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1 Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12,
91403 Lodz, Poland

2 Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90237 Lodz, Poland
* Correspondence: mjasinski@uni.lodz.pl; Tel.: +48-42-635-5766
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Abstract: A solvent-free two-step synthesis of polyfunctionalized pyrazoles under ball-milling
mechanochemical conditions was developed. The protocol comprises (3 + 2)-cycloaddition of in situ
generated nitrile imines and chalcones, followed by oxidation of the initially formed 5-acylpyrazolines
with activated MnO2. The second step proceeds via an exclusive deacylative pathway, to give a
series of 1,4-diarylpyrazoles functionalized with a fluorinated (CF3) or non-fluorinated (Ph, COOEt,
Ac) substituent at C(3) of the heterocyclic ring. In contrast, MnO2-mediated oxidation of a model
isomeric 4-acylpyrazoline proceeded with low chemoselectivity, leading to fully substituted pyrazole
as a major product formed via dehydrogenative aromatization. The presented approach extends
the scope of the known methods carried out in organic solvents and enables the preparation of
polyfunctionalized pyrazoles, which are of general interest in medicine and material sciences.

Keywords: pyrazole; nitrile imine; mechanochemistry; (3 + 2)-cycloaddition; deacylation; oxidation

1. Introduction

Due to the discovery of a number of practical applications, there is increasing in-
terest in the chemistry of pyrazole-based compounds, and fluorinated analogues are of
special significance in medicine, crop protection, as well as material sciences [1–4]. The
title heterocycle constitutes a key structural element of pharmaceuticals and agrochemi-
cals; they exhibit a variety of biological activities such as being anti-inflammatory (e.g.,
Celecoxib, Lonazolac), antibacterial, anticancer (e.g., Crizotinib), anti-obesity (e.g., Rimona-
bant), antidepressant (e.g., Fezolamine), antiviral (e.g., Lenacapavir), and antifungal (e.g.,
Penthiopyrad), and have been widely applied as pesticides (Figure 1) [5–13]. In addition,
some pyrazoles have been successfully applied in polymer chemistry, as well as for the
preparation of advanced liquid crystalline materials [14,15]. Furthermore, polyfunctional-
ized pyrazoles can efficiently act as ligands in transition metal-catalyzed reactions [1,2,16].
Taking into account the general significance of this class of N-heterocycles, the development
of new synthetic protocols to access pyrazoles with the desired substitution patterns is of
great interest.

Out of the various synthetic methodologies for the preparation of pyrazole derivatives
available thus far, condensation of 1,3-dielectrophilic agents (typically 1,3-diketones or their
synthetic equivalents) with hydrazines is considered the most versatile and commonly
applied strategy [1,2,4,5]. However, this classical method often suffers from regioselectivity
issues and leads to isomeric pyrazoles, along with other by-products, which require tedious
separation, e.g., using chromatography techniques. Hence, (3 + 2)-cycloaddition processes
are an attractive alternative and enable straightforward access to the pyrazole skeleton
through simultaneous formation of new carbon–carbon and carbon–nitrogen bonds. In
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this context, diazoalkanes, and particularly nitrile imines, have been recognized as readily
available and powerful 1,3-dipoles for the construction of the pyrazole ring [1,2,17].
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On the other hand, the negative impacts on the environment and public health caused
by the large amount of waste solvents produced during classical organic synthesis have
to be taken into account. Recently, there has been a rapid development of green and sus-
tainable synthetic protocols based on mechanochemical approaches, in which the reaction
is activated by the absorption of mechanical energy originating from collisions of milling
balls [18–21]. More importantly, these reactions can be performed either without any sol-
vent or require only small amounts of so-called “liquid assisted grinding solvent” (LAGs),
and in many instances the chemo- and regio-selectivity switch, leading to rather unexpected
products being observed upon mechanochemical activation. Several interesting applica-
tions of mechanochemistry in the synthesis of pharmaceutically-relevant N-containing
compounds, such as Dantrolene (muscle relaxant), Tolbutamide (antidiabetic), and Axi-
tinib (anticancer), have been reported [22–24]. Furthermore, the presented technique has
been successfully applied for preparation of pyrazoles, mainly via condensation reactions
starting with 1,3-dicarbonyls [25–30], chalcones [31], or enaminones [32], and appropriate
hydrazine derivatives. Notably, to the best of our knowledge, no mechanochemical nitrile
imine (3 + 2)-cycloadditions leading to pyrazoles have been reported.

In a series of recent works, we and other groups have demonstrated fluorinated nitrile
imines of type 1 and C=C or C≡C dipolarophiles as superior reaction partners for the
efficient preparation of fluoroalkylated pyrazole and pyrazoline derivatives. For exam-
ple, electron-rich enamines [33], vinyl ethers [34], alkoxyallenes [35], and benzynes [36],
as well as electron-deficient nitro- [37] and cyanoalkenes [38], isoxazolidinediones [39],
quinones [40], and ynone derivatives [41] have served as dipolarophilic agents. Exemplary
reactions leading to polysubstituted pyrazoles 2–4 and bicyclic analogues 5 (indazoles) are
depicted in Scheme 1a. More recently, we disclosed a general two-step protocol for two
types of multi-substituted 3-trifluoromethylpyrazoles comprising (3 + 2)-cycloaddition of in
situ generated nitrile imines 1 with chalcones, followed by MnO2-mediated aromatization
of the first 5-acylpyrazolines 6 formed [42]. Remarkably, depending on the solvent used, the
oxidation step preferentially afforded fully substituted pyrazoles 7 (in polar solvents such
as DMF or DMSO) or proceeded via a deacylative pathway (in non-polar solvents, e.g., in
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hexane), leading to 1,3,4-trisubstituted pyrazoles 8 as major products (Scheme 1b). Taking
into account the well-documented significance of both fluorinated and non-fluorinated
pyrazoles in medicine and material sciences, the solvent-free mechanochemical proto-
cols of the above (3 + 2)-cycloaddition reaction and subsequent oxidation step should be
examined. Furthermore, the scope of the studied processes, towards non-fluorinated ana-
logues, should also be checked. Here, we report our recent results on a two-step synthesis
of 1,4-diarylpyrazoles functionalized with CF3, COOEt, Ac, or Ph groups at C(3) of the
heterocyclic ring, under solvent-free ball-milling mechanochemical conditions.
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Scheme 1. Synthesis of fluoroalkylated pyrazoles through: (a) (3 + 2)-cycloadditions of nitrile imines
1 with selected C=C or C≡C dipolarophiles, leading to monocyclic (2–4) [34,39,41] and bicyclic (5) [36]
derivatives and (b) trapping of 1 with enones, followed by MnO2-mediated oxidation of the first
5-acylpyrazolines 6 formed, leading to polysubstituted 3-trifluoromethylpyrazoles 7 and/or 8.

2. Results and Discussion

The required CF3-nitrile imines of type 1 are readily available propargyl-type
1,3-dipoles, which can be generated in situ via base-induced dehydrohalogenation of
the respective hydrazonoyl halides (or pseudohalides) [17,43]. A series of key precur-
sors, namely hydrazonoyl bromides 9, were prepared according to the general literature
protocols, starting with commercially available substrates, i.e., fluoral hydrate and aryl-
hydrazines [43–46]. According to our previous observations, the reversible generation of
trifluoroacetonitrile imines 1 from the corresponding bromide 9 proceeds smoothly upon
treatment with excess Et3N, at room temperature, in anhydrous THF as the solvent of
choice. For this reason, initial mechanochemical experiments (steel balls, ø 7 mm; 25 Hz)
were carried out using the known C-trifluoromethyl-N-phenyl nitrile imine (1a) and chal-
cone (10a) selected as model substrates, in the presence of Et3N (Scheme 2). As evidenced
by TLC monitoring, a rapid (3 + 2)-cycloaddition reaction was observed, and after 1 h the
expected 3-trifluoromethylpyrazoline 6a was identified as a major component of the crude
reaction mixture, along with small amounts of regioisomeric derivative 6′a (in ca. 7:1 ratio,
respectively), however, in moderate yield (56% conversion estimated based on 1H NMR
spectrum of crude mixture), as unconsumed chalcone 10a accompanied by unidentified
decomposition products of bromide 9a were also detected. Then, the influence of a series of
inorganic bases on the reaction course was briefly checked (Table 1). Whereas application
of K2CO3 as a base enhanced the conversion significantly (82%), further optimization with
respect to the amount of nitrile imine precursor 9a (1.2 equiv.) and with the volume of the
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vessel used (5 mL) provided the (3 + 2)-cycloadducts in an excellent 93% yield. Subsequent
separation by column chromatography provided spectroscopically pure samples of two
pyrazolines, 6a (75%) and 6′a (13%). The relative orientation of substituents along the
C(4)-C(5) bond in 6a and 6′a was established based on the 1H NMR spectra and by com-
parison with the literature data on other trans-configured 5-acylpyrazolines [42,47]. For
example, in the case of compound 6a, the diagnostic protons appeared as doublet of
quartets (JH-H = 5.6 Hz, 4JH-F ≈ 0.9 Hz) at δ 4.37 (4-H) and as doublet (JH-H = 5.6 Hz) at
δ 5.76 (5-H), thereby confirming the fully diastereoselective addition of 1,3-dipole 1a onto
the C=C bond of the conjugated system of 10a. The structure of minor isomer 6′a was eluci-
dated on the basis of 1H and 13C NMR supplemented with 2D NMR measurements (HMQC,
HMBC). For example, in the 1H NMR spectrum of 6′a, along with the characteristic set of
signals attributed to phenyl groups, two additional absorptions, i.e., broadened doublet
(J = 7.3 Hz) located at δ 5.04 (4-H) and doublet (JH-H = 7.3 Hz) at δ 5.65 (5-H) nicely matched
the proposed structure of 6′a. Furthermore, in the 13C NMR spectrum of 6′a, two diagnostic
quartets found at δ 120.9 (1JC-F = 269.8 Hz) and δ 133.5 (2JC-F = 38.0 Hz), attributed to the
CF3 group and C-3 atom, respectively, as well as a low intensity absorption (s) at δ 194.5
attributed to the C=O group, were found.
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imine 1a derived from hydrazonoyl bromide 9a and chalcone (10a), leading to the isomeric benzoyl-
pyrazolines 6a (major) and 6′a (minor).

Table 1. Optimization of (3 + 2)-cycloaddition reaction of 9a and 10a.

Entry Base
9a:10a:Base

(Ratio)
Time
(min)

Vjar
(mL) Conversion 1 (%)

Ratio (%) 1 (Isolated Yield)

6a 6′a

1 Et3N 1.1:1.0:1.2 60 1.5 56 2 87 13
2 CsF 1.1:1.0:1.2 60 1.5 27 2 72 28
3 KF 1.1:1.0:1.2 60 1.5 60 2 84 16
4 Cs2CO3 1.1:1.0:1.2 60 1.5 45 2 79 21
5 K2CO3 1.1:1.0:1.2 60 1.5 82 81 19
6 K2CO3 1.1:1.0:1.2 90 1.5 84 82 18
7 K2CO3 1.2:1.0:1.3 90 5 93 80 (73) 20 (13)
8 K2CO3 1.2:1.0:1.3 180 5 93 82 (75) 18 (13)

1 Estimated based on 1H NMR spectra of crude reaction mixtures; 2 Partial decomposition of starting bromide 9a.

It should be noted that the reaction of 9a with 10a carried out under classical conditions,
i.e., in THF solution at room temperature, leads to pyrazoline 6a (79%) exclusively, although
after a rather long reaction time (4 days) [42]. In contrast, the mechanochemical activation
of the studied (3 + 2)-cycloaddition provided the desired material 6a in a comparable yield
(75%) after a remarkably shorter reaction time of 3 h, but the competitive formation of small
amounts of isomeric product 6′a was observed.

With the optimized conditions in hand, we next turned our attention to the scope
and limitations of the developed mechanochemical 1,3-dipolar cycloaddition. A series
of nitrile imine precursors of type 9, bearing either electron-donating (9b–9d) or electron-
withdrawing (9e, 9g, and 9h) groups X located at para position of the phenyl ring, as well as
disubstituted derivative 9f (2,4-Cl2), were examined in (3 + 2)-cycloadditions with a model
chalcone (10a) (Scheme 3). As shown in Table 2, higher chemical yields were observed for
reactions carried out with nitrile imine precursors 9b–9d, i.e., bearing groups increasing
the electron density at the negatively charged N-termini of the in situ generated dipole
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1, and the expected products 6b–6d (58–71%) were obtained after 3 h of only ball-milling.
In contrast, in experiments performed with bromides functionalized with a strong EWG
group (NO2, 9g), and also with a PhCOO moiety (9h), complete consumption of the starting
materials was observed after remarkably longer time (up to 24 h). In the latter cases, the
formation of complex reaction mixtures also made the chromatographic isolation of the
desired 5-benzoylpyrazolines 6 more difficult. Interestingly, despite the above differences,
no remarkable impact of the electronic character of groups X on the regioselectivity of the
studied (3 + 2)-cycloaddition could be observed. In all the cases, a mixture of isomeric
products 6a–6h and 6′a–6′h in comparable ratios of ca. 4:1, respectively, were formed.
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Table 2. Ball-milling (3 + 2)-cycloadditions of 9b–9h with model chalcone (10a).

Entry Substrate X 6:6′ Ratio 1 Yield of 6 (%) 2

1 9b 4-Me 81:19 6b (70)
2 9c 4-i-Pr 81:19 6c (71)
3 9d 4-OBn 83:17 6d (58)
4 9e 4-Cl 81:19 6e (53)
5 9f 2,4-Cl2 77:23 6f (54)
6 9g 4-NO2 74:26 6g (10)

7 3 9g 4-NO2 79:21 6g (22)
8 3 9h 4-PhCOO 79:21 6h (17)

1 Estimated on the basis of 1H NMR spectra of crude reaction mixtures; 2 Isolated yield; 3 Grinding time 24 h.

Next, to check the scope of chalcones and to test the functional group tolerance of
mechanochemical (3 + 2)-cycloaddition, a series of aryl- and ferrocenyl-functionalized
enones 10b–10o were also added to the study and examined in reaction with N-(p-tolyl)
nitrile imine 1b, selected as a handful 1H NMR-diagnostic representative (Scheme 4). In
general, the expected 5-acylpyrazolines 6i–6v were obtained in moderate to high yields,
although longer reaction times were required to lead the reaction to completion in most
cases (Table 3). Thus, apart from halogens (Cl, Br) and haloalkyl units (additional CF3
group at phenyl ring), alkylamino and alkoxy substituents, as well as a ferrocenyl moiety,
could be introduced.
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Table 3. Mechanochemical (3 + 2)-cycloadditions of 10b–10o with model nitrile imine 1b.

Entry Substrate R R’ Milling
Time (h) 6:6′ Ratio (%) 1 Yield of 6 (%) 2

1 10b 2-Nph 3 Ph 9 77:23 6i (74)
2 10c Fc 3 Ph 24 85:15 6j (38)
3 10d 4-MeOC6H4 Ph 20 76:24 6k (59)
4 10e 3,4-(MeO)2C6H3 Ph 18 100:0 6l (74)
5 10f 3,4-methylenedioxyphenyl Ph 12 88:12 6m (68)
6 10g 4-(Me2N)C6H4 Ph 36 65:35 6n (46)
7 10h 4-ClC6H4 Ph 9 79:21 6o (70)
8 10i 2-ClC6H4 Ph 10 77:23 6p (57)
9 10j 4-CF3C6H4 Ph 9 71:29 6q (28)

10 10k 4-NO2C6H4 Ph 28 73:27 6r (26)
11 10l 3-NO2C6H4 Ph 72 79:21 6s (65)
12 10m Ph Fc 3 24 71:29 6t (39)
13 10n Ph 4-BrC6H4 16 85:15 6u (68)
14 10o Ph 3,4-methylenedioxyphenyl 20 82:18 6v (81)

1 Estimated based on 1H NMR spectra of crude reaction mixtures; 2 Isolated yield; 3 2-Nph = naphth-2-yl;
Fc = ferrocenyl.

Similarly to the results collected for series 6/6′a–6/6′h (Schemes 2 and 3, Table 2),
(3 + 2)-cycloadditions of 1b with selected chalcones 10b–10o proceeded in a comparable
regioselectivity of ca. 4:1 in favor of 5-acylpyrazolines 6. Again, only trans-configured prod-
ucts could be detected in the mother liquors. Interestingly, in the case of 3,4-methylenedioxy-
functionalized chalcone (10f) and 3,4-dimethoxy analogue (10e), exceptionally high selec-
tivity (ca. 9:1) or exclusive formation of target 5-acylpyrazolines 6m and 6l, respectively,
was observed. On the other hand, the reaction of 1b with another electron-rich chalcone,
namely 4-(dimethylamino)chalcone (10g), provided only the expected (3 + 2)-cycloadducts
6n and 6′n as a ca. 2:1 mixture. Possibly, the observed decrease of selectivity resulted
from the presence of the basic Me2N group in 10g, which can compete with K2CO3 in
dehydrohalogenation of 9b, thereby changing the electronic properties of chalcone 10g,
due to protonation. The observed moderate yield in cycloadditions of 1b with chalcones
10c and 10m, leading to pyrazolines 6j (38%) and 6t (39%), also deserves a brief comment.
Seemingly, the presence of the redox-active Fc group alters the reaction outcome and leads
to complex mixtures, irrespective of the substitution pattern in chalcone.

Prompted by the results disclosed in our recent work on the solvent-dependent oxida-
tion of 5-benzoylpyrazolines [42], a series of 3-trifluoromethylated cycloadducts of type 6
were oxidized with an excess of activated MnO2 under mechanochemical conditions. In a
typical experiment, pyrazoline 6a (1.0 mmol) was reacted with oxidant (activated MnO2,
ca. 85%, <10 µm, 40 equiv.) using zirconium oxide ball-milling equipment (ball, ø 10 mm;
jar, 10 mL), at 25 Hz. After the reaction was complete (1.5 h), the resulting material was
washed with AcOEt and filtered through a short silica gel pad, to give 1,5-diphenyl-3-
trifluoromethylpyrazole (8a), isolated as a sole product in excellent purity and a yield of
97% (Scheme 5). The observed result for MnO2-mediated mechanochemical deacylative
oxidation nicely correspond to the recently reported aromatizative debenzoylation of 6a
carried out in non-polar solvents (i.e., hexane solutions). However, the latter protocol
provided the final product 8a after 2 days, by heating the reactants in organic medium
at 60 ◦C [42].

Unfortunately, an attempted one-pot two-step synthesis of pyrazole 8a was in vain. In
the mentioned experiment, hydrazonoyl bromide 9a and chalcone 10a were mechanochem-
ically reacted under the developed conditions (in the presence of K2CO3), followed by
treatment of the resulting crude reaction mixture with excess activated MnO2. To our
surprise, none of the expected pyrazole 8a was detected in the mixture, thus indicating the
necessity of (at least partial) pre-purification of the intermediate 5-benzoylpyrazoline 6a.
Indeed, simple filtration of crude 6a through a short silica gel pad enabled fast synthesis of
desired material 8a, which was isolated in a high 66% overall yield (for two steps).
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leading to 1,4-diaryl-3-trifluoromethylpyrazoles 8a–8s.

In continuation, a series of pyrazolines 6b–6s was examined in reaction with MnO2 un-
der mechanochemical activation to afford the expected 1,4-diaryl-3-trifluoromethylpyrazoles
8b–8s identified as the exclusive aromatization products, which were generally isolated
in excellent yields. Only in the case of 4-benzoyloxy derivative (6h) and ferrocenyl-
functionalized analogue (6j), either partial decomposition of the starting material or compet-
itive dehydrogenative oxidation, leading to a fully substituted analogue (7j), respectively,
was observed, and moderate amounts of the final pyrazoles 8h (53%) and 8j (50%) were
isolated. Surprisingly, the attempted oxidation of pyrazoline 6n bearing Me2N group
resulted in complete decomposition of the starting material under the applied conditions.
In order to check the reaction outcome in mechanochemical oxidation of isomeric 4-acyl-
pyrazolines of type 6′, available as minor products in (3 + 2)-cycloaddition of nitrile imines
1 and chalcones 10, a model trans-4-benzoyl-5-phenyl-1-p-tolyl-3-trifluoromethylpyrazoline
(6′b) was also examined under analogous reaction conditions. As shown in Scheme 6,
treatment of the starting material 6′b with excess MnO2 provided, after 1.5 h of milling,
a mixture of two pyrazole-based products in ca. 2:3 ratio, and they were identified as
5-phenyl-1-p-tolyl-3-trfiluoromethylpyrazole (11b, 38%) and its 4-benzoylated analogue
12b (56%). This result indicates that, in contrast to 5-acylpyrazoline 6b, ball-milling oxi-
dation of its structural isomer 4-acylpyrazoline 6′b proceeds in low chemoselectivity and
leads to dehydrogenative oxidation of product 12b as a major component of the mixture.

Molecules 2022, 27, x FOR PEER REVIEW 8 of 17 
 

 

6n bearing Me2N group resulted in complete decomposition of the starting material under 
the applied conditions. In order to check the reaction outcome in mechanochemical 
oxidation of isomeric 4-acyl-pyrazolines of type 6′, available as minor products in (3 + 2)-
cycloaddition of nitrile imines 1 and chalcones 10, a model trans-4-benzoyl-5-phenyl-1-p-
tolyl-3-trifluoromethylpyrazoline (6′b) was also examined under analogous reaction 
conditions. As shown in Scheme 6, treatment of the starting material 6′b with excess MnO2 
provided, after 1.5 h of milling, a mixture of two pyrazole-based products in ca. 2:3 ratio, 
and they were identified as 5-phenyl-1-p-tolyl-3-trfiluoromethylpyrazole (11b, 38%) and 
its 4-benzoylated analogue 12b (56%). This result indicates that, in contrast to 5-
acylpyrazoline 6b, ball-milling oxidation of its structural isomer 4-acylpyrazoline 6′b 
proceeds in low chemoselectivity and leads to dehydrogenative oxidation of product 12b 
as a major component of the mixture. 

 
Scheme 6. Synthesis of pyrazoles 11b and 12b formed via competitive deacylative vs. 
dehydrogenative aromatization of 4-benzoylpyrazoline 6′b. 

Finally, to further check the scope, a series of non-fluorinated pyrazolines 13a–13g 
were prepared and examined in a mechanochemical oxidation reaction with activated 
MnO2. Following the general protocol, five nitrile imine precursors 14a–14e bearing either 
phenyl group or selected electron-withdrawing substituents (COOEt, Ac) located at the 
C-termini were reacted with a set of representative chalcones: 10a (X = H), 10d (OMe), 10h 
(Cl), and 10k (X = NO2) (Scheme 7). The first formed 5-acylpyrazoline derivatives 13 were 
pre-purified by filtration through a short silica gel pad and subsequently reacted with 
MnO2 to provide the expected 1,3,4-trisubstituted pyrazoles 15a–15g in an acceptable 
overall yield of 32–56% (for two steps). However, in the case of the highly electron-
deficient nitrile imine 1e functionalized with O2NC6H4- and Ac groups, the (3 + 2)-
cycloaddition step with chalcone 10a afforded a complex mixture in which trace amounts 
of the expected pyrazoline 13h (<5%) were detected. The presented results indicate that, 
along with trifluoromethylated nitrile imines, analogues bearing aryl, ester or acyl groups 
can also be applied in the developed two-step synthesis of 1,3,4-trisubstituted pyrazoles. 

Scheme 6. Synthesis of pyrazoles 11b and 12b formed via competitive deacylative vs. dehydrogena-
tive aromatization of 4-benzoylpyrazoline 6′b.



Molecules 2022, 27, 8446 8 of 16

Finally, to further check the scope, a series of non-fluorinated pyrazolines 13a–13g
were prepared and examined in a mechanochemical oxidation reaction with activated
MnO2. Following the general protocol, five nitrile imine precursors 14a–14e bearing either
phenyl group or selected electron-withdrawing substituents (COOEt, Ac) located at the
C-termini were reacted with a set of representative chalcones: 10a (X = H), 10d (OMe),
10h (Cl), and 10k (X = NO2) (Scheme 7). The first formed 5-acylpyrazoline derivatives
13 were pre-purified by filtration through a short silica gel pad and subsequently reacted
with MnO2 to provide the expected 1,3,4-trisubstituted pyrazoles 15a–15g in an acceptable
overall yield of 32–56% (for two steps). However, in the case of the highly electron-deficient
nitrile imine 1e functionalized with O2NC6H4- and Ac groups, the (3 + 2)-cycloaddition
step with chalcone 10a afforded a complex mixture in which trace amounts of the expected
pyrazoline 13h (<5%) were detected. The presented results indicate that, along with
trifluoromethylated nitrile imines, analogues bearing aryl, ester or acyl groups can also be
applied in the developed two-step synthesis of 1,3,4-trisubstituted pyrazoles.
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It should be pointed out that all the presented deacylative oxidations of benzoyl-
pyrazolines were performed using activated MnO2 (≈85% purity, <10 µm, Sigma Aldrich,
St. Louis, MO, USA), which was used as received. In order to gain a greater insight about
the studied transformation, non-activated manganese dioxide (Reagent Plus ®, >99%, Sigma
Aldrich) was also tested, but in this case no deacylative aromatization could be observed
when using 5-benzoylpyrazoline 6b as a model compound. To test if hydroxyl radicals
were involved in deacylative aromatization of 6b, the latter experiment was repeated
in the presence of trace amounts of water, but the reaction was not triggered. Finally,
treatment of the resulting insoluble material formed in deacylative oxidation of 6b with
aqueous methanol released a colorless byproduct identified as benzoic acid. Based on
these observations, the mechanism of the studied reaction is tentatively proposed. As
depicted in Scheme 8, oxidation of 6b proceeds preferentially at C(4), leading to fairly stable
benzyl-type radical A. Then, the acyl group is transferred [48] from A onto the activated
surface of the heterogeneous oxidant to give the aromatized product 8b [49]. On the other
hand, the presence of the benzoyl group at C(4) in isomeric pyrazoline 6′b enhances the
acidity of this position; and thus, the oxidation may possibly be initiated either at C(4)
or at C(5), leading to a mixture of products formed via competitive dehydrogenation vs.
deacylative aromatization processes.
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3. Materials and Methods
3.1. Chemical Synthesis General Methods

Experimental procedures: The ball-milling apparatus used was a Retsch MM
400 mixer mill (Retsch GmbH, Haan, Germany). Mechanochemical (3 + 2)-cycloadditions
were performed in 5 mL stainless steel jars, with three stainless steel balls (7 mm diameter);
oxidation reactions were conducted in 10 mL zirconium oxide jars, with one zirconium ox-
ide ball (10 mm diameter). Solvents (hexane, CH2Cl2, AcOEt) were purchased and used as
received. Products were purified by filtration through a short silica gel plug or by standard
column chromatography (CC) on silica gel (230–400 mesh; Merck, Kenilworth, NJ, USA).
The NMR spectra were taken on a Bruker AVIII instrument (1H at 600 MHz, 13C at
151 MHz, and 19F at 565 MHz) (Bruker BioSpin AG, Fällanden, Switzerland). Chemi-
cal shifts are reported relative to solvent residual peaks; for CDCl3: 1H NMR: δ = 7.26,
13C NMR: δ = 77.16, or to CFCl3 (19F NMR: δ = 0.00) used as an external standard. Mul-
tiplicity of the signals in 13C NMR spectra were deduced based on supplementary 2D
measurements (HMQC, HMBC). The IR spectra were measured with an Agilent Cary
630 FTIR spectrometer (Agilent Technologies, Santa Clara, CA, USA), in neat. MS (ESI)
were performed with a Varian 500-MS LC Ion Trap (Varian, Inc., Walnut Creek, CA, USA),
while high resolution MS (ESI-TOF) measurements were taken with a Waters Synapt G2-Si
mass spectrometer (Waters Corporation, Milford, MA, USA). Elemental analyses were per-
formed with a Vario EL III (Elementar Analysensysteme GmbH, Langenselbold, Germany)
instrument. Melting points were determined in capillaries with a MEL-TEMP apparatus
(Laboratory Devices, Holliston, MA, USA) and are uncorrected. 1H, 13C, and 19F NMR
spectra of all new compounds can be found at Supplementary Materials file.

Starting materials: The CF3-nitrile imine precursors of type 9 were prepared by
bromination of the corresponding trifluoroacetaldehyde arylhydrazones with NBS, ac-
cording to the general protocol [43]. The required fluoral hydrazones were synthesized
following the general literature procedure by condensation of aqueous fluoral hydrate
(~75% in H2O) with commercial arylhydrazines [46]. Non-fluorinated hydrazonoyl chlo-
rides 14a–14e were prepared as previously reported [44,45]. Chalcones 10 were purchased
or prepared via classical Claisen–Schmidt condensation, starting with appropriate alde-
hydes and methyl ketones, in ethanol. Activated MnO2 (ca. 85%, <10 µm, Sigma-Aldrich,
product no. 217646-100G), as well as the other commercially available solvents and starting
materials, were purchased and used as received.

3.1.1. General Procedure for Mechanochemical Synthesis of Pyrazolines 6, 6′, and 13

Hydrazonoyl halide 9 or 14 (1.2 mmol), chalcone 10 (1.0 mmol), and solid K2CO3
(1.3 mmol, 179 mg) were placed in a 5 mL stainless steel grinding jar with three stainless
steel balls (7 mm diameter). The jar was closed and ball-milled at 25 Hz until the starting
chalcone was fully consumed. Then, CH2Cl2 (10 mL) was added, the precipitate was
filtered off, washed with CH2Cl2 (2 × 10 mL), and the solvent was removed under vacuum.
The crude product of type 6 or 13 was purified by standard column chromatography
(CC) or pre-purified by flash column chromatography (FCC) on silica. The structures of
known pyrazolines 6c–6k, 6o, 6q, 6r, 6t–6v were confirmed based on 1H NMR spectra
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supplemented by ESI-MS measurements and by comparison with original samples [42];
the byproducts 6′c–6′v were not isolated. In the case of non-fluorinated analogues, crude
pyrazolines 13a,13d–13g were pre-purified by FCC and used for the next step, without
further purification.

trans-5-Benzoyl-1,4-diphenyl-3-trifluoromethyl-4,5-dihydro-1H-pyrazole (6a) [50]: light yel-
low solid, 296 mg (75%), mp 159–161 ◦C. 1H NMR (600 MHz, CDCl3) δ 4.37 (dq, 4JH-F ≈ 0.9
Hz, JH-H = 5.6 Hz, 1H, 4-H), 5.76 (d, JH-H = 5.6 Hz, 1H, 5-H), 6.94–7.06, 7.19–7.29, 7.39–7.44,
7.48–7.52, 7.65–7.68, 7.87–7.89 (6m, 3H, 4H, 3H, 2H, 1H, 2H). 13C NMR (151 MHz, CDCl3)
δ 55.6, 74.3, 113.8, 120.9 (q, 1JC-F = 270.6 Hz, CF3), 121.6, 127.7, 128.9, 129.2, 129.3, 129.5,
129.7, 133.1, 134.7, 137.5, 138.1 (q, 2JC-F = 37.0 Hz, C-3), 142.7, 192.1. 19F NMR (565 MHz,
CDCl3) δ −63.0 (sbr, CF3). ESI-MS (m/z) 417.2 (100, [M + Na]+).

trans-4-Benzoyl-1,5-diphenyl-3-trifluoromethyl-4,5-dihydro-1H-pyrazole (6′a): obtained as
a minor product in the reaction of 9a with 10a; yellow solid, 51 mg (13%), mp 125–126 ◦C.

1H NMR (600 MHz, CDCl3) δ 5.04 (dbr, JH-H ≈ 7.3 Hz, 1H, 4-H), 5.65 (d, JH-H = 7.3 Hz,
1H, 5-H), 6.88–6.91, 7.03–7.06, 7.17–7.20, 7.23–7.25, 7.33–7.40, 7.48–7.51, 7.63–7.66, 7.88–7.90
(8m, 1H, 2H, 2H, 2H, 3H, 2H, 1H, 2H). 13C NMR (151 MHz, CDCl3) δ 61.2, 71.0, 114.8,
120.9 (q, 1JC-F = 269.8 Hz, CF3), 121.7, 126.0, 128.9, 129.14, 129.15, 129.16, 129.8, 133.5 (q,
2JC-F = 38.0 Hz, C-3), 134.5, 135.5, 139.6, 142.6, 194.5. 19F NMR (565 MHz, CDCl3) δ −63.1
(s, CF3). IR (neat) v 1677, 1595, 1577, 1301, 1264, 1208, 1148, 1118, 1066 cm−1. ESI-MS (m/z)
417.1 (31, [M + Na]+), 395.2 (100, [M + H]+).

trans-5-Benzoyl-1-(p-tolyl)-4-phenyl-3-trifluoromethyl-4,5-dihydro-1H-pyrazole (6b) [51]:
light yellow solid, 286 mg (70%), mp 145–147 ◦C. 1H NMR (600 MHz, CDCl3) δ 2.30 (s, 3H,
Me), 4.38 (dq, 4JH-F ≈ 1.0 Hz, JH-H ≈ 5.7 Hz, 1H, 4-H), 5.78 (dbr, J ≈ 5.7 Hz, 1H, 5-H), 6.97,
7.09 (2d, J = 8.6 Hz, 2H each), 7.21–7.25, 7.40–7.52, 7.66–7.69, 7.88–7.91 (4m, 2H, 5H, 1H, 2H).
13C NMR (151 MHz, CDCl3) δ 20.7, 55.6, 74.6, 113.9, 121.0 (q, 1JC-F = 270.3 Hz, CF3), 127.5,
129.0, 129.1, 129.3, 129.7, 130.0, 130.9, 133.2, 134.6, 137.4 (q, 2JC-F = 36.8 Hz, C-3), 137.6, 140.5,
192.3. 19F NMR (565 MHz, CDCl3) δ −63.1 (s, CF3). ESI-MS (m/z) 431.2 (100, [M + Na]+).

trans-4-Benzoyl-1-(p-tolyl)-5-phenyl-3-trifluoromethyl-4,5-dihydro-1H-pyrazole (6′b): ob-
tained as a minor product in the reaction of 9b with 10a; thick yellow oil, 53 mg (13%). 1 H
NMR (600 MHz, CDCl3) δ 2.23 (s, 3H, Me), 5.04 (dqbr, 4JH-F ≈ 1.6 Hz, JH-H ≈ 7.5 Hz, 1H,
4-H), 5.64 (d, JH-H ≈ 7.5 Hz, 1H, 5-H), 6.93–7.00, 7.22–7.25, 7.32–7.39, 7.47–7.50, 7.63–7.66,
7.87–7.90 (6m, 4H, 2H, 3H, 2H, 1H, 2H). 13C NMR (151 MHz, CDCl3) δ 20.7, 61.1, 71.2,
114.8, 121.0 (q, 1JC-F = 269.5 Hz, CF3), 126.1, 128.8, 129.12, 129.14, 129.7, 129.8, 131.2, 132.8 (q,
2JC-F = 37.9 Hz, C-3), 134.5, 135.4, 139.7, 140.3, 194.6. 19F NMR (565 MHz, CDCl3) δ −63.0
(s, CF3). IR (neat) v 1752, 1662, 1495, 1446, 1260, 1219, 1163, 1133 cm−1. ESI-MS (m/z)
431.4 (100, [M + Na]+), 409.5 (39, [M + H]+). Anal. Calcd for C24H19F3N2O (408.1): C 70.58,
H 4.69, N 6.86; found: C 70.49, H 4.69, N 6.89.

trans-5-Benzoyl-4-(3′,4′-dimethoxyphenyl)-1-(p-tolyl)-3-trifluoromethyl-4,5-dihydro-1H-pyrazole
(6l): light yellow solid, 347 mg (74%), mp 122–123 ◦C. 1H NMR (600 MHz, CDCl3) δ
2.27 (s, 3H, Me), 3.81, 3.91 (2s, 3H each, 2OMe), 4.33 (dbr, J ≈ 5.9 Hz, 1H, 4-H), 5.73 (d,
J = 5.9 Hz, 1H, 5-H), 6.65 (d, J = 2.1 Hz, 1H), 6.76 (dd, J = 2.1, 8.2 Hz, 1H), 6.88 (d,
J = 8.2 Hz, 1 H), 6.91–6.93, 7.05–7.08, 7.48–7.51, 7.64–7.68, 7.87–7.90 (5m, 2H, 2H, 2H, 1H,
2H). 13C NMR (151 MHz, CDCl3) δ 20.7, 55.4, 56.1, 56.2, 74.5, 110.4, 111.8, 113.9, 120.2, 121.0 (q,
1JC-F = 270.4 Hz, CF3), 129.3 *, 129.8, 130.0, 131.0, 133.2, 134.6, 137.4 (q, 2JC-F = 36.6 Hz, C-3),
140.5, 149.5, 149.8, 192.4; * higher intensity. 19F NMR (565 MHz, CDCl3) δ −62.2 (s, CF3). IR
(neat) v 1695, 1595, 1513, 1450, 1293, 1230, 1118 cm−1. HRMS (ESI-TOF) m/z: [M + H]+ calcd
for C26H24F3N2O3 469.1739, found 469.1743.

trans-5-Benzoyl-4-(3′,4′-methylenedioxyphenyl)-1-(p-tolyl)-3-trifluoromethyl-4,5-dihydro-1H-
pyrazole (6m): pale yellow solid, 307 mg (68%), mp 125–126 ◦C. 1H NMR (600 MHz, CDCl3)
δ 2.28 (s, 3H, Me), 4.31 (dbr, J ≈ 5.5 Hz, 1H, 4-H), 5.73 (d, J = 5.5 Hz, 1H, 5-H), 6.01 (AB
system, J = 4.8 Hz, 2H, OCH2O), 6.66–6.69 (m, 2H), 6.82 (d, J = 7.8 Hz, 1H), 6.92–6.94,
7.07–7.09, 7.50–7.54, 7.66–7.69, 7.90–7.92 (5m, 2H, 2H, 2H, 1H, 2H). 13C NMR (151 MHz,
CDCl3) δ 20.7, 55.3, 74.4, 101.7, 107.6, 109.0, 113.8, 121.0 (q, 1JC-F = 270.3 Hz, CF3), 121.9,
129.2, 129.3, 130.0, 131.0, 131.2, 133.1, 134.6, 137.5 (q, 2JC-F = 36.7 Hz, C-3), 140.4, 148.2,
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148.9, 192.2. 19F NMR (565 MHz, CDCl3) δ −62.3 (s, CF3). IR (neat) v 1685, 1595, 1517,
1446, 1245, 1118 cm−1. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C25H20F3N2O3 453.1426,
found 453.1427.

trans-5-Benzoyl-4-(4′-dimethylaminophenyl)-1-(p-tolyl)-3-trifluoromethyl-4,5-dihydro-1H-
pyrazole (6n): orange solid, 208 mg (46%), mp 163–165 ◦C. 1H NMR (600 MHz, CDCl3)
δ 2.27 (s, 3H, Me), 2.99 (s, 6H, 2Me), 4.30 (dbr, J ≈ 5.5 Hz, 1H, 4-H), 5.69 (d, J = 5.5 Hz,
1H, 5-H), 6.69–6.72, 6.90–6.92, 7.03–7.07, 7.47–7.51, 7.64–7.66, 7.89–7.91 (6m, 2H, 2H, 4H,
2H, 1H, 2H). 13C NMR (151 MHz, CDCl3) δ 20.7, 40.5, 55.1, 74.7, 112.9, 113.7, 121.1 (q,
1JC-F = 270.5 Hz, CF3), 124.6, 128.5, 129.22, 129.25, 130.0, 130.6, 133.3, 134.4, 138.1 (q,
2JC-F = 36.2 Hz, C-3), 140.7, 150.7, 192.5. 19F NMR (565 MHz, CDCl3) δ −62.3 (s, CF3).
IR (neat) v 1696, 1595, 1517, 1297, 1230, 1185, 1118, 1066 cm−1. ESI-MS (m/z) 474.4 (100,
[M + Na]+), 452.4 (97, [M + H]+). Anal. Calcd for C26H24F3N3O (451.2): C 69.17, H 5.36, N
9.31; found: C 69.11, H 5.26, N 9.30.

trans-5-Benzoyl-4-(2′-chlorophenyl)-1-(p-tolyl)-3-trifluoromethyl-4,5-dihydro-1H-pyrazole (6p):
thick light orange oil, 252 mg (57%). 1H NMR (600 MHz, CDCl3) δ 2.28 (s, 3H, Me), 5.10 (sbr,
1H, 4-H), 5.76 (sbr, 1H, 5-H), 6.93–6.95, 7.06–7.09, 7.25–7.36, 7.43–7.50, 7.64–7.67, 7.84–7.88 (6m,
2H, 2H, 3H, 3H, 1H, 2H). 13C NMR (151 MHz, CDCl3) δ 20.7, 50.9(br), 74.0(br), 113.9, 120.8 (q,
1JC-F = 270.3 Hz, CF3), 128.4(br), 129.1, 129.2 *, 130.0, 130.2, 130.4(br), 131.2, 133.2(br), 136.6,
135.3(br), 136.8 (qbr, 2JC-F ≈ 37.0 Hz, C-3), 140.4, 192.6; *higher intensity. 19F NMR (565 MHz,
CDCl3) δ −62.6 (s, CF3). IR (neat) v 1692, 1599, 1517, 1297, 1230, 1118, 1066 cm−1. ESI-MS
(m/z) 465.4 (100, [M + Na]+), 443.5 (83, [M + H]+). Anal. Calcd for C24H18F3N2O (442.1):
C 65.09, H 4.10, N 6.33; found: C 65.00, H 4.02, N 6.14.

trans-5-Benzoyl-4-(3′-nitrophenyl)-1-(p-tolyl)-3-trifluoromethyl-4,5-dihydro-1H-pyrazole (6s):
light yellow solid, 295 mg (65%), mp 170–172 ◦C. 1H NMR (600 MHz, CDCl3) δ 2.28 (s,
3H, Me), 4.50 (dbr, J ≈ 5.6 Hz, 1H, 4-H), 5.75 (d, J = 5.6 Hz, 1H, 5-H), 6.93–6.95, 7.07–7.09,
7.50–7.54 (3m, 2H, 2H, 2H), 7.55 (dt, J = 1.4, 7.8 Hz, 1H), 7.62–7.65, 7.68–7.71, 7.85–7.87 (3m,
1H, 1H, 2H), 8.07 (pseudo-t, J ≈ 2.0 Hz, 1H), 8.28 (ddd, J = 1.1, 2.2, 8.2 Hz, 1 H). 13C NMR
(151 MHz, CDCl3) δ 20.7, 54.8, 74.1, 114.1, 120.8 (q, 1JC-F = 270.2 Hz, CF3), 122.7, 124.1, 129.1,
129.6, 130.1, 131.0, 131.7, 132.9, 133.6, 135.0, 136.1 (q, 2JC-F = 37.3 Hz, C-3), 139.5, 140.0, 149.0,
191.6. 19F NMR (565 MHz, CDCl3) δ −62.2 (s, CF3). IR (neat) v 1689, 1595, 1536, 1353, 1297,
1230, 1152, 1122, 1070 cm−1. ESI-MS (m/z) 476.4 (100, [M + Na]+), 454.4 (50, [M + H]+). Anal.
Calcd for C24H18F3N3O3 (453.1): C 63.58, H 4.00, N 9.27; found: C 63.49, H 4.04, N 9.29.

Ethyl trans-5-benzoyl-4-phenyl-1-(p-tolyl)-4,5-dihydro-1H-pyrazole-3-carboxylate (13b): light
yellow solid, 234 mg (57%), mp 133–134 ◦C. 1H NMR (600 MHz, CDCl3) δ 1.20 (t, J = 7.1
Hz, 3H, Et), 2.28 (s, 3H, Me), 4.13 (dq, J = 7.1, 10.9 Hz, 1H, Et), 4.20 (dq, J = 7.1, 10.9 Hz, 1H,
Et), 4.46 (d, J = 4.9 Hz, 1H, 4-H), 5.79 (d, J = 4.9 Hz, 1H, 5-H), 7.02–7.09, 7.21–7.23, 7.34–7.40,
7.49–7.52, 7.65–7.67, 7.90–7.92 (6m, 4H, 2H, 3H, 2H, 1H, 2H). 13C NMR (151 MHz, CDCl3)
δ 14.2, 20.7, 55.4, 61.2, 74.3, 114.4, 127.5, 128.4, 129.2, 129.3, 129.5, 130.0, 131.4, 133.1, 134.5,
139.4, 139.98, 139.99, 161.8, 192.1. IR (neat) v 1696, 1513, 1279, 1219, 1152, 1100, 1014 cm−1.
ESI-MS (m/z) 435.4 (100, [M + Na]+), 413.4 (31, [M + H]+). Anal. Calcd for C26H24N2O3
(412.2): C 75.71, H 5.86, N 6.79; found: C 75.71, H 6.04, N 6.80.

Ethyl trans-5-benzoyl-4-(4′-chlorophenyl)-1-(p-tolyl)-4,5-dihydro-1H-pyrazole-3-carboxylate
(13c): yellow solid, 245 mg (55%), mp 157–159 ◦C. 1H NMR (600 MHz, CDCl3) δ 1.22 (t,
J = 7.1 Hz, 3H, Et), 2.27 (s, 3H, Me), 4.14 (dq, J = 7.1, 10.9 Hz, 1H, Et), 4.21 (dq, J = 7.1,
10.9 Hz, 1H, Et), 4.42 (d, J = 5.0 Hz, 1H, 4-H), 5.74 (d, J = 5.0 Hz, 1H, 5-H), 7.00–7.03,
7.07–7.09, 7.14–7.16, 7.34–7.36, 7.49–7.53, 7.66–7.69, 7.87–7.89 (7m, 2H, 2H 2H, 2H, 2H, 1H,
2H). 13C NMR (151 MHz, CDCl3) δ 14.3, 20.8, 54.8, 61.3, 74.1, 114.4, 128.9, 129.1, 129.4, 129.7,
130.0, 131.7, 133.0, 134.4, 134.7, 138.0, 139.5, 139.8, 161.7, 191.8. ESI-MS (m/z) 469.4 (100,
[M + Na]+), 447.4 (63, [M + H]+). Anal. Calcd for C26H23ClN2O3 (446.1): C 69.87, H 5.19,
N 6.27; found: C 69.72, H 5.04, N 6.01.

3.1.2. General Procedure for Oxidation Reactions with Activated Manganese Dioxide

5-Acylpyrazoline of type 6 or 13 (1.0 mmol) and activated MnO2 (40 mmol, 4.09 g)
were placed in a 10 mL zirconium oxide grinding jar with one zirconium oxide ball (10 mm
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diameter). The jar was closed and subjected to grinding for 1.5 h in a vibratory ball-mill
operated at 25Hz. After AcOEt (20 mL) was added, the resulting mixture was filtered
through a thin pad of silica gel and the solvent was evaporated to give pyrazole 8 or 15. In
the case of 4-benzoylpyrazoline 6′b, the resulting products 11b and 12b were purified using
standard column chromatography (SiO2). The structure of known fluorinated pyrazoles,
i.e., 8a–8k, 8n, 8q, and 8r were confirmed based on 1H NMR spectra and by comparison
with the original samples [42].

4-(3′,4′-Dimethoxyphenyl)-1-(p-tolyl)-3-trifluoromethylpyrazole (8l): colorless solid, 326 mg
(90%), mp 129–130 ◦C. 1H NMR (600 MHz, CDCl3) δ 2.38 (s, 3H, Me), 3.898, 3.901 (2s, 3H
each, 2OMe), 6.88–6.91, 6.99–7.03, 7.25–7.27, 7.58–7.60 (4m, 1H, 2H, 2H, 2H), 7.93 (s, 1H,
5-H). 13C NMR (151 MHz, CDCl3) δ 21.0, 55.90, 55.91, 111.3, 112.0, 119.6, 120.9, 121.8 (q,
1JC-F = 269.7 Hz, CF3), 122.9, 123.5(br), 127.3, 130.2, 137.0, 137.8, 139.9 (q, 2JC-F = 36.4 Hz,
C-3), 148.9*; *higher intensity. 19F NMR (565 MHz, CDCl3) δ −59.3 (s, CF3). IR (neat)
v 1491, 1241, 1163, 1118 cm−1. (–)-ESI-MS (m/z) 361.4 (100, [M–H]–). Anal. Calcd for
C19H17F3N2O2 (362.1): C 62.98, H 4.73, N 7.73; found: C 63.00, H 4.69, N 7.44.

4-(3′,4′-Methylenedioxyphenyl)-1-(p-tolyl)-3-trifluoromethylpyrazole (8m): colorless solid,
294 mg (85%), mp 99–100 ◦C. 1H NMR (600 MHz, CDCl3) δ 2.40 (s, 3H, Me), 6.00 (s, 2H,
OCH2O), 6.85–6.87, 6.93–6.95, 7.27–7.29, 7.59–7.61 (4m, 1H, 2H, 2H, 2H), 7.90 (sbr, 1H, 5-H).
13C NMR (151 MHz, CDCl3) δ 21.1, 101.4, 108.5, 109.3, 119.7, 121.7 (q, 1JC-F = 269.8 Hz, CF3),
122.4(br), 123.4(br), 127.5, 130.2, 137.1, 137.9, 140.0 (q, 2JC-F = 36.5 Hz, C-3), 147.6, 147.9. 19F
NMR (565 MHz, CDCl3) δ −59.4 (s, CF3). IR (neat) v 1480, 1223, 1167, 1118, 1036 cm−1.
ESI-MS (m/z) 369.4 (100, [M + Na]+), 347.4 (76, [M + H]+). Anal. Calcd for C18H13F3N2O2
(346.1): C 62.43, H 3.78, N 8.09; found: C 62.60, H 3.92, N 8.08.

4-(2′-Chlorophenyl)-1-(p-tolyl)-3-trifluoromethylpyrazole (8p): thick light yellow oil, 299
mg (89%). 1H NMR (600 MHz, CDCl3) δ 2.42 (s, 3H, Me), 7.29–7.36, 7.40–7.42, 7.48–7.51,
7.62–7.65 (4m, 4H, 1H, 1H, 2H), 7.99 (s, 1H, 5-H). 13C NMR (151 MHz, CDCl3) δ 21.1,
119.7(br), 119.8, 121.4 (q, 1JC-F = 270.1 Hz, CF3), 126.7, 128.8, 129.5, 129.7, 129.8, 130.3,
132.2(br), 134.1, 137.1, 138.0, 141.3 (q, 2JC-F = 36.6 Hz, C-3). 19F NMR (565 MHz, CDCl3)
δ −60.0 (s, CF3). IR (neat) v 1521, 1495, 1290, 1223, 1170, 1116, 1062 cm−1. ESI-MS (m/z)
359.3 (23, [M + Na]+), 337.3 (100, [M + H]+). Anal. Calcd for C17H12ClF3N2 (336.1): C 60.64,
H 3.59, N 8.32; found: C 60.51, H 3.39, N 8.47.

4-(3′-Nitrophenyl)-1-(p-tolyl)-3-trifluoromethylpyrazole (8s): colorless solid, 257 mg (74%),
mp 147–148 ◦C. 1H NMR (600 MHz, CDCl3) δ 2.43 (s, 3H, Me), 7.31–7.33, 7.61–7.64,
7.82–7.84 (3m, 2H, 3H, 1H), 8.08 (s, 1H, 5-H), 8.24 (ddd, J = 1.0, 2.3, 8.2 Hz, 1H), 8.34
(pseudo-t, J ≈ 2.0 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 21.2, 119.9, 121.3(br), 121.5 (q,
1JC-F = 269.8 Hz, CF3), 122.9, 123.6, 128.0, 129.8, 130.4, 132.2, 134.8(br), 136.8, 138.5, 140.2 (q,
2JC-F = 37.1 Hz, C-3), 148.5. 19F NMR (565 MHz, CDCl3) δ −59.4 (s, CF3). IR (neat) v 1521,
1349, 1282, 1226, 1170, 1118, 1074 cm−1. ESI-MS (m/z) 370.3 (100, [M + Na]+), 348.3 (70,
[M + H]+). Anal. Calcd for C17H12F3N3O2 (347.1): C 58.79, H 3.48, N 12.10; found: C 58.85,
H 3.51, N 12.08.

5-Phenyl-1-(p-tolyl)-3-trifluoromethylpyrazole (11b) [34]: obtained as a minor product in
oxidation of 6′b; light yellow solid, 114 mg (38%), mp 74–76 ◦C. 1H NMR (600 MHz, CDCl3)
δ 2.37 (s, 3H, Me), 6.74 (sbr, 1H, 4-H), 7.14–7.24, 7.30–7.36 (2m, 6H, 3H). 13C NMR (151 MHz,
CDCl3) δ 21.3, 105.5, 121.5 (q, 1JC-F = 268.8 Hz, CF3), 125.5, 128.8, 128.95, 129.02, 129.5(br),
129.8, 137.0, 138.6, 143.2 (q, 2JC-F = 38.3 Hz, C-3), 144.7. 19F NMR (565 MHz, CDCl3) δ −62.2
(s, CF3). IR (neat) v 1454, 1230, 1129, 1073 cm−1. HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C17H14F3N2 303.1109, found 303.1104.

4-Benzoyl-5-phenyl-1-(p-tolyl)-3-trifluoromethylpyrazole (12b): colorless solid, 228 mg
(56%), mp 139–140 ◦C. 1H NMR (600 MHz, CDCl3) δ 2.35 (s, 3H, Me), 7.07–7.10, 7.13–7.21,
7.28–7.32, 7.43–7.46, 7.72–7.74 (5m, 2H, 7H, 2H, 1H, 2H). 13C NMR (151 MHz, CDCl3)
δ 21.3, 119.8(br), 121.0 (q, 1JC-F = 270.4 Hz, CF3), 125.4, 127.9, 128.4, 128.7, 129.5, 129.8, 129.9,
130.1, 133.5, 136.3, 137.5, 139.0, 141.5 (q, 2JC-F = 37.9 Hz, C-3), 144.4. 19F NMR (565 MHz,
CDCl3) δ −60.3 (s, CF3). IR (neat) v 1659, 1484, 1443, 1223, 1156, 1129, 1059 cm−1. HRMS
(ESI-TOF) m/z: [M + H]+ calcd for C24H18F3N2O 407.1371, found 407.1369.
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1,3,4-Triphenylpyrazole (15a) [52]: light yellow solid, 97 mg (33%; for two steps, starting
with 1.0 mmol of chalcone 10a and chloride 14a), mp 96–98 ◦C. 1H NMR (600 MHz, CDCl3)
δ 7.29–7.37, 7.47–7.50, 7.60–7.62, 7.80–7.82 (4m, 9H, 2H, 2H, 2H), 8.03 (s, 1H, 5-H). 13C NMR
(151 MHz, CDCl3) δ 119.1, 123.1, 126.6, 126.8, 127.1, 128.1, 128.5, 128.6, 128.7, 128.9, 129.6,
133.0, 133.3, 140.1, 150.6. IR (neat) v 1722, 1599, 1502, 1401, 1215, 1059 cm−1. ESI-MS (m/z)
297.3 (100, [M + H]+).

Ethyl 4-phenyl-1-(p-tolyl)-pyrazole-3-carboxylate (15b): colorless solid, 205 mg (67%), mp
99–102 ◦C. 1H NMR (600 MHz, CDCl3) δ 1.32 (t, J = 7.1 Hz, 3H, Et), 2.41 (s, 3H, Me), 4.37
(q, J = 7.1 Hz, 2H, Et), 7.27–7.29, 7.33–7.37, 7.39–7.42, 7.51–7.53, 7.64–7.66 (5m, 2H, 1H, 2H,
2H, 2H), 7.93 (s, 1H, 5-H). 13C NMR (151 MHz, CDCl3) δ 14.3, 21.2, 61.2, 120.1, 127.5, 127.7,
127.8, 128.2, 129.5, 130.2, 131.7, 137.4, 137.8, 141.2, 162.7. IR (neat) v 1722, 1610, 1517, 1465,
1279, 1226, 1141 cm−1. ESI-MS (m/z) 329.2 (25, [M + Na]+), 307.2 (100, [M + H]+). Anal.
Calcd for C19H18N2O2 (306.1): C 74.49, H 5.92, N 9.14; found: C 74.47, H 6.00, N 9.21.

Ethyl 4-(4′-chlorophenyl)-1-(p-tolyl)-pyrazole-3-carboxylate (15c): colorless solid, 218 mg
(64%), mp 136–137 ◦C. 1H NMR (600 MHz, CDCl3) δ 1.34 (t, J = 7.1 Hz, 3H, Et), 2.41 (s, 3H,
Me), 4.38 (q, J = 7.1 Hz, 2H, Et), 7.27–7.29, 7.36–7.38, 7.45–7.47, 7.63–7.66 (4m, 2H, 2H, 2H,
2H), 7.92 (s, 1H, 5-H). 13C NMR (151 MHz, CDCl3) δ 14.4, 21.2, 61.3, 120.1, 126.4, 127.8,
128.4, 130.18, 130.20, 133.7, 137.2, 138.0, 141.1, 162.5. IR (neat) v 1707, 1476, 1442, 1349, 1282,
1226, 1156, 1107, 1077, 1033 cm−1. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C19H18ClN2O2
341.1057, found 341.1063.

3-Acetyl-4-phenyl-1-(p-tolyl)-pyrazole (15d): colorless solid, 102 mg (37%; for two steps,
starting with 1.0 mmol of chalcone 10a and chloride 14c), mp 137–139 ◦C. 1H NMR
(600 MHz, CDCl3) δ 2.42 (s, 3H, Me), 2.69 (s, 3H, Ac), 7.29–7.35, 7.38–7.41, 7.55–7.57,
7.65–7.67 (4m, 3H, 2H, 2H, 2H), 7.94 (s, 1H, 5-H). 13C NMR (151 MHz, CDCl3) δ 21.2, 28.1,
119.6, 126.4, 127.7, 127.9, 128.3, 129.4, 130.3, 131.7, 137.4, 137.8, 137.6, 194.8. IR (neat) v 1681,
1517, 1349, 1219, 1111 cm−1. ESI-MS (m/z) 299.3 (100, [M + Na]+), 277.3 (87, [M + H]+).
Anal. Calcd for C18H16N2O (276.1): C 78.24, H 5.84, N 10.14; found: C 78.01, H 5.82,
N 10.00.

3-Acetyl-4-(4′-methoxyphenyl)-1-(p-tolyl)-pyrazole (15e): light brown solid, 98 mg (32%;
for two steps, starting with 1.0 mmol of chalcone 10d and chloride 14c), mp 108–109 ◦C. 1H
NMR (600 MHz, CDCl3) δ 2.42 (s, 3H, Me), 2.68 (s, 3H, Ac), 3.84 (s, 3H, OMe), 6.92–6.95,
7.29–7.32, 7.49–7.52, 7.64–7.67 (4m, 2H each), 7.89 (s, 1H, 5-H). 13C NMR (151 MHz, CDCl3)
δ 21.2, 28.1, 55.5, 113.8, 119.6, 124.1, 126.1, 127.5, 130.3, 130.6, 137.5, 137.7, 147.6, 159.3, 194.8.
IR (neat) v 1692, 1551, 1498, 1450, 1387, 1346, 1249, 1182, 1107, 1029 cm−1. ESI-MS (m/z)
329.1 (100, [M + Na]+), 307.2 (71, [M + H]+). HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C19H19N2O2 307.1447, found 307.1445.

3-Acetyl-4-(4′-nitrophenyl)-1-(p-tolyl)-pyrazole (15f): light yellow solid, 144 mg (45%; for
two steps, starting with 1.0 mmol of chalcone 10h and chloride 14c), mp 191–192 ◦C. 1H
NMR (600 MHz, CDCl3) δ 2.44 (s, 3H, Me), 2.72 (s, 3H, Ac), 7.32–7.34, 7.65–7.67, 7.73–7.75
(3m, 2H each), 8.02 (s, 1H, 5-H), 8.23–8.25 (m, 2H). 13C NMR (151 MHz, CDCl3) δ 21.2, 27.9,
119.8, 123.5, 124.2, 128.4, 130.1, 130.4, 137.1, 138.4, 138.7, 147.2, 147.6, 194.7. IR (neat) v 1692,
1603, 1502, 1334, 1215, 1103, 1073 cm−1. ESI-MS (m/z) 344.9 (100, [M + Na]+). Anal. Calcd
for C18H15N3O3 (321.1): C 67.28, H 4.71, N 13.08; found: C 67.35, H 4.93, N 12.95.

3-Acetyl-1-(4′-methoxyphenyl)-4-phenylpyrazole (15g): orange solid, 163 mg (56%; for
two steps, starting with 1.0 mmol of chalcone 10a and chloride 14d), mp 109–111 ◦C. 1H
NMR (600 MHz, CDCl3) δ 2.69 (s, 3H, Ac), 3.87 (s, 3H, OMe), 7.00–7.03, 7.32–7.35, 7.38–7.41,
7.55–7.57, 7.67–7.70 (5m, 2H, 1H, 2H, 2H, 2H), 7.88 (s, 1H, 5-H). 13C NMR (151 MHz, CDCl3)
δ 28.0, 55.7, 114.8, 121.3, 126.3, 127.6, 128.0, 128.2, 129.3, 131.7, 133.3, 147.5, 159.2, 194.6. IR
(neat) v 1685, 1513, 1466, 1353, 1260, 1221, 1174, 1118, 1029 cm−1. ESI-MS (m/z) 315.1 (92,
[M + Na]+), 293.2 (100, [M + H]+). Anal. Calcd for C18H16N2O2 (292.1): C 73.95, H 5.52, N
9.58; found: C 73.99, H 5.74, N 9.49.
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4. Conclusions

In summary, a solvent-free two-step mechanochemical synthesis of trifluoromethy-
lated and non-fluorinated polysubstituted pyrazoles was developed, starting with simple
substrates, i.e., chalcones and hydrazonoyl halides. The latter served as precursors for the
K2CO3-induced in situ generation of nitrile imines, which were efficiently trapped with
chalcones, to give the respective (3 + 2)-cycloadducts in moderate to high regioselectivity
and fair yields. The first formed trans-configured 5-acylpyrazolines were oxidized with
activated manganese dioxide under ball-milling to afford pyrazoles, formed through exclu-
sive deacylative aromatization of the ring. Based on additional experiments, a mechanistic
scenario comprising acyl-transfer onto the surface of heterogeneous oxidant was proposed.
The presented results extend the scope of the previously reported method for the synthesis
of the title compounds in organic solvents [42] and supplements recent developments, both
in the synthesis of pyrazoles [2,53–55] and the application of nitrile imines as building
blocks for organic synthesis [17,34–45,56–59].
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//www.mdpi.com/article/10.3390/molecules27238446/s1: Copies of 1H, 13C, and 19F NMR spectra
of all new compounds.

Author Contributions: Conceptualization and methodology, M.J. and G.U.-J.; investigation, G.U.-J.
and A.K.; writing—original draft preparation, G.U.-J.; writing—review and editing, M.J.; supervision,
M.J.; project administration, M.J.; funding acquisition, M.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the University of Lodz within the framework of IDUB grant
(M.J.; Grant No. 3/IDUB/DOS/2021).

Data Availability Statement: All the electronic experimental data and samples of new materials are
available from the authors.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of

pyrazoles. Chem. Rev. 2011, 111, 6984–7034. [CrossRef] [PubMed]
2. Mykhailiuk, P.K. Fluorinated pyrazoles: From synthesis to applications. Chem. Rev. 2021, 121, 1670–1715. [CrossRef] [PubMed]
3. Raffa, D.; Maggio, B.; Raimondi, M.V.; Cascioferro, S.; Plescia, F.; Cancemi, G.; Daidone, G. Recent advanced in bioactive systems

containing pyrazole fused with a five membered heterocycle. Eur. J. Med. Chem. 2015, 97, 732–746. [CrossRef]
4. Janin, Y.L. Preparation and chemistry of 3/5-halogenopyrazoles. Chem. Rev. 2012, 112, 3924–3958. [CrossRef]
5. Li, M.; Zhao, B.X. Progress of the synthesis of condensed pyrazole derivatives (from 2010 to mid-2013). Eur. J. Med. Chem. 2014,

85, 311–340. [CrossRef]
6. Abrigach, F.; Touzani, R. Pyrazole derivatives with NCN junction and their biological activity: A review. Med. Chem. 2016, 6,

292–298. [CrossRef]
7. Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; Silva dos Santos, M.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities

of pyrazole compounds. Bioorg. Med. Chem. 2017, 25, 5891–5903. [CrossRef]
8. Kumar, V.; Kaur, K.; Gupta, G.K.; Sharma, A.K. Pyrazole containing natural products: Synthetic preview and biological

significance. Eur. J. Med. Chem. 2013, 69, 735–753. [CrossRef]
9. El-Gamal, M.; Zaraei, S.-O.; Madkour, M.M.; Anbar, H.S. Evaluation of substituted pyrazole-based kinase inhibitors in one decade

(2011–2020): Current status and future prospects. Molecules 2022, 27, 330. [CrossRef]
10. Li, X.; Yu, Y.; Tu, Z. Pyrazole scaffold synthesis, functionalization, and applications in Alzheimer’s disease and Parkinson’s

disease treatment (2011–2020). Molecules 2021, 26, 1202. [CrossRef]
11. Asproni, B.; Murineddu, G.; Corona, P.; Pinna, G.A. Tricyclic pyrazole-based compounds as useful scaffolds for cannabinoid

CB1/CB2 receptor interaction. Molecules 2021, 26, 2126. [CrossRef] [PubMed]
12. Santos, N.E.; Carreira, A.R.F.; Silva, V.L.M.; Braga, S.S. Natural and biomimetic antitumor pyrazoles, a perspective. Molecules

2020, 25, 1364. [CrossRef] [PubMed]
13. Gomes, P.M.O.; Silva, A.M.S.; Silva, V.L.M. Pyrazoles as key scaffolds for the development of fluorine-18-labeled radiotracers for

positron emission tomography (PET). Molecules 2020, 25, 1722. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/molecules27238446/s1
https://www.mdpi.com/article/10.3390/molecules27238446/s1
http://doi.org/10.1021/cr2000459
http://www.ncbi.nlm.nih.gov/pubmed/21806021
http://doi.org/10.1021/acs.chemrev.0c01015
http://www.ncbi.nlm.nih.gov/pubmed/33382252
http://doi.org/10.1016/j.ejmech.2014.12.023
http://doi.org/10.1021/cr200427q
http://doi.org/10.1016/j.ejmech.2014.07.102
http://doi.org/10.4172/2161-0444.1000359
http://doi.org/10.1016/j.bmc.2017.09.035
http://doi.org/10.1016/j.ejmech.2013.08.053
http://doi.org/10.3390/molecules27010330
http://doi.org/10.3390/molecules26051202
http://doi.org/10.3390/molecules26082126
http://www.ncbi.nlm.nih.gov/pubmed/33917187
http://doi.org/10.3390/molecules25061364
http://www.ncbi.nlm.nih.gov/pubmed/32192149
http://doi.org/10.3390/molecules25071722
http://www.ncbi.nlm.nih.gov/pubmed/32283680


Molecules 2022, 27, 8446 15 of 16

14. Elnagdy, H.M.F.; Chetia, T.; Dehingia, N.; Chetia, B.; Dutta, P.; Sarma, D. Sensing and optical activities of new pyrazole containing
polymeric analogues. Bull. Mater. Sci. 2022, 45, 86. [CrossRef]

15. Cavero, E.; Uriel, S.; Romero, P.; Serrano, J.L.; Giménez, R. Tetrahedral zinc complexes with liquid crystalline and luminescent
properties: Interplay between nonconventional molecular shapes and supramolecular mesomorphic order. J. Am. Chem. Soc.
2007, 129, 11608–11618. [CrossRef] [PubMed]

16. Trofimenko, S. Coordination chemistry of pyrazole-derived ligands. Chem. Rev. 1972, 72, 497–509. [CrossRef]
17. Jamieson, C.; Livingstone, K. The Nitrile Imine 1,3-dipole; Properties, Reactivity and Applications; Springer Nature: Cham, Switzerland, 2020.
18. Howard, J.L.; Cao, Q.; Browne, D.L. Mechanochemistry as an emerging tool for molecular synthesis: What can it offer? Chem. Sci.

2018, 9, 3080–3094. [CrossRef]
19. Tan, D.; Garcia, F. Main group mechanochemistry: From curiosity to established protocols. Chem. Soc. Rev. 2019, 48, 2274–2292.

[CrossRef]
20. Pickhardt, W.; Grätz, S.; Borchardt, L. Direct mechanocatalysis: Using milling balls as catalysts. Chem. Eur. J. 2020, 26, 12903–12911.

[CrossRef]
21. Leonardi, M.; Villacampa, M.; Menéndez, J.C. Multicomponent mechanochemical synthesis. Chem. Sci. 2018, 9, 2042–2064.

[CrossRef]
22. Pérez-Venegas, M.; Juaristi, E. Mechanochemical and mechanoenzymatic synthesis of pharmacologically active compounds: A

green perspective. ACS Sustain. Chem. Eng. 2020, 8, 8881–8893. [CrossRef]
23. Porcheddu, A.; Delogu, F.; De Luca, L.; Colacino, E. From lossen transposition to solventless “Medicinal Mechanochemistry”.

ACS Sustain. Chem. Eng. 2019, 7, 12044–12051. [CrossRef]
24. Yu, J.; Hong, Z.; Yang, X.; Jiang, Y.; Jiang, Z.; Su, W. Bromide-assisted chemoselective Heck reaction of 3-bromoindazoles under

high-speed ball-milling conditions: Synthesis of axitinib. Beilstein J. Org. Chem. 2018, 14, 786–795. [CrossRef]
25. El-Sayed, T.; Aboelnaga, A.; El-Atawy, M.A.; Hagar, M. Ball milling promoted N-heterocycles synthesis. Molecules 2018, 23, 1348.

[CrossRef]
26. Singh, P.; Nath, M. A concise account on eco-friendly synthetic strategies for pyrazole heterocycles. Curr. Green Chem. 2019, 6,

198–209. [CrossRef]
27. Saeed, A.; Channar, P.A. A green mechanochemical synthesis of new 3,5-dimethyl-4-(arylsulfanyl)pyrazoles. J. Heterocycl. Chem.

2017, 54, 780–783. [CrossRef]
28. Chowhan, B.; Kour, J.; Gupta, M.; Paul, S. Green synthesis of bis(pyrazol-5-ole) and pyrazolopyranopyrimidine derivatives

through mechanochemistry using chitosan as a biodegradable catalyst. ChemistrySelect 2021, 6, 7922–7930. [CrossRef]
29. Gomes, P.M.O.; Ouro, P.M.S.; Silva, A.M.S.; Silva, V.L.M. Styrylpyrazoles: Properties, synthesis and transformations. Molecules

2020, 25, 5886. [CrossRef]
30. Howard, J.L.; Nicholson, W.; Sagatov, Y.; Browne, D.L. One-pot multistep mechanochemical synthesis of fluorinated pyrazolone.

Beilstein J. Org. Chem. 2017, 13, 1950–1956. [CrossRef]
31. Zhang, Z.; Tan, Y.-J.; Wang, C.-S.; Wu, H.-H. One-pot synthesis of 3,5-diphenyl-1H-pyrazoles from chalcones and hydrazine under

mechanochemical ball milling. Heterocycles 2014, 89, 103–112. [CrossRef]
32. Paveglio, G.C.; Longhi, K.; Moreira, D.N.; München, T.S.; Tier, A.Z.; Gindri, I.M.; Bender, C.R.; Frizzo, C.P.; Zanatta, N.; Bonacorso,

H.G.; et al. How mechanical and chemical features affect the green synthesis o 1H-pyrazoles in a ball mill. ACS Sustain. Chem.
Eng. 2014, 2, 1895–1901. [CrossRef]

33. Oh, L.M. Synthesis of celecoxib via 1,3-dipolar cycloaddition. Tetrahedron Lett. 2006, 47, 7943–7946. [CrossRef]
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