functionalized
difluoroalkylated bromides also reacted smoothly in this system. The reaction mechanism
is depicted in Scheme 11. First, the oxidation between Cu(I) and ethyl bromodifluoroacetate
occurred to produce the RCF2 radical 11a and Cu(II) intermediate. Intermediate 11b could
be formed via the addition reaction between radical 11a and alkenes, which was captured
by the Cu(II) species with the help of the Na2CO3 base to form intermediate 11c. Then,
two possible intermediates, 11d or 11e, can be formed. Intermediate 11d can undergo an
activated-alcohol nucleophilic attack on carbon cation species and generate the desired
product. Alternatively, reductive elimination of intermediate 11e can also provide the
final product. Both of the two pathways are possible at the moment. In 2019, this group
demonstrated that a variety of difluorinated nitrogen-containing polycyclic compounds can
be obtained when amine-containing olefins are used instead of hydroxy-containing olefins
as substrates (Scheme 12) [46]. The electrophilic RCF2 radical and Cu(II) intermediates
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produced from the oxidation of Cu(I) species by BrCF2CO2Et via single-electron transfer
(SET) were also described in a possible reaction mechanism. Recently, Luo’s group also
realized the photoredox-induced oxydifluoroalkylative cyclization of alkenes using RfI as
substrates [47].
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Scheme 12. The copper-catalyzed reaction for synthesis of difluorinated polycycles.

Copper-catalyzed redox cycloisomerization between non-prefunctionalized nitroalkynes
and BrCF2CO2Et for the synthesis of C2-tetrasubstituted indolin-3-ones was achieved by
Song’s group (Scheme 13) [48]. Using diboron as the reducing reagent, this reaction can
be carried out using a one-pot protocol, and a fluorine-containing noncarbon quaternary
center can be constructed. The author conducted the experiment for mechanism research.
The results showed that B2pin2 captures an oxygen in NO2 with the help of Na2CO3. The
other oxygen in NO2 was converted into a C=O bond of C2-tetrasubstituted indolin-3-ones.
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Scheme 13. The copper-catalyzed redox cycloisomerization.

Shi’s group described the cyclization reaction of vinyl isocyanides with bromodifluo-
roacetic derivatives promoted by the Cu/B2pin2 system, and various 1-difluoroalkylated
isoquinolines were generated (Scheme 14) [49]. Preliminary mechanistic studies were
conducted and the results implied that a tandem radical cyclization process was possible
for this reaction. In addition, visible light could also promote this transformation efficiently.



Molecules 2022, 27, 8461 8 of 25Molecules 2022, 27, x FOR PEER REVIEW 8 of 25 
 

 

  

Scheme 14. The Cu/B2pin2-promoted cascade cyclization of vinyl isocyanides. 

In 2018, BrCF2CO2Et was discovered by Song’s research group to play a dual role as 

a difluoroalkylation reagent and C1 synthon in the reaction of BrCF2CO2Et with a primary 

amine (Scheme 15) [50]. BrCF2CO2Et reacts with Na2CO3 through decarboxylation and 

debromination to form difluorocarbene, which can participate in the catalytic cycle. Based 

on DFT calculations and experimental observations, they found that the base plays an 

important role in the reaction of primary amines and difluorocarbene to form the key in-

termediate isocyanides.  

 

Scheme 15. The reaction of BrCF2COOEt with primary amines. 

The copper-catalyzed oxydifluoroalkylation of β, γ-unsaturated oximes was studied 

by Wang and coworkers (Scheme 16) [51]. A Cu(III)/Cu(I) catalytic cycle was described 

for this transformation. The reaction proceeds through a difluoroalkylation cascade of ole-

fins, followed by a nucleophilic reaction of the hydroxyl group of the oxime. This method 

has the advantages of mild reaction conditions, low catalyst cost and wide substrate range, 

which makes it a simple method for the preparation of the fluorine-containing side-chain 

isoxazoline.  

  

Scheme 14. The Cu/B2pin2-promoted cascade cyclization of vinyl isocyanides.

In 2018, BrCF2CO2Et was discovered by Song’s research group to play a dual role as a
difluoroalkylation reagent and C1 synthon in the reaction of BrCF2CO2Et with a primary
amine (Scheme 15) [50]. BrCF2CO2Et reacts with Na2CO3 through decarboxylation and
debromination to form difluorocarbene, which can participate in the catalytic cycle. Based
on DFT calculations and experimental observations, they found that the base plays an
important role in the reaction of primary amines and difluorocarbene to form the key
intermediate isocyanides.
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Scheme 15. The reaction of BrCF2COOEt with primary amines.

The copper-catalyzed oxydifluoroalkylation of β, γ-unsaturated oximes was studied
by Wang and coworkers (Scheme 16) [51]. A Cu(III)/Cu(I) catalytic cycle was described for
this transformation. The reaction proceeds through a difluoroalkylation cascade of olefins,
followed by a nucleophilic reaction of the hydroxyl group of the oxime. This method has
the advantages of mild reaction conditions, low catalyst cost and wide substrate range,
which makes it a simple method for the preparation of the fluorine-containing side-chain
isoxazoline.
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Zhu’s group reported on the copper-catalyzed bromodifluoroacetylation cyclization
reaction (Scheme 17) [52]. The treatment of bromodifluoroacetic acid derivatives with Cu(I)
and B2Pin2 can generate difluoroalkyl radicals and trigger radical addition/cyclization/
bromination sequences. Bromodifluoroacetyl-derived esters, amides, and ketones are well
compatible in this system, generating various vinyl C–bromine bonds containing function-
alized heterocycles with high yields. Two possible alternative bromination processes are
proposed for the C-Br bond formation step in the vinyl intermediate: a possible radical
chain-reaction mechanism and an organic metal Cu(III)/Cu(I) process.
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Scheme 17. The copper-catalyzed bromodifluoroacetylation cyclization reaction.

Zhu’s group was the first to achieve the copper-catalyzed cascade radical addi-
tion/dearomative spirocyclization of biaryl ynones for the preparation of difluoromethy-
lated spiro [5.5] trienones (Scheme 18) [53]. A series of spiro compounds can be constructed
via this reaction. Monofluoromethylated and phosphorated spiro [5.5] trienones were also
produced when diethylphosphite was used as a substrate in the presence of Ag as a catalyst.
A fluoroalkyl radical was generated in the reaction catalytic cycle. The addition of the RCF2
radical to the C-C triple bond of 18a produced the vinyl radical 18b, which was followed
by 6-exo-trig cyclization forming intermediate 18c, and the oxidation reaction of 18c by
Mn+1 could produce oxocarbenium ion 18d. Finally, the desired product was formed via a
demethylation reaction.
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An effective method for the preparation of difluoroalkyl 2-azaspiro [4.5] decane by
copper-catalyzed difluoroalkylation of N-benzylacrylamide with ethyl bromodifluoroac-
etate was developed by Han’s group (Scheme 19) [54]. The difluoroalkylation of substituted
N-benzylacrylamides, 5-exo cyclization, and dearomatization reactions were suggested in
the cascade reaction. In addition, the obtained product can be successfully converted into
saturated spirocyclohexanone scaffolds and difluoroalkyl quinolinone.
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Scheme 19. The synthesis of difluoroalkyl 2-azaspiro [4.5] decane.

3. Difluoroalkylation–Multicomponent Reactions

Alkenes were found to react well with fluoroalkyl halides and boronic acids, and
the γ-arylation of carbonyl compounds can be realized via these reactions. Shu and
coworkers found that the copper and visible-light catalysis plays an important role in this
reaction [55]. The reaction mechanism is described in Scheme 20. The oxidative quenching
reaction between the excited Ir*(III) photocatalyst and BrCF2CO2Et occurred to form radical
intermediate 20a and the oxidized photocatalyst Ir(IV). Then, the addition reaction of 20a
and alkenes could provide a new alkyl radical intermediate 20b. With the help of a base, the
reaction between Cu(I) and aryl boronic acid occurred to form the arylcopper intermediate
20c, which could be converted to 20d via recombination with 20b. Then, the final product
was generated from 20d via reductive elimination, with the concurrent liberation of Cu(I)
and Ir(III) species.
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Scheme 20. The synthesis of γ-arylation of carbonyl compounds.

Song’s group found that the difluoroalkylation–thiolation of aryl alkenes could effi-
ciently proceed in the presence of copper/B2pin2 (Scheme 21) [56]. As an organic reducing
reagent, B2pin2 plays an important role in this reaction process, enabling the simultaneous
formation of C (sp3)-C (F2R) and C (sp3)-S (R) bonds by using two electrophilic substrates.
Radical trapping experiments were conducted, and the results implied that the CF2CO2Et
radical was involved in the catalytic cycle.
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Scheme 21. The Truce–Smiles rearrangement.

In 2019, the iron-mediated difluoroalkylation–thiolation of alkenes with BrCF2CO2Et
and RSH was realized by Cai and coworkers [57]. This reaction enabled the simultaneous
formation of Csp3–Csp3 and Csp3–S bonds. Thiols can be activated by FeCl2 via the Fe/S
complex [58]. In the same year, the same group [59] described the photocatalyzed three-
component difluoroalkylamination of alkenes using BrCF2CO2Et and amines. Besides
amines and thiols, the Nishikata group found that alcohol was also a good substrate for this
type of reaction (Scheme 22a) [60]. A radical and cation crossover mechanism mediated
by copper was proposed as the reaction mechanism. Chen and coworkers achieved the
selective three-component 1,4-difluoroalkylesterification of 1-aryl-1,3-dienes mediated
by a dual copper and photoredox catalysis (Scheme 22b) [61]. This reaction provided
a new method for the synthesis of difluoroalkylated allylic esters. The intramolecular
two-component 1,4-difluoroalkylesterification of 1-(1,3-butadienyl) benzoic acids for the
synthesis of 3-substituted benzobutyrolactones was also smoothly realized. A radical
mechanism was possible for this transformation based on the results of mechanistic studies.
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Scheme 22. (a)The three-component difluoroalkylation of alkenes with BrCF2CO2Et and alco-
hol. (b) The three-component 1,4-difluoroalkylesterification of 1-aryl-1,3-dienes with BrCF2CO2Et
and acids.

In the past few years, great progress on photocatalysis has been made in the field of
organic chemistry [62–73] since the pioneer works carried out by MacMillan et al. [74] and
Yoon et al. [75] in 2008. In the presence of visible light, a difluoroalkylation reaction could
proceed smoothly using RCF2X as an important synthon. The reduction of RCF2X by the
photocatalyst via oxidative quenching was one of the most common methods to form the
RCF2 radical. A photooxidation and copper-catalyzed fluoroalkyl thionation reaction of
activated and unactivated olefins with a free-radical relay mechanism was reported by Cao
and coworkers (Scheme 23) [76]. By using fluorohaloalkanes as free-radical precursors,
and P(O)SH or P(S)SH compounds as coupling agents, various fluorine-substituted S-alkyl
thiophosphate and dithiophosphorus esters can be obtained easily under mild conditions.
In addition, this reaction strategy can be successfully used for the later functionalization of
bioactive molecules.
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Scheme 23. Photooxidation and copper-catalyzed fluoroalkyl thionation reaction.

Cu(I) catalyzed the three component reaction of 2-iodo-2,2-difluoroacetophenone,
acetynes and TMSCN, which was presented by Wu’s group (Scheme 24) [77]. This reaction
provides a simple strategy for the synthesis of difluoroacyl-substituted nitriles, which may
be a potentially useful fluoro-organic intermediate for further conversion in drug discovery.
The method displayed a wide substrate range and good stereoselectivity. The preliminary
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mechanism studies showed that a Cu(II)/Cu(I)-mediated free-radical process might be
possible for this cyanodifluoroalkylation reaction.
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Scheme 24. Synthesis of difluoroacyl-substituted nitriles catalyzed by copper.

A new and simple method for the difluoroalkylation of olefins mediated by the
Cu/Na2S2O5 system was reported by Zhang’s group (Scheme 25) [78]. The reaction was
carried out under mild conditions using readily available ingredients, where C-C and C-S
bonds were successfully constructed simultaneously. The reaction shows the characteristics
of a wide substrate range of olefins and disulfides, good functional group tolerance, and
high selectivity. A Cu(II)/Cu(I)-mediated radical mechanism was possible for this reaction.
In this catalytic cycle, the Cu(I) species is obtained via the reduction in the Cu(II) species by
a solvent (CH3CN) or Na2S2O5.
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Scheme 25. The difluoroalkylation of olefins catalyzed by Cu/Na2S2O5 system.

In 2018, Liang and coworkers showed that air-stable SCF3 and SeCF3 reagents could serve
as free-radical initiators of ethyl iododifluoroacetate via a reductive reaction (Scheme 26) [79].
With the assistance of air-stable SCF3 and SeCF3 reagents, the difluoroalkylation reaction be-
tween alkynes and the ethyl iododifluoroacetate proceeded efficiently. Successful avoidance
of β-proton elimination was achieved. Besides alkynes, alkenes could also react smoothly
in this reaction. The Cu(I)-Cu(II)-Cu(III) mechanism was proposed for this transformation.
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Scheme 26. The copper-mediated difluoroalkylation reaction of alkynes with ethyl iododifluoroacetate.

4. Difluoroalkylation–Coupling Reactions

In 2018, the Cu-catalyzed oxidation of alcohols with BrCF2CO2Et was realized by
Cheng and coworkers, and various difluoroalkylated aldehydes or ketones were synthe-
sized (Scheme 27) [80]. The reaction realized the catalytic oxidation of alcohol and the
difluoroalkylation of olefins at the same time, which is an efficient and attractive organic
synthesis method. Similarly, the radical difluoroalkylation of alkenes, intramolecular 1, 5-
or 1, 6-HAT, SET oxidation and deprotonation reactions occurred in sequence to give the
desired product. Xiong’s group also carried out the Cu2O-catalyzed phosphonyldifluo-
romethylation and ethoxycarbonyldifluoromethylation of allylic alcohols (Scheme 28) [81].
A radical 1,2-aryl migration was possible for the reaction mechanism.
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In 2018, the copper-catalyzed difluoroacetylation of alkenes with ethyl bromodiflu-
oroacetate (BrCF2CO2Et) was presented by Zhu’s group (Scheme 29) [82]. With the help
of a base, the reduction reaction between BrCF2CO2Et and the complex of Cu(I)/B2Pin2
occurred to provide CF2COOEt radical 29c and Cu(II) 29d. Then, carbon radical interme-
diate 29e was formed via the addition reaction between radical 29c and alkenes, and the
final product was obtained via Cu(II)-mediated oxidation and bromide capture. Alterna-
tively, reductive elimination of Cu(III) complex 29g, which was formed from the reaction of
intermediate 29e with 29d, was also reasonable.
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Scheme 29. The copper-mediated difluoroacetylation of alkenes.

Wang and coworkers found that the hydrodifluoroalkylation reaction between alkynes
and ethyl bromodifluoroacetate could be efficiently catalyzed by Cu (Scheme 30) [83].
Pyrosulfite should be used in this reaction as a reducing agent to inhibit the self-coupling of
terminal alkynes. The SET reaction of BrCF2COOEt and Cu(I) could produce a CF2COOEt
radical, which would be followed by an addition reaction with (phenylethynyl)copper 30b
to form 30c. The final product was formed via hydrogen abstraction with solvents and
protonation by moisture.
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Scheme 30. The copper-catalyzed hydrodifluoroalkylation of alkynes.

The difluoroalkylation of heteroarenes, including indoles with BrCF2CO2R catalyzed
by Cu (Scheme 31a) [84] and Ru (Scheme 31b) [85], was also realized by several groups.
However, a mixture of C-2 and C-3 difluoroalkylation was obtained using these strategies.
Therefore, C-3-substituted indoles are usually used in this reaction to obtain the prod-
uct of selective C (2)-H difluoroalkylation. The C-2 difluoromethylation of indoles and
pyrroles catalyzed by copper using BrCF2CO2Et was realized by Shi’s group. However, the
pyrimidyl group, which acted as a direct group, should be present (Scheme 31c) [86].
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Scheme 31. (a) Copper-catalyzed difluoroalkylation of indoles. (b) Ru-catalyzed difluoroalkylation
of indoles. (c) Copper-catalyzed difluoroalkylation of indoles directed by pyrimidyl group.

As a core structure, imidazole pyridine is widely present in many bioactive molecules
and drugs [87,88]. Hajra and coworkers reported the copper-catalyzed difluoroalkyla-
tion of imidazopyridines with BrCF2CO2Et (Scheme 32a) [89]. Additionally, imidazo[2,1-
b]thiazole and benzo[d]imidazo[2,1-b]thiazole can also react well in this reaction system.
In 2017, Fu’s group demonstrated that the photocatalyst Ir could also promote this reaction
(Scheme 32b) [90]. The first organophotoredox-catalyzed difluoromethylenephosphonation
of imidazoheterocycles was realized by Hajra and coworkers (Scheme 32c) [91].

Molecules 2022, 27, x FOR PEER REVIEW 16 of 25 
 

 

 

Scheme 31. (a) Copper-catalyzed difluoroalkylation of indoles. (b) Ru-catalyzed difluoroalkylation 

of indoles. (c) Copper-catalyzed difluoroalkylation of indoles directed by pyrimidyl group.  

As a core structure, imidazole pyridine is widely present in many bioactive molecules 

and drugs [87,88]. Hajra and coworkers reported the copper-catalyzed difluoroalkylation 

of imidazopyridines with BrCF2CO2Et (Scheme 32a).[89] Additionally, imidazo[2,1-b]thi-

azole and benzo[d]imidazo[2,1-b]thiazole can also react well in this reaction system. In 

2017, Fu’s group demonstrated that the photocatalyst Ir could also promote this reaction 

(Scheme 32b) [90]. The first organophotoredox-catalyzed difluoromethylenephosphona-

tion of imidazoheterocycles was realized by Hajra and coworkers (Scheme 32c) [91]. 

 

Scheme 32. (a) Copper-catalyzed difluoroalkylation of imidazopyridines. (b) Ir-catalyzed difluoro-

alkylation of imidazopyridines. (c) Organophotoredox-catalyzed difluoromethylenephosphona-

tion of imidazoheterocycles. 

It was also proven that 8-aminoquinoline is capable of successfully performing 

difluoroalkylation with a difluoromethyl bromide reagent. The copper/B2pin2-mediated 

C-H ethoxycarbonyldifluoromethylation of 8-aminoquinoline scaffolds at the C5 position 

with functionalized difluoromethyl bromides and iodines was presented by Wu and 

coworkers (Scheme 33a) [92]. Ethoxycarbonyldifluoromethylation of naphthalenes at the 

C4 position was also realized in this system. Additionally, Ni- (Scheme 33b) [93] and Ru-

mediated (Scheme 33c) [94] difluoromethylation of 8-aminoquinoline was reported sepa-

rately by Wu, Wang and Zhao’s groups. 

 

Scheme 33. (a)The Cu-catalyzed difluoroalkylation of 8-aminoquinoline. (b) The Ni-catalyzed 

difluoroalkylation of 8-aminoquinoline. (c) The Ru-catalyzed difluoroalkylation of 8-aminoquino-

line.  

Scheme 32. (a) Copper-catalyzed difluoroalkylation of imidazopyridines. (b) Ir-catalyzed difluo-
roalkylation of imidazopyridines. (c) Organophotoredox-catalyzed difluoromethylenephosphonation
of imidazoheterocycles.

It was also proven that 8-aminoquinoline is capable of successfully performing difluo-
roalkylation with a difluoromethyl bromide reagent. The copper/B2pin2-mediated C-H
ethoxycarbonyldifluoromethylation of 8-aminoquinoline scaffolds at the C5 position with
functionalized difluoromethyl bromides and iodines was presented by Wu and coworkers
(Scheme 33a) [92]. Ethoxycarbonyldifluoromethylation of naphthalenes at the C4 position
was also realized in this system. Additionally, Ni- (Scheme 33b) [93] and Ru-mediated
(Scheme 33c) [94] difluoromethylation of 8-aminoquinoline was reported separately by Wu,
Wang and Zhao’s groups.
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Scheme 33. (a)The Cu-catalyzed difluoroalkylation of 8-aminoquinoline. (b) The Ni-catalyzed
difluoroalkylation of 8-aminoquinoline. (c) The Ru-catalyzed difluoroalkylation of 8-aminoquinoline.
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Quinoxaline-2-ketone derivatives are widely found in bioactive molecules [71,95]. In
2019, the direct C-3 difluoroacetylation of quinoxalinones using ethyl bromodifluoroacetate
catalyzed by copper was reported by Zhang’s group (Scheme 34) [96]. Control experiments
were performed, implying that the CF2COOEt radical was involved in the catalytic cy-
cle. Various difluoroacetylated quinoxalin-2(1H)-ones, which contained a wide range of
functional groups, were isolated smoothly with moderate to excellent yields.
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In 2019, the copper-catalyzed difluoroalkylation of arenes with difluoroalkylation
reagents (BrCF2CO2Et or BrCF2CONR1R2) in the presence of visible light was realized
by Liu and coworkers (Scheme 35) [97]. The in situ reaction of cuprous iodide, a triaryl
phosphine ligand and an imine ligand formed a cuprous photocatalyst, playing a key role
in this reaction. Difluoromethyl radicals that were changed via single-electron transfer
from the excited photocatalyst into difluoroalkylation reagents were suggested in the
difluoroalkylation reaction.
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Scheme 35. Visible-light-induced difluoroalkylation of arenes.

In 2016, the Cu(I)-catalyzed difluoroalkylation of hydrazones was realized by Mon-
teiro’s group (Scheme 36a) [98]. Besides a copper catalyst, Pd2(dba)3 (Scheme 36b) [99],
Ir (Scheme 36c) [100] and Au (Scheme 36d) [101] were also found to be effective in this
reaction. The difluoroalkylation reaction between hydrazones and difluoroalkyl bromides
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catalyzed by Cu(II)/B2pin2 using diboron as a reductant was presented by Song and
coworkers (Scheme 37) [102]. Both aliphatic and aromatic hydrazones can react smoothly
in this reaction system. The SET reaction, which could provide a difluoroalkyl radical, was
suggested in the catalytic cycle. Additionally, the diboron reagent played a key role in
this reaction.
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lation of hydrazones.
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Scheme 37. The Cu/B2pin2-catalyzed difluoroalkylation of hydrazones.

Molander and colleagues described a metal photoredox method for the preparation of
fluoroalkyl aromatic hydrocarbons based on a bicatalytic Ir/Cu synergistic combination
with boric acid (Scheme 38) [103]. Mild reaction conditions could tolerate a wide range
of functional groups, such as aldehydes, free phenols, and N-BOC-protective amines.
Mechanism studies support the process of photooxidation/copper dual catalysis. Reductive
quenching of the excited photocatalyst Ir(III)* by Cu(I) was described in the catalytic cycle.

The free-radical alkylation of copper-catalyzed aryl acetylene with bromodifluo-
roamide was studied by Zhao’s group (Scheme 39) [104]. This reaction shows good func-
tional group tolerance, and provides various substituted α-alkynyl-α, α-difluoroacetamides
with medium to good yields. The potential for amplifying reactions and the derivatization
of products also makes this method a great choice for practical applications. Preliminary
mechanistic studies implied that catalytic systems may involve free-radical reaction pathways.
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An effective method for the selective C-H difluoroalkylation of coumarins catalyzed by
copper is reported in [105] (Scheme 40). It is easy to obtain ethyl bromodifluoroacetate and
N-phenylbromodifluoroacetamide. The reaction showed good functional group tolerance
to coumarins and difluoroalkylation reagents, and several redox-sensitive substrates have
been successfully applied to this difluoroalkylation reaction. This system can be further
extended to other heterocyclic aromatic hydrocarbons, including furan, benzofuran, pyrrole,
pyridone, chromone, indole and quinolinone. The in situ formation of fluoroalkyl radicals
was proposed in this copper-catalyzed reaction.
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Under microwave irradiation, the catalytic amount of oxidant Cu(OAc)2 was successfully
applied to form transient difluoroalkyl radicals in situ for the first time (Scheme 41) [106].
The synthetic utility of this new method is also used to synthesize difluoroalkylated
spirohexadienone, which is an important core structure in various natural products and
pharmaceuticals. The Cu(II)/Cu(I)-mediated single-electron oxidation was described in
the reaction mechanism.
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5. Conclusions

Much progress has been made in the reaction of copper-catalyzed difluoroalkylation.
In this review, the progress made with regard to copper-catalyzed difluoroalkylation
reactions was summarized. At present, both visible-light-induced and metal-catalyzed
difluoroalkylation were successfully realized. When alkenes or alkynes were subjected to
these reactions, a radical addition to the carbon–carbon unsaturated bonds was usually
proposed in the reaction mechanism; then, the corresponding products can be generated
in different ways. RCF2X is the most commonly used difluoroalkylation reagent. In most
cases, the reduction of RCF2X by copper to form the RCF2 radical was possible.

The C (sp3)-H bond has a high bond-dissociation energy, and lacks the “active” HOMO
or LUMO orbital that interacts with the transition metal’s catalytic center, making it more
difficult to functionalize the C (sp3)-H bond. The copper-catalyzed difluoroalkylation
of the C(sp3)-H bond needs to be further researched. Considering green chemistry and
cost-effectiveness, cheaper photocatalysts or even catalyst-free difluoroalkylation reactions
are more desirable. There were only a few cases of visible-light-induced difluoroalkyla-
tion reactions catalyzed by copper reported in the literature. This issue is also worthy
of further study. Asymmetric difluoroalkylation has not been reported yet. In addition,
the multicomponent reaction when introducing the RCF2 group also needs further ex-
ploration. We expect that this review will highlight new ways for the development of
difluoroalkylation reaction.
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