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Abstract: We report herein on a catalytic system involving palladium and copper to achieve the
cyclization of N-arylcyanothioformamides and the synthesis of 2-cyanobenzothiazoles. The C-H
functionalization/intramolecular C-S bond formation reaction was achieved in the presence of air,
using 2.0 equiv of an inorganic additive (KI). In many cases, the reaction led to a sole product
regioselectively obtained in good yields, allowing the synthesis of a wide range of substituted
2-cyanobenzothiazole derivatives, providing valuable building blocks for the design of more complex
heterocyclic or molecular labeling systems.

Keywords: N-arylcyanothioformamides; 4,5-dichloro-1,2,3-dithiazolium chloride; N-arylimino-1,2,3-
dithiazoles; 2-cyanobenzothiazoles; C-S bond formation

1. Introduction

Benzothiazole is a heterocyclic system originally discovered in marine natural molecules
and also present in terrestrial specimens. Its numerous applications in therapeutics are
regularly patented and published in comprehensive reviews describing their role against
metabolic, inflammatory, neurodegenerative, viral and bacterial diseases [1–6]. In recent
years, researchers have focused their efforts on the anti-cancer potential of benzothiazoles
or their derivatives [7–13].

All these studies have shown that the biological activities of benzothiazoles are highly
dependent on the nature and position of their substituents. The most favorable positions
are carbon C2, C5 and C6 of the benzothiazole skeleton, and the number of functional
groups can vary from 1 to 3 and range from a simple chemical function to more complex
aliphatic or heterocyclic systems [1–13]. It is important to note that the benzothiazoles
showing significant biological activity are mainly substituted at the C2 position of the
thiazole ring. In terms of antiproliferative activity, the most remarkable compounds are
benzothiazole derivatives substituted by a nitrogen atom (e.g., amine, urea, hydrazone and
semicarbazone), sulfur atom (e.g., sulfanyl derivatives), or substituted aromatic group or a
hetero-aromatic group (e.g., thiazole, pyridine, imidazole, pyrazole and oxazole). All these
efforts led to numerous innovative synthetic routes for preparing such compounds [14–16].

Among this important heterocyclic family, 2-cyanobenzothiazoles (also called
1,3-benzothiazole-2-carbonitriles) are of particular interest. Despite some studies on their
potential antiproliferative activity on cancer cells [17–19], research interest lies mainly in
the ability of the carbonitrile function to react under nucleophilic attacks, thus allowing
easy access to various functions such as amides, imidates, amidines, carboxylic acids and
esters [20–23]. Moreover, it has been shown that the nitrile function can also be easily
eliminated in acidic conditions (HCl or HBr) via a hydrolysis-decarboxylation sequence,
allowing further arylation reactions at C2 via CH-activation methods [24,25]. In the last
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decade, 2-cyanobenzothiazoles substituted at the C6 position by a primary amine or hy-
droxyl group have become tools of choice in the development of click chemistry methods
targeting cysteine residues under physiological and biocompatible conditions. This strategy
was applied for the in situ assembly or self-assembly of biomolecules and nanostructures
for various applications in drug targeting and delivery, specific labeling of peptides and
biorthogonal ligation reactions [26–33].

There are several synthetic routes for preparing 2-cyanobenzothiazoles in the litera-
ture [34–45]. The seminal work of White and colleagues outlined their synthesis, mainly
focusing on luciferin-based derivatives that are mono-substituted at the C6 position with
electron-donating groups (OMe, OH or NH2) [34,35]. Most of the time, the multi-step syn-
theses included in the final step the Rosemund-von Braun and Sandmeyer reactions from
2-iodo-, 2-chloro- and 2-amino-6-substituted benzothiazoles [36–38], respectively, involving
toxic cyanide as a reactant. Alternatively, 6-methoxy-1,3-benzothiazole-2-carboxamide
was used as a precursor to produce the expected cyanated products [39]. Less conven-
tional synthetic routes have also been described in studies on the cyanation of heterocyclic
compounds. In most cases, only unsubstituted 2-cyanobenzothiazole was reported as an
example of the application of the studied methodology [40–45].

One of the most popular methods described in the last 10 years for the synthesis of
2-cyanobenzothiazoles was inspired by the work of Rees and colleagues [46–48]. In the
early 1990s, they studied the chemistry of 4,5-dichloro-1,2,3-dithiazolium chloride (Appel
salt) [49] and described the synthesis of 2-cyanated benzothiazoles (C) by thermolysis of
5-N-arylimino-4-chloro-1,2,3-dithiazoles (B) [50,51], obtained by the reaction of aromatic
amines (A) with Appel salt (Figure 1).

These studies demonstrated that strong electron-withdrawing groups on the start-
ing anilines can modify the cyclization process and lead to a large number of undesired
products such as cyanoimidoyl chloride (D in Figure 1). Seeking to overcome the influ-
ence of substituents, the same group described the copper(I)-mediated and regioselective
cyclization of imino-1,2,3-dithiazoles (B’) resulting from the condensation of substituted
o-bromoanilines with Appel salt [52]. These efficient reactions were rapidly performed at
atmospheric pressure with a focused microwave reactor or under traditional heating, albeit
for a longer time. All these studies have outlined the difficulties in obtaining the relevant
o-brominated reagents to provide the target 2-cyanobenzothiazoles.

Some years later, drawing on the preceding work by Doi on the synthesis of
2-arylbenzothiazoles by the cyclization of thiobenzanilides [53,54], Prescher and colleagues,
described a convenient method for preparing 6-methoxybenzothiazole-2-carbonitrile (Figure 1),
allowing three-step access to bioluminescent luciferin derivatives [55,56]. In these studies,
the condensation of p-anisidine with Appel salt led to the corresponding 4-chloro-N-
(4-methoxyphenyl)-5H-1,2,3-dithiazol-5-imine, which was converted to its cyanothiofor-
mamide analogue (also called cyanothioformanilide) (E in Figure 1). Benzothiazole ring
closure was performed with palladium chloride (PdCl2) and copper iodide (CuI) as cata-
lysts with tetrabutylammonium bromide (TBAB) as an organic additive, in a mixture of
DMSO/DMF (1:1, v/v) as the solvent [55,56]. Recently, Moussa et al. investigated the effi-
ciency of I2-DMSO as an oxidative system and described the unexpected conversion of some
N-arylcyanothioformamides into 2-cyanobenzothiazoles (five examples, Figure 1) [57].

For the last 10 years, our group investigated the chemical application of Appel Salt and
its 5-N-arylimino-4-chloro-1,2,3-dithiazole derivatives for fusing the 2-cyanobenzothiazole
motif on pyrimidine or pyrimidinone systems, and synthesizing bioactive thiazoloquina-
zolines and quinazolinones, which are able to affect the activity of kinases involved in
neurodegenerative diseases (Alzheimer’s disease, Down’s syndrome) and cancers [58–61].
Recently a new strategy in our molecular and biological targets incited us to develop
more practical and efficient general synthetic protocols. It appeared relevant and useful
to allow easy access to diversely substituted and functionalized 2-cyanobenzothiazole
derivatives. The present study thoroughly investigates a convenient palladium-catalyzed
and copper-assisted method for the synthesis of a large array of these compounds and
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improves upon the existing literature. It also aims at exploring the regioselectivity of the
thiazole ring closure under the steric or electronic influence of substituents present on the
starting anilines. For the first time, a reaction mechanism is suggested in adequation with
the data obtained (Figure 1).
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Figure 1. Synthesis of 2-cyanated benzothiazoles from 5-N-arylimino-4-chloro-1,2,3-dithiazoles
and N-arylcyanothioformamides and description of the present work. References involved in
these studies: [47,48,51,52,55,57].

2. Results and Discussion

In the present study, preliminary experiments were carried out to explore the synthetic
route to the 6-methylbenzo[d]thiazole-2-carbonitrile 4a. p-Toluidine 1a was condensed with
Appel salt (1.1 equiv) in the presence of pyridine (2.0 equiv) in dichloromethane (DCM), at
room temperature (r.t.) for 1 h, to give the imino-1,2,3-dithiazole 2a. The compound 2a was
then treated by 3 equiv of 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) [62] to produce the
corresponding N-(4-methylphenyl)cyanothioformamide 3a in convenient yields (46%) (see
Table 1).

Table 1. Preliminary exploration of reaction conditions.
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Entry PdCl2 (x mol%) Solvent [c] (M) Yield (%) 1

1 10 0.050 40
2 10 0.025 44
3 20 0.050 46
4 20 0.025 49 2

1 Isolated yields. 2 51% with TBAI in place of TBAB.
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In a first attempt, based on the experimental conditions described by Doi [53,54] and
Prescher [55,56]; 3a was solubilized in DMSO/DMF (1:1, v/v, [0.025 or 0.050 M]) and heated
at 120 ◦C for 4 h in the presence of 10 or 20 mol% of PdCl2, 50 mol% of CuI and 2 equiv of
tetrabutylammonium bromide (TBAB), as depicted in Table 1.

The best result was obtained with 20 mol% of PdCl2 and a starting molar concentration
of 0.025 M in the solvent mixture. Under these conditions, the expected benzothiazole 4a
was obtained with a 49% yield (entry 4). Expecting improvement, TBAB was replaced by
tetrabutylammonium iodide (TBAI) and produced 4a a similar yield (51%).

In the preceding work [53,54], Doi and colleagues discovered that the addition of an
inorganic additive such as CsF led to a significant improvement in the C-H functionaliza-
tion/intramolecular C-S bond formation reaction from thiobenzanilides. We, therefore,
replaced TBAB by 2 equiv of CsF, but this provided 4a in only a 15 % yield (entry 1 in
Table 2). Based on these preliminary results, inorganic additives in place of TBAB or CsF
were screened. Table 2 reports our results with various inorganic salts (2.0 equiv) added to
the reaction mixture. The other reactants and solvent proportions remained unchanged.

Table 2. Effect of inorganic additives and ambient atmosphere.
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Entry Additive Yield (%) 1 Entry Additive Yield (%) 1

1 CsF 15 6 KF 16
2 CsI 32 7 LiBr 53
3 NaI 53 8 LiCl 33
4 KBr 66 9 LiI 55
5 KI 70 2,3,4,5 10 none 37

1 Isolated yields. 2 23% when performed under inert atmosphere (argon). 3 39% with 3.0 equiv of KI. 4 Replacing
KI with a base of K2CO3 or LiOtBu did not provide successful results. 5 Adding a ligand (50 mol%) including
phenantroline or L-proline gave 0% and 7% yields of 4a, respectively.

Among the salts tested, cesium derivatives (CsF and CsI) were found to be the least
effective additives (entries 1 and 2) while sodium, potassium and lithium salts produced
good results, producing the desired 6-methyl-2-cyanobenzothiazole 4a in moderate to good
yields (53–70%) (entries 3-5, 7 and 9), except in the case of KF and LiCl, which led to yields
of 16 and 33%, respectively (entries 6 and 8). In our case, KI gave the best results leading
to 4a with a 70% yield (entry 5). Atmospheric oxygen plays a crucial role since an inert
atmosphere (argon) gave a lower yield of 23% (see footnote 2 for entry 5). Increasing the
quantity of KI (3.0 equiv) also had a negative effect on the yield of the reaction, which fell
to 39% (see footnote 3 for entry 5). It is noteworthy that in the optimizing experiments
described by Doi et al. [53], LiBr gave the expected product in the same yield as that
obtained with TBAB. In our case, LiBr allowed the synthesis of 4a in only a 53% yield
(entry 7). Entry 10 confirms that the additive is required to obtain 4a in a good yield.

To complete the optimization of the reaction conditions, various sources of palladium
and copper were also tested. Solvent and co-solvent were also investigated, as depicted in
Table 3.
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Table 3. Optimization of the palladium and copper sources as well as the solvent.
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Entry [Pd] [Cu] Solvent/Co-Solvent Yield (%) 1

1 PdCl2 CuI DMSO/DMF 70
2 PdBr2 CuI DMSO/DMF 67
3 Pd(OAc)2 CuI DMSO/DMF 22
4 Pd2dba3 CuI DMSO/DMF 7
5 none CuI DMSO/DMF 0
6 PdCl2 CuBr DMSO/DMF 53
7 PdCl2 CuCl2 DMSO/DMF 57
8 PdCl2 Cu(OAc)2 DMSO/DMF 39
9 PdCl2 none DMSO/DMF 41

10 PdCl2 CuI DMSO/NMP 18
11 PdCl2 CuI DMSO/- 34
12 PdCl2 CuI DMF/- 14

1 Isolated yields.

None of the new conditions tested improved the reaction efficiency except PdBr2,
which led to a similar yield to PdCl2 (entry 2). Using Pd(OAc)2 and Pd2dba3 drastically
decreased the quantity of 4a obtained (22 and 7%, respectively) (entries 3 and 4). The
absence of a palladium source in the reaction mixture gave no reaction (entry 5) while the
lack of copper led to a lower yield (41% instead of 70%) (entry 9), confirming the need
for these components in the chemical equation. Out of all the solvents tested, the initial
mixture of DMSO/DMF in equal proportions remained the best for this reaction (entry 1
compared to entries 10, 11 and 12).

Table 4 also reports the results obtained when initial amounts of palladium chloride
(PdCl2) and copper iodide (CuI) were optimized, as well as the starting molar concentration
[c] in the solvent mixture. It confirms that heating the starting cyanothioformamide 3a
at 120 ◦C for 4 h in DMSO/DMF (1:1, v/v; [0.025 M]), in the presence of 20 mol% PdCl2,
50 mol% CuI and 2 equiv of potassium iodide (KI), was the most efficient method for the
synthesis of 4a (entry 1). In all cases, changing the initial concentration of PdCl2 or CuI, or
the amount of solvent, led to lower yields (entries 2, 3, 4 and 5).

Table 4. Optimization of PdCl2 and CuI sources as well as starting molar concentration.
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Entry PdCl2 (x mol%) CuI (y mol%) [c] M Yield (%) 1

1 20 50 0.025 70
2 20 50 0.050 53
3 20 20 0.025 51
4 10 50 0.025 21
5 10 20 0.025 14

1 Isolated yields.

Considering our experience investigating the role of microwaves in the thermal acti-
vation of chemical reactions [63], a series of tests were performed in a microwave reactor
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operating at atmospheric pressure. Compound 4a was synthesized by applying the same
operating parameters (quantities of reagents, solvent, temperature) as those described
above. The programmed temperature was controlled by an external infrared pyrometer,
which allowed feedback control of the power input in the cavity. A TLC control showed
the disappearance of the reagents after 1 h of irradiation, and no change was observed
on prolonged heating. Compound 4a was isolated in a lower yield (57%) than under the
standard thermal conditions (70%).

With the optimized conditions identified, the scope of N-arylcyanothioformamides 3
was explored to generate a valuable array of variously substituted 2-cyanobenzothiazoles.
As described above for 3a, all N-arylcyanothioformanilides 3 were obtained using a two-
step procedure in which starting anilines 1 were stirred with Appel salt (1.1 equiv) and
pyridine (2.0 equiv) in dichloromethane (DCM), at r.t. for 1 h, to give the corresponding
imino-1,2,3-dithiazoles 2, which were then treated by 3 equiv of 1,8-diazabicyclo [5.4.0]
undéc-7-ene (DBU) in DCM at r.t. for 15 min (Scheme 1) [62].
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Yields are reported in Table 5; for detailed procedures and physicochemical char-
acterization see the Supplementary Materials. Note that the sequential one-pot process
previously described by Prescher et al. for the preparation of 3f (4-OMe) and 3j (4-NO2) [56]
was not applicable to this range of anilines.

Table 5. Synthesis of dithiazoles 2 and cyanothioformanilides 3 from anilines 1.

Aniline R Yield of 2 (%) 1 Yield of 3 (%) 1 Aniline R Yield of 2 (%) 1 Yield of 3 (%) 1

1a 4-Me 67 2 46 6 1r 3,4-diOMe 61 8 71 6

1b H 59 2 41 6 1s 3-Me, 4-Br 84 63
1c 4-F 86 3 47 6 1t 3,4(-OCH2O-) 26 9 55
1d 4-Cl 82 2 45 6 1u 3,4(-

OCH2CH2O-)
65 10 71

1e 4-Br 86 4 47 1v 2,3-diMe 64 79
1f 4-OMe 48 2 33 6 1w 2,3-diCl 87 78 6

1g 4-CF3 72 56 6 1x 2-Me, 3-Cl 77 85
1h 4-CN 69 5 71 1y 2,4-diF 94 3 64 6

1i 4-NO2 85 32 6 1z 2,4-diOMe 75 5 75 6

1j 4-CO2Et 78 82 6 1aa 2-F, 4-OMe 92 75
1k 3-OMe 74 2 68 6 1ab 3,5-diMe 91 77
1l 3-NO2 90 81 6 1ac 3,5-diOMe 45 65

1m 3-CO2Et 85 75 1ad 3-Br, 5-Me 63 44
1n 2-Cl 89 83 1ae 3-Br, 5-OMe 95 85
1o 2-Br 85 2 80 6 1af 2,5-diMe 69 4 77
1p 2-OMe 90 7 79 1ag 2-Me, 5-iPr 76 5 78
1q 3,4-diMe 88 52 - - - -

1 Isolated yield. Compounds described in 2 [48]; 3 [47]; 4 [50]; 5 [64]; 6 [57]; 7 [17]; 8 [65]; 9 [66]; 10 [67].

Firstly, 2-, 3- or 4-mono-substituted cyanothioformamides 3a-p were transformed into
the corresponding 4-, 5- and 6-mono-substituted 2-cyanobenzothiazoles 4a-p according to
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the already optimized C-H functionalization/intramolecular C-S bond formation reaction
(Scheme 2).
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4, 3 and 2-mono-substituted anilines (1a-p) (isolated yields).

The yields obtained with substituents positioned at C6 were quite good, ranging from
41% for the bis-cyanated derivative 4h to 71% for 4f with an electron donor group (e.g., OMe).
The electronic effect of the substituents at the C3 position of the starting cyanothioformamide
slightly affected the yields in the resulting C5-substituted 2-cyanobenzothiazoles such as 4k,
4l and 4m. Nevertheless, the 5-methoxybenzothiazole-2-carbonitrile 4k was then obtained
in a similar yield as that of its 6-substituted isomer 4f (68 and 71%, respectively). Notably,
whatever the N-cyanothioformamide reagent, no C4-substituted 2-cyanobenzothiazole
regioisomer was obtained, suggesting a regiospecific cyclization process. Moreover, despite
a deactivating effect on the aromatic ring, the ethyl carboxylate group was found to be
compatible and 2-cyanobenzothiazoles 4j and 4m were isolated in good yields (75 and 57%,
respectively). The yields obtained for the 5- and 6-nitrobenzothiazole-2-carbonitriles 4l and
4i produced a more significant difference of 30 and 51%, respectively.

To increase the range of 2-cyanobenzothiazoles, derivatives di-substituted in the
5,6—, 4,5- and 4,6-positions (compounds 4q-4x) were prepared from the corresponding
N-arylcyanothioformamides 3q-3x, difunctionalized in the 3,4-, 2,3- and 2,4 -positions
(Scheme 3).
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Scheme 3. Synthesis of 5,6-, 4,5- and 4,6-disubstituted 2-cyanobenzothiazoles (4q-4aa) from corre-
sponding 3,4-, 2,3 and 2,4-disubstituted anilines (1q-1aa) (isolated yields).

Di-substituted benzothiazoles in positions 5 and 6 were obtained in good (67% for
4t) to excellent yields (e.g., 96 and 94% for 4q and 4r, respectively). In these cases, the
substituents were mainly activating groups while a bromide in p-position for the nitrogen
atom led to a decrease in the yield (71% for 4s compared with 96% for 4q). This result is
in accordance with those described in Scheme 1 for 4a and 4e with yields of 70 and 54%,
respectively. Microwave-assisted synthesis of 4q and 4s was also tested and confirmed the
results previously obtained for 4a.

The synthesis of 4,5-di-substituted 2-cyanobenzothiazoles (4v, 4w and 4x) proved to
be more difficult and yields were lower than those obtained with the 5,6-disubstituted
compounds. However, these results are close to those obtained in the synthesis of ben-
zothiazoles 4n-4p from cyanothioformanilides 3n-3p, which are substituted in position 2.
These results suggest a significant steric effect when substituents are in the C2 position
of the reagent. This effect is apparently counterbalanced by the electron-donor effect of
the substituents in the C4 position, as shown by the data obtained for the synthesis of
2-cynobenzothiazoles 4z and 4aa.

To complete our study, access to 5,7- and 4,7-substituted 2-cyanobenzothiazoles
(4ab-4ag) was studied from the corresponding cyanothioformanilides (3ab-3ag) (Scheme 4).



Molecules 2022, 27, 8426 9 of 18

Molecules 2022, 27, x FOR PEER REVIEW 9 of 18 
 

 

These results suggest a significant steric effect when substituents are in the C2 position of 
the reagent. This effect is apparently counterbalanced by the electron-donor effect of the 
substituents in the C4 position, as shown by the data obtained for the synthesis of 2-cyno-
benzothiazoles 4z and 4aa. 

To complete our study, access to 5,7- and 4,7-substituted 2-cyanobenzothiazoles (4ab-
4ag) was studied from the corresponding cyanothioformanilides (3ab-3ag) (Scheme 4). 

 
Scheme 4. Synthesis of 5,7- and 4,7-di-substituted 2-cyanobenzothiazoles (4q-4aa) from correspond-
ing 3,5-, and 2,5-di-substituted cyanothioformamides (3ab-3ag) (isolated yields). 1 Yields calculated 
from 1H-NMR. 2 KI was replaced by LiBr. 

Compounds 4ab and 4ac were obtained in good yields of 59 and 65%, respectively. 
In contrast, when the reaction was produced using dissymmetric cyanothioformamides 
on the C3 and C5 positions (3ad and 3ae), a mixture of regioisomers was obtained in an 
about 30% yield in both cases. The benzothiazoles 4ae’ and 4ae’’ were separated by flash 
column chromatography and isolated in 11 and 24% yields. However, compounds 4ad’ 
and 4ad’’ could not be separated regardless of the techniques used. The intramolecular C-
S bond formation sequence predominantly occurred on the side of the electron-donor sub-
stituent with a ratio of 2:1 to the other partner. Unfortunately, the developed method 
failed to cyclize the cyanothioformamides disubstituted in C2 and C5 (3af and 3ag in 
Scheme 4). 

Cyanobenzothiazole-2-carbonitrile 4af was obtained in only a 22% yield when KI was 
replaced by 2.0 equiv of LiBr. 

This result suggests that depending on the reagents, the size of the inorganic additive 
may influence the yield of this regiospecific reaction. In the case of 4a (Table 2), no steric 
constraints were present and KI was more efficient than LiBr. In contrast, for the cyanothi-
oformamide 3af, steric hindrance prevented KI from playing its role in the reaction. Nev-
ertheless, this yield was still lower than the one previously obtained by our group (58%) 
when compound 2af was subjected to microwave-assisted thermolysis at 150 °C in N-
methylpyrrolidinone (NMP) [51]. Notably, Prescher also observed the same drawback 
and finally heated 2,5-disubstituted cyanothioformamides at 170 °C in sulfolane to obtain 
the attempted 4-bromo-7-methyl-benzothiazole-2-carbonitrile derivatives, also in low 
yields (10–20%) [32].  

Scheme 4. Synthesis of 5,7- and 4,7-di-substituted 2-cyanobenzothiazoles (4q-4aa) from correspond-
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from 1H-NMR. 2 KI was replaced by LiBr.

Compounds 4ab and 4ac were obtained in good yields of 59 and 65%, respectively. In
contrast, when the reaction was produced using dissymmetric cyanothioformamides on
the C3 and C5 positions (3ad and 3ae), a mixture of regioisomers was obtained in an about
30% yield in both cases. The benzothiazoles 4ae’ and 4ae” were separated by flash column
chromatography and isolated in 11 and 24% yields. However, compounds 4ad’ and 4ad”
could not be separated regardless of the techniques used. The intramolecular C-S bond
formation sequence predominantly occurred on the side of the electron-donor substituent
with a ratio of 2:1 to the other partner. Unfortunately, the developed method failed to
cyclize the cyanothioformamides disubstituted in C2 and C5 (3af and 3ag in Scheme 4).

Cyanobenzothiazole-2-carbonitrile 4af was obtained in only a 22% yield when KI was
replaced by 2.0 equiv of LiBr.

This result suggests that depending on the reagents, the size of the inorganic additive
may influence the yield of this regiospecific reaction. In the case of 4a (Table 2), no steric
constraints were present and KI was more efficient than LiBr. In contrast, for the cyan-
othioformamide 3af, steric hindrance prevented KI from playing its role in the reaction.
Nevertheless, this yield was still lower than the one previously obtained by our group
(58%) when compound 2af was subjected to microwave-assisted thermolysis at 150 ◦C in N-
methylpyrrolidinone (NMP) [51]. Notably, Prescher also observed the same drawback and
finally heated 2,5-disubstituted cyanothioformamides at 170 ◦C in sulfolane to obtain the
attempted 4-bromo-7-methyl-benzothiazole-2-carbonitrile derivatives, also in low yields
(10–20%) [32].

Scheme 5 depicts the suggested mechanism, based on these results and the
literature data [63,68].
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Scheme 5. Suggested mechanism for synthesis of 2-cyanobenzothiazoles (4) from
N-arylcyanothioformamides (3).

The reaction is most likely initiated by the base-assisted formation of the Cu(I) thioami-
date (I), favoring the coordination of Pd(II) with the sulfur atom to form the intermediate (II).
Then, a deprotonative metalation step occurs, forming a sterically hindered transition state
driving the regioselectivity (III), to obtain the palladacycle (IV), which undergoes reduc-
tive elimination, leading to the desired 2-cyanobenzothiazole 4 and Pd(0), which can be
reoxidized by atmospheric oxygen.

3. Materials and Methods
3.1. General Information

All reagents were purchased from commercial suppliers and used without further
purification. All reactions were monitored by thin-layer chromatography with aluminum
plates (0.25 mm) precoated with silica gel 60 F254 (Merck KGaA, Darmstadt, Germany).
Visualization was performed with UV light at a wavelength of 254 nm. Purifications were
conducted with a flash column chromatography system (PuriFlash, Interchim, Montluçon,
France) using stepwise gradients of petroleum ether (also called light petroleum) (PE)
and dichloromethane (DCM) as the eluent. Melting points were measured with an SMP3
Melting Point instrument (STUART, Bibby Scientific Ltd., Roissy, France) with a precision of
1.5 ◦C. IR spectra were recorded with a Spectrum 100 Series FTIR spectrometer (PerkinElmer,
Villebon S/Yvette, France). Liquids and solids were investigated with a single-reflection
attenuated total reflectance (ATR) accessory; the absorption bands are given in cm−1. NMR
spectra (1H, 13C and 19F) were acquired at 295 K using an AVANCE 300 MHz spectrometer
(Bruker, Wissembourg, France) at 300, 75 and 282 MHz. Coupling constant J was in Hz and
chemical shifts were given in ppm. Mass (ESI, EI and field desorption (FD) were recorded
with an LCP 1er XR spectrometer (WATERS, Guyancourt, France). Mass spectrometry was
performed by the Mass Spectrometry Laboratory of the University of Rouen.

3.2. Chemistry
3.2.1. Synthesis of N-Arylimino-1,2,3-dithiazoles (2) and N-Arylcyanothioformamides (3)

All N-arylcyanothioformanilides 3 were obtained using a two-step procedure as
described in the main text (Scheme 1). Detailed procedures and physicochemical character-
ization of products are available in Supplementary Materials (Sections S2–S6 for 2 series
and S6–S11 for 3 series).

3.2.2. Synthesis of 2-Cyanobenzothiazoles (4)

General procedure: To a stirred solution of N-arylcyanothioformamide (3, 0.5 mmol)
in an anhydrous mixture of DMF/DMSO (1:1, v/v) (20 mL, 0.025M) were successively
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added PdCl2 (20 mol %, 17.7 mg, 0.05 mmol), CuI (50 mol %, 47.6 mg, 0.25 mmol) and
KI (2.0 equiv, 166 mg, 1.0 mmol). The resulting mixture was stirred at 120 ◦C for 4 h after
which it was diluted with AcOEt and washed with water (3 times) and brine (1 time), dried
over MgSO4 and concentrated under reduced pressure. The crude product was purified on
silica gel with PE/CH2Cl2 (50:50 to 0:100, v/v) as eluent to produce the desired product.

Some compounds of the 4 series (4a, 4b, 4f, 4o, 4i, 4k, 4l, 4n, 4p, 4r, 4u and 4af) were
randomly described in studies cited in this paper [44,47,48,51,57,69]. To complete data
sometimes uneasy to find in the literature, all compounds 4 were fully characterized. The
general procedure of their synthesis and physicochemical characterization are described
below. 1H NMR and 13C NMR spectra of these products are available in the Supplementary
Materials (Sections S12–S47).

6-Methylbenzo[d]thiazole-2-carbonitrile (4a) [51]. Brown powder (0.061 g, 70%), m.p.
92–93 ◦C. IR (neat) νmax: 2916, 2225 (CN), 1597, 1505, 1481, 1258, 1232, 1119, 1017, 821, 489,
432 cm−1. 1H NMR (300 MHz, CDCl3) δ 8.09 (d, J = 8.5 Hz, 1H), 7.76 (dt, J = 1.7, 0.8 Hz, 1H),
7.46 (ddd, J = 8.5, 1.7, 0.8 Hz, 1H), 2.56 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 150.55, 139.55,
135.71, 135.32, 129.82, 124.74, 121.23, 113.17, 21.84. HRMS (EI+) m/z, calcd for C9H7N2
[M]+: 175.0330, found: 175.0341.

Benzo[d]thiazole-2-carbonitrile (4b) [50]. Pale yellow powder (0.051 g, 61%), m.p.
76–77 ◦C. IR (neat) νmax: 2917, 2228 (CN), 1466, 1421, 1317, 1147, 1132,759, 727, 408 cm−1.
1H NMR (300 MHz, CDCl3) δ 8.28–8.18 (m, 1H), 8.03–7.94 (m, 1H), 7.70–7.59 (m, 2H). 13C
NMR (75 MHz, CDCl3) δ 152.38, 136.66, 135.45, 128.77, 128.07, 125.42, 121.92, 113.11. HRMS
(EI+) m/z, calcd for C8H5N2S [M]+: 161.0185, found: 161.0173.

6-Fluorobenzo[d]thiazole-2-carbonitrile (4c) [47]. White solid (0.058 g, 65%), m.p.
108–109 ◦C. IR (neat) νmax: 3048, 2231 (CN), 1597, 1559, 1493, 1203, 1134, 820 cm−1. 1H
NMR (300 MHz, CDCl3) δ 8.20 (ddd, J = 9.2, 4.8, 0.5 Hz, 1H), 7.66 (ddd, J = 7.7, 2.5,
0.5 Hz, 1H), 7.41 (ddd, J = 9.1, 8.6, 2.5 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 162.67
(d, J = 252.6 Hz), 149.10 (d, J = 1.7 Hz), 136.77 (d, J = 11.7 Hz), 136.38 (d, J = 3.8 Hz),
126.83 (d, J = 9.8 Hz), 117.55 (d, J = 25.3 Hz), 112.76, 108.05 (d, J = 27.4 Hz). 19F NMR
(282 MHz, CDCl3) δ –109.30 (s). HRMS (EI+) m/z, calcd for C8H4N2FS [M]+: 179.0079,
found: 179.0080.

6-Chlorobenzo[d]thiazole-2-carbonitrile (4d) [44]. White solid (0.069 g, 71%), m.p.
123–124 ◦C. IR (neat) νmax: 2228 (CN), 1467, 1311, 1147, 832, 419 cm−1. 1H NMR (300 MHz,
CDCl3) δ 8.14 (dd, J = 8.8, 0.5 Hz, 1H), 7.98 (dd, J = 2.1, 0.5 Hz, 1H), 7.62 (dd, J = 8.8, 2.1 Hz,
1H). 13C NMR (75 MHz, CDCl3) δ 150.91, 137.06, 136.58, 135.41, 129.25, 126.18, 121.51,
112.73. HRMS (EI+) m/z, calcd for C8H4N2S35Cl [M]+: 194.9784, found: 197.9775.

6-Bromobenzo[d]thiazole-2-carbonitrile (4e) [69]. White solid (0.064 g, 54%), m.p.
141–142 ◦C. IR (neat) νmax: 2231 (CN), 1581, 1467, 1388, 1307, 1146, 1076, 85, 414 cm−1. 1H
NMR (300 MHz, CDCl3) δ 8.15 (dd, J = 1.9, 0.5 Hz, 1H), 8.08 (dd, J = 8.9, 0.5 Hz, 1H), 7.76
(dd, J = 8.9, 1.9 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 151.13, 137.00, 136.88, 131.85, 126.35,
124.45, 123.18, 112.67. HRMS (EI+) m/z, calcd for C8H4N2S79Br [M]+: 238.9279, found:
238.9283.

6-Methoxybenzo[d]thiazole-2-carbonitrile (4f) [51]. Brownish powder (0.068 g, 71%),
m.p. 123–124 ◦C. IR (neat) νmax: 2844, 2225 (CN), 1597, 1505, 1446, 1016, 821 cm−1. 1H
NMR (300 MHz, CDCl3) δ 8.09 (dd, J = 9.1, 0.5 Hz, 1H), 7.36 (d, J = 2.5 Hz, 1H), 7.26–7.22
(dd, J = 9.1, 2.5 Hz, 1H), 3.93 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 160.60, 147.03, 137.58,
133.46, 125.98, 118.67, 113.35, 103.10, 56.11. HRMS (EI+) m/z, calcd for C9H7N2OS [M]+:
191.0279, found: 191.0287.

6-Trifluoromethylbenzo[d]thiazole-2-carbonitrile (4g). Pale orange solid (0.058 g, 51%),
m.p. 48–49 ◦C. IR (neat) νmax: 2228 (CN), 1475, 1318, 1160, 1124, 1077, 882, 836, 705,
650 cm−1. 1H NMR (300 MHz, CDCl3) δ 8.35 (dt, J = 8.7, 0.8 Hz, 1H), 8.32 (dt, J = 1.8, 0.8 Hz,
1H), 7.89 (dd, J = 8.7, 1.8 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 154.07, 139.76, 135.44,
130.88 (q, J = 33.2 Hz), 124.99 (q, J = 3.3 Hz), 119.87 (q, J = 4.3 Hz), 123.64 (q, J = 273.0 Hz),
112.47. 19F NMR (282 MHz, CDCl3) δ -60.43 (s). HRMS (EI+) m/z, calcd for C9H4N2F3S
[M]+: 229.0047, found: 229.0057.
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6-Cyanobenzo[d]thiazole-2-carbonitrile (4h). White solid (0.038 g, 41%), m.p. 178–179 ◦C.
IR (neat) νmax: 3090, 2227 (CN), 1466, 1398, 1316, 1248, 1141, 834, 615, 487 cm−1. 1H NMR
(300 MHz, CDCl3) δ 8.38–8.32 (m, 2H), 7.90 (dd, J = 8.6, 1.6 Hz, 1H). 13C NMR (75 MHz,
CDCl3) δ 154.26, 140.71, 135.72, 130.79, 127.01, 126.41, 117.65, 112.60, 112.22. HRMS (EI+)
m/z, calcd for C9H3N3S [M]+: 185.0048, found: 185.0045.

6-Nitrobenzo[d]thiazole-2-carbonitrile (4i). White solid (0.050 g, 51%), m.p. 166–167 ◦C.
IR (neat) νmax: 3096, 2236 (CN), 1565, 1509, 1342, 1328, 1144, 1107, 902, 832, 754 cm−1. 1H
NMR (300 MHz, CDCl3) δ 8.96 (dd, J = 2.2, 0.6 Hz, 1H), 8.52 (dd, J = 9.1, 2.2 Hz, 1H),
8.38 (dd, J = 9.1, 0.6 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 155.44, 147.39, 141.90, 135.71,
126.19, 123.23, 118.70, 112.13. HRMS (EI+) m/z, calcd for C8H3N3O2S [M]+: 204.9946,
found: 204.9938.

Ethyl 2-cyanobenzo[d]thiazole-6-carboxylate (4j). Pale brown solid (0.065 g, 75%),
m.p. 139–140 ◦C. IR (neat) νmax: 2219 (CN), 1709, 1273, 1131, 1022, 833, 768, 725, 479, 415,
389 cm−1. 1H NMR (300 MHz, CDCl3) δ 8.72 (dd, J = 1.5, 0.8 Hz, 1H), 8.31 (dd, J = 8.7,
1.5 Hz, 1H), 8.27 (dd, J = 8.7, 0.8 Hz, 1H), 4.46 (q, J = 7.1 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H). 13C
NMR (75 MHz, CDCl3) δ 165.35, 154.80, 139.67, 135.32, 130.77, 128.89, 125.22, 124.11, 112.69,
62.01, 14.44. HRMS (EI+) m/z, calcd for C9H7N2OS2 [M]+: 233.0385, found: 233.0380.

5-Methoxybenzo[d]thiazole-2-carbonitrile (4k) [48]. Pale yellow powder (0.065 g, 68%),
m.p. 93–94 ◦C. IR (neat) νmax: 2230 (CN), 1603, 1473, 1413, 1338, 1276, 1168, 1019, 832, 814,
470, 413 cm−1. 1H NMR (300 MHz, CDCl3) δ 7.82 (d, J = 9.0 Hz, 1H), 7.63 (d, J = 2.5 Hz,
1H), 7.28 (dd, J = 9.0, 2.5 Hz, 1H), 3.92 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 160.38, 154.03,
127.45, 122.04, 120.29, 113.30, 106.24, 55.91. HRMS (EI+) m/z, calcd for C9H7N2OS2 [M]+:
191.0279, found: 191.0289.

5-Nitrobenzo[d]thiazole-2-carbonitrile (4l) [48]. White solid (0.031 g, 30%), m.p.
196–197◦C. IR (neat) νmax: 3095, 2244 (CN), 1599, 1572, 1512, 1339, 1137, 1077, 1056, 908,
827, 738, 710, 529, 494, 411 cm−1. 1H NMR (300 MHz, DMSO-d6) δ 9.11–9.02 (m, 1H),
8.64–8.58 (m, 1H), 8.50 (dt, J = 9.1, 2.2 Hz, 1H). 13C NMR (75 MHz, DMSO-d6) δ 151.01,
147.51, 141.70, 141.67, 124.81, 122.34, 119.82, 112.88. HRMS (EI+) m/z, calcd for C8H4N3O2S
[M]+: 206.0024, found: 206.0038.

Ethyl 2-cyanobenzo[d]thiazole-5-carboxylate (4m). White solid (0.066 g, 57%), m.p.:
113–114 ◦C. IR (neat) νmax: 3099, 2999, 2981, 2924, 2231 (CN), 1704, 1602, 1541, 1449, 1360,
1323, 1281, 1228, 1137, 1088, 1016, 757 cm−1. 1H NMR (300 MHz, CDCl3) δ 8.90 (dd, J = 1.6,
0.7 Hz, 1H), 8.32–8.27 (m, 1H), 8.05 (dd, J = 8.6, 0.6 Hz, 1H), 4.46 (q, J = 7.1 Hz, 2H), 1.45 (t,
J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 165.56, 152.26, 139.49, 138.14, 130.94, 129.08,
126.98, 121.91, 112.71, 61.90, 14.44. HRMS (EI+) m/z, calcd for C11H9N2O2S [M]+: 233.0385,
found: 233.0390.

4-Chlorobenzo[d]thiazole-2-carbonitrile (4n). White powder (0.037 g, 38%), m.p.
171–172 ◦C. IR (neat) νmax: 2227 (CN), 1579, 1543, 1457, 1314, 1148, 1095, 818, 780, 739,
646 cm−1. 1H NMR (300 MHz, CDCl3) δ 7.90 (dd, J = 8.0, 1.1 Hz, 1H), 7.69 (dd, J = 8.0,
1.1 Hz, 1H), 7.58 (t, J = 8.0 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 149.68, 137.44, 136.86,
130.64, 129.42, 128.34, 120.47, 112.64. HRMS (EI+) m/z, calcd for C8H4N2S35Cl [M]+:
194.9794, found: 197.9786.

4-Bromobenzo[d]thiazole-2-carbonitrile (4o). White powder (0.034 g, 28%), m.p.
178–179 ◦C. IR (neat) νmax: 2229 (CN), 1537, 1456, 1312, 1147, 1077, 871, 778, 738, 640 cm−1.
1H NMR (300 MHz, CDCl3) δ 7.94 (dd, J = 8.2, 1.0 Hz, 1H), 7.87 (dd, J = 7.7, 1.0 Hz, 1H),
7.50 (dd, J = 8.2, 7.7 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 150.87, 137.21, 136.29, 131.66,
129.63, 121.11, 119.25, 112.65. HRMS (EI+) m/z, calcd for C8H4N2S79Br [M]+: 238.9279,
found: 238.9286.

4-Methoxybenzo[d]thiazole-2-carbonitrile (4p). Pale brown powder (0.045 g, 47%),
m.p. 124–125 ◦C. IR (neat) νmax: 2225 (CN), 1559, 1475, 1457, 1330, 1270, 1193, 1129, 1035,
776, 744, 666 cm−1.1H NMR (300 MHz, CDCl3) δ 7.64–7.50 (m, 2H), 7.03 (dd, J = 7.6, 1.4 Hz,
1H). 13C NMR (75 MHz, CDCl3) δ 154.99, 143.18, 137.33, 134.93, 130.29, 113.48, 113.06,
107.84, 56.47. HRMS (EI+) m/z, calcd for C9H7N2OS [M]+: 191.0279, found: 191.0277.



Molecules 2022, 27, 8426 13 of 18

5,6-Dimethylbenzo[d]thiazole-2-carbonitrile (4q). Pale brown solid (0.090 g, 96%), m.p.
136–137 ◦C. IR (neat) νmax: 3045, 2980, 2949, 2924, 2228 (CN), 1610, 1432, 1261, 1149, 865,
429 cm−1. 1H NMR (300 MHz, CDCl3) δ 7.96 (d, J = 1.0 Hz, 1H), 7.71 (d, J = 1.0 Hz, 1H), 2.44
(s, 6H). 13C NMR (75 MHz, CDCl3) δ 151.28, 139.26, 137.93, 135.07, 133.14, 124.98, 121.38,
113.41, 77.58, 77.16, 76.74, 20.63, 20.37. HRMS (EI+) m/z, calcd for C10H9N2S [M]+: 189.0486,
found: 189.0485.

5,6-Dimethoxybenzo[d]thiazole-2-carbonitrile (4r) [57]. Pale brown solid (0.104 g, 94%),
m.p. 160–161 ◦C. IR (neat) νmax: 2222 (CN), 1494, 1439, 1418, 1282, 1230, 1207, 1170, 1059,
846, 813 cm−1. 1H NMR (300 MHz, CDCl3) δ 7.56 (s, 1H), 7.29 (s, 1H), 3.99 (s, 3H), 3.98 (s,
3H) 13C NMR (75 MHz, CDCl3) δ 151.84, 151.10, 147.29, 133.47, 128.84, 113.49, 105.31, 101.37,
56.59, 56.39. HRMS (EI+) m/z, calcd for C10H9N2O2S [M]+: 221.0385, found: 221.0395.

6-Bromo-5-methylbenzo[d]thiazole-2-carbonitrile (4s). White solid (0.090 g, 71%), m.p.
182–183 ◦C. IR (neat) νmax: 3055, 2957, 2920, 2229 (CN), 2116, 1770, 1689, 1519, 1420, 1297,
1168, 1138, 887, 834, 419 cm−1. 1H NMR (300 MHz, CDCl3) δ 8.18 (s, 1H), 8.08 (d, J = 1.1 Hz,
1H), 2.59 (d, J = 0.9 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 151.94, 138.68, 136.94, 134.03,
126.59, 126.09, 124.80, 112.90, 23.63. HRMS (EI+) m/z, calcd for C9H6N2S79Br [M]+: 252.9435,
found: 252.9446.

[1,3]Dioxolo [4′,5′:4,5]benzo [1,2-d]thiazole-6-carbonitrile (4t). White solid (0.068 g,
67%), m.p. 190–191 ◦C. IR (neat) νmax: 3038, 2917, 2225 (CN), 1472, 1427, 1274, 1144,
1031, 937, 869, 797, 485, 414 cm−1. 1H NMR (300 MHz, CDCl3) δ 7.53 (s, 1H), 7.28 (s,
1H), 6.15 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 150.40, 149.97, 148.20, 134.01, 130.24,
113.31, 104.72, 102.88, 98.32. HRMS (EI+) m/z, calcd for C9H5N2O2S [M]+: 205.0072,
found: 205.0067.

6,7-Dihydro-[1,4]dioxino [2′,3′:4,5]benzo [1,2-d]thiazole-2-carbonitrile (4u). Pale brown
solid (0.094 g, 86%), m.p. 179–180 ◦C. IR (neat) νmax: 2230 (CN), 1481, 1302, 1176, 1063, 928,
873, 809, 709 cm−1.1H NMR (300 MHz, CDCl3) δ 7.66 (s, 1H), 7.37 (s, 1H), 4.36 (m, 4H). 13C
NMR (75 MHz, CDCl3) δ 147.53, 146.42, 145.27, 134.60, 129.03, 113.35, 111.93, 108.15, 64.62,
64.18. HRMS (EI+) m/z, calcd for C10H7N2O2S [M]+: 219.0228, found: 219.0220.

4,5-dimethylbenzo[d]thiazole-2-carbonitrile (4v). White solid (0.035 g, 37%), m.p.
93–94 ◦C. IR (neat) νmax: 3667, 2988, 2230 (CN), 1551, 1461, 1067, 880, 808, 565 cm−1.
1H NMR (300 MHz, CDCl3) δ 7.68 (d, J = 8.3 Hz, 1H), 7.42 (d, J = 8.3 Hz, 1H), 2.72
(s, 3H), 2.46 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 152.56, 136.11, 135.01, 133.86, 132.86,
131.28, 118.28, 113.54, 19.71, 15.02. HRMS (EI+) m/z, calcd for C10H9N2S [M]+: 189.0486,
found: 189.0499.

4,5-Dichlorobenzo[d]thiazole-2-carbonitrile (4w). White powder (0.056 g, 49%), m.p.
171–172 ◦C. IR (neat) νmax: 3070, 2232 (CN), 1527, 1461, 1435, 1384, 1303, 1232, 1186, 1155,
1101, 927, 814, 676, 611, 573 cm−1. 1H NMR (300 MHz, CDCl3) δ 7.83 (d, J = 8.7 Hz, 1H),
7.72 (d, J = 8.7 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 150.87, 138.74, 134.70, 133.22, 130.56,
129.25, 120.29, 112.34. HRMS (EI+) m/z, calcd for C8H3N2S35Cl2 [M]+: 228.9394, found:
228.9393.

5-Chloro-4-methylbenzo[d]thiazole-2-carbonitrile (4x). White powder (0.033 g, 32%),
m.p. 129–130 ◦C. IR (neat) νmax: 2232 (CN), 1553, 1450, 1377, 1308, 1197, 1155, 1119, 1017,
807 cm−1. 1H NMR (300 MHz, CDCl3) δ 7.74 (dq, J = 8.7, 0.7 Hz, 1H), 7.61 (dd, J = 8.7,
0.7 Hz, 1H), 2.84 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 152.99, 136.76, 134.13, 133.98, 133.67,
129.93, 119.43, 113.00, 15.96. HRMS (EI+) m/z, calcd for C9H6N2S35Cl [M]+: 208.9940,
found: 208.9943.

4,6-Difluorobenzo[d]thiazole-2-carbonitrile (4y) [47]. White powder (0.034 g, 35%),
m.p. 100–101◦C. IR (neat) νmax: 1620, 1519, 1471, 1422, 1288, 1258, 1118, 855, 839, 539 cm−1.
1H NMR (300 MHz, CDCl3) δ 7.50 (ddd, J = 7.4, 2.3, 1.3 Hz, 1H), 7.17 (ddd, J = 9.7, 9.0,
2.3 Hz, 1H). 19F NMR (282 MHz, CDCl3) δ -104.97 (d, J = 8.2 Hz), -113.01 (d, J = 8.2 Hz).
13C NMR (75 MHz, CDCl3) δ 165.23–153.86 (m), 139.12–137.94 (m), 136.60 (d, J = 3.6 Hz),
126.77, 117.73, 112.25, 108.06 (d, J = 27.1 Hz), 105.72–102.58 (m). HRMS (EI+) m/z, calcd for
C8H3N2F2S [M]+: 196.9985, found: 196.9992.
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4,6-Dimethoxybenzo[d]thiazole-2-carbonitrile (4z). White powder (0.072 g, 65%), m.p.
140–141 ◦C. IR (neat) νmax: 2979, 2223 (CN), 1598, 1572, 1476, 1452, 1290, 1218, 1165, 1039,
819, 813, 799 cm−1. 1H NMR (300 MHz, CDCl3) δ 6.92 (d, J = 2.1 Hz, 1H), 6.61 (d, J = 2.1 Hz,
1H), 4.04 (s, 3H), 3.91 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 162.30, 155.18, 138.88, 138.47,
131.59, 113.28, 99.51, 94.42, 56.47, 56.17. HRMS (EI+) m/z, calcd for C10H9N2O2S [M]+:
221.0385, found: 221.0390.

4-Fluoro-6-methoxybenzo[d]thiazole-2-carbonitrile (4aa). Pale brown solid (0.067 g,
64%), m.p.: 153–154 ◦C. IR (neat) νmax: 2916, 2847, 2226 (CN), 1615, 1566, 1476, 1443, 1290,
1132, 1027, 858, 826, 572 cm−1. 1H NMR (300 MHz, CDCl3) δ 7.16 (dd, J = 2.3, 0.8 Hz,
1H), 6.96 (dd, J = 11.4, 2.3 Hz, 1H), 3.92 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 161.72 (d,
J = 10.2 Hz), 156.83 (d, J = 261.5 Hz), 139.19 (d, J = 4.2 Hz), 136.77 (d, J = 15.0 Hz), 133.73,
112.82, 104.37 (d, J = 20.3 Hz), 99.35 (d, J = 4.0 Hz), 56.51. 19F NMR (282 MHz, CDCl3) δ
−116.73. HRMS (EI+) m/z, calcd for C9H6N2OFS [M]+: 209.0185, found: 209.0193.

5,7-Dimethylbenzo[d]thiazole-2-carbonitrile (4ab). White powder (0.056 g, 59%), m.p.
90–91 ◦C. IR (neat) νmax: 2921, 2232 (CN), 1556, 1459, 1378, 1289, 1145, 1124, 1037, 872,
689, 611, 563, 481 cm−1.1H NMR (300 MHz, CDCl3) δ 7.82 (dt, J = 1.6, 0.8 Hz, 1H), 7.24
(dt, J = 1.6, 0.8 Hz, 1H), 2.56 (d, J = 0.8 Hz, 3H), 2.51 (s, 3H). 13C NMR (75 MHz, CDCl3) δ
152.74, 138.71, 135.90, 133.39, 131.51, 130.62, 122.43, 113.36, 21.51, 21.30. HRMS (EI+) m/z,
calcd for C10H9N2S [M]+: 189.0486, found: 189.0471.

5,7-Dimethoxybenzo[d]thiazole-2-carbonitrile (4ac). White powder (0.072 g, 65%), m.p.
179–180 ◦C. IR (neat) νmax: 3085, 2979, 2947, 2224 (CN), 1601, 1571, 1407, 1303, 1158, 1125,
9354, 833, 819, 498 cm−1. 1H NMR (300 MHz, CDCl3) δ 7.23 (d, J = 2.0 Hz, 1H), 6.65 (d,
J = 2.0 Hz, 1H), 3.98 (s, 3H), 3.91 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 161.80, 154.46, 154.25,
137.37, 117.97, 113.34, 100.19, 98.18, 56.37, 56.09. HRMS (EI+) m/z, calcd for C10H9N2O2S
[M]+: 221.0385, found: 221.0394.

5-methyl-7-bromobenzo[d]thiazole-2-carbonitrile and 5-bromo-7-methylbenzo[d]thiazole-
2-carbonitrile (4ad’ + 4ad”) 4ad’: 1H NMR (300 MHz, CDCl3) δ 8.25–8.19 (m, 1H), 7.55 (dd,
J = 1.8, 0.9 Hz, 1H), 2.61 (t, J = 0.8 Hz, 3H). 4ad”: 1H NMR (300 MHz, CDCl3) δ 7.95 (dd,
J = 1.4, 0.6 Hz, 1H), 7.60 (dd, J = 1.4, 0.6 Hz, 1H), 2.55 (t, J = 0.6 Hz, 3H).

5-Methoxy-7-bromobenzo[d]thiazole-2-carbonitrile (4ae’). White powder (0.014 g,
11%), m.p. 170–171◦C. IR (neat) νmax: 2235 (CN), 1590, 1537, 1464, 1448, 1394, 1274, 1158,
1086, 1024, 983, 841, 722, 633, 480, 423 cm−1. 1H NMR (300 MHz, CDCl3) δ 7.57 (d, J = 2.2 Hz,
1H), 7.42 (d, J = 2.2 Hz, 1H), 3.91 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 160.86, 153.01, 137.57,
130.83, 122.42, 113.75, 112.87, 105.85, 56.27. HRMS (EI+) m/z, calcd for C9H5N2OS79Br [M]+:
267.9306, found: 267.9309.

5-Bromo-7-methoxybenzo[d]thiazole-2-carbonitrile (4ae”). White powder (0.029 g,
24%), m.p. 170–171◦C. IR (neat) νmax: 3071, 2931, 2233 (CN), 1554, 1451, 1278, 1121, 972,
863, 836, 565, 385 cm−1. 1H NMR (300 MHz, CDCl3) δ 7.99 (d, J = 1.5 Hz, 1H), 7.11 (d,
J = 1.5 Hz, 1H), 4.03 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 154.33, 154.15, 138.43, 123.91,
122.48, 120.40, 112.77, 111.79, 56.76. HRMS (EI+) m/z, calcd for C9H5N2OS79Br [M]+:
267.9306, found: 267.9304.

4. Conclusions

We have investigated reaction conditions involving palladium and copper to achieve
the successful cyclization of cyanothioformamides (3), leading to benzothiazoles 4 substi-
tuted in various positions and bearing in position C2 the versatile carbonitrile function.
In this process, the presence of 2.0 equiv of an inorganic additive such as KI proved to
be essential for a better conversion. The presence of air was also found to be crucial to
the reaction, allowing reoxidation of Pd0 at the end of the process. In many cases, the
selective C-H functionalization/C-S bond formation reactions were performed in good to
very good yields, allowing a wide range of benzothiazole derivatives. In comparison with
previous work, this synthetic route produced only one regioisomer, except in the case of
unsymmetrical 3,5-disubstituted thioformanilides wherein steric effects due to substituents
may influence the reaction outcome. Moreover, this work allowed the formation of an array
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of polyfunctionalized 2-cyanobenthiazoles, as building blocks for the construction of more
complex heterocyclic systems or potent applications in molecular labeling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238426/s1: Synthesis of detailed procedures and
physicochemical characterization of products N-arylimino-1,2,3-dithiazoles (2) and N-arylcyanothi-
oformamides (3) (Sections S2–S11). 1H NMR and 13C NMR spectra of compounds 4a–z and 4aa-4ag
(Sections S12–S47).
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