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Abstract: Due to the abundant and promising biological activities of aromatic hydrazones, it is of
great significance to study the biological activities of their metal complexes for the research and
development of metal-based drugs. In this review, we focus on the metal complexes of polycyclic
aromatic hydrazones, which still do not receive much attention, and summarize the studies related
to their biological activities. Although the large number of metal complexes in phenylhydrazone
prevent them all from being summarized, the significant value of polycyclic aromatic hydrocarbons
themselves (such as naphthalene and anthracene) as pharmacophores are also considered. Therefore,
the bioactivities of the metal complexes of naphthylhydrazone and anthrahydrazone are focused on,
and the recent research progress on the metal complexes of anthrahydrazone by the authors is also
included. In terms of biological activities, these complexes mainly show antibacterial and anticancer
activities, along with less bioactivities. The present review demonstrates that the structural design and
bioactivities of these complexes are fundamental, which also indicates a certain structure—activity
relationship (SAR) in some substructural areas. However, a systematic and comprehensive conclusion
of the SAR is still not available, which suggests that more attention should be paid to the bioactivities
of the metal complexes of polycyclic aromatic hydrazones since their potential in structural design
and biological activity remains to be explored. We hope that this review will attract more researchers
to devote their interest and energy into this promising area.

Keywords: hydrazone; polycyclic aromatic hydrazone; metal complex; biological activity

1. Introduction

Various organic compounds can exert rich and diverse biological and pharmacolog-
ical activity by virtue of their different pharmacophores and functional groups, such as
quinoline, anthraquinone, and porphyrin as large groups and/or hydroxyl, carboxyl, and
imine as small groups. They play pivotal roles through weak intermolecular forces such
as hydrogen bonds, π-π stacking, and even stronger covalent bonds, while they act on
large molecular targets with different shapes and functions [1]. Among these functional
groups, aromatics (which include the most basic benzene rings, polycyclic aromatics, and
even aromatic heterocyclics) are some of the most important target pharmacophores in
molecular biology research and drug design, as their significant delocalized conjugated
structures play a pivotal role in exerting pharmacological activity [2]. Polycyclic aromatic
hydrocarbons further extend this super-conjugated structure, which makes them more bio-
logically active [3,4]. Generally, polycyclic aromatic hydrazones, depending on their planar
conjugated system, are regarded as being able to intercalate/be inserted between DNA
base pairs, so they are often used as DNA intercalators/inserters to exert their anticancer
activity [5]. In addition, the metal complexes of polycyclic aromatics can also be used as
DNA probes for medical applications. For example, J. K. Barton et al. previously carried
out the probe identification and reaction of the corresponding transition metal complexes
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applied to double-helix DNA, focusing on the role of DNA charge-transfer chemistry in
DNA repair [6–8]. They explored the different properties of DNA and RNA by pairing
different central metal ions such as Ru and Rh with various commercially available or
custom-made ligands to form metal complexes of different structures as probes and using
the photochemical properties of these metal ions to induce nucleic acid cleavage. Specif-
ically, the binding pattern and specificity of the complexes could be used to explore the
groove width and depth of the DNA as well as the possible existence of unusual structures
and the tertiary folding patterns of nucleic acids.

Meanwhile, as the number of rings increases, the corresponding toxicity and side
effects may also increase. Thus, the derivatives of anthracene or phenanthrene have been
found to be more toxic than those of naphthalene. Therefore, how to balance the activity
and toxicity while increasing the number of rings is also a special consideration and focus
in designing novel compounds. Another interesting group is hydrazone, “-C=N-NH-”,
which can also act as an extended but more stable imine bond, “C=N”. Additionally,
with the addition of one more N atom, it exhibited more abundant biological activity
and coordination potential [9–11]. The aromatic hydrazone (arylhydrazone), which con-
tains the pharmacophores of both the aromatic ring and hydrazone, can produce more
abundant and complex pharmacological activities [11]. Phenylhydrazone is the simplest
arylhydrazone and can be obtained via the condensation of benzaldehyde with a hydrazine
derivative. The condensation products of hydrazine and naphthyl aldehyde can obtain
1-naphthylhydrazone or 2-naphthylhydrazone because of the different positions of the
aldehyde group on naphthalene, although 1-naphthylhydrazone is the predominant one.
Up until now, a large number of metal complexes of (phenyl/naphthyl)thiosemicarbazone
have been reported as potential antimicrobial agents or anticancer candidates. As early as
the 1950s, thiosemicarbazone was found to inhibit the activity of RNA reductase and to
thus exhibit significant anticancer activity [12,13]. In addition, thiosemicarbazone itself is a
type of satisfying chelate ligand, so its metal complexes with potential pharmacological ac-
tivity have been fully explored and studied in recent years [14–16]. For example, Valentina
Gandin et al. reported a series of copper(II) complexes with salicylaldethiosemicarbazone
as ligands and found that they showed significant inhibitory activity against the colon
cancer cell line LoVo and its oxaliplatin-resistant strains, with IC50 values ranging from
0.004 to 0.036 µM, reaching the nmol level [15]. They also showed a good inhibitory effect
on the 3D cell spheres of colon cancer cells (HCT-15) and pancreatic cancer cells (PSN1).
J. Y. Niu et al. reported a series of Mn/Co/Zn complexes of thiosemicarbazone, which
showed significant anticancer activity against the K562 leucocythemia cancer cell line [16].
Aromatic hydrazones with more than three conjugated rings (e.g., anthracene, phenan-
threne, pyrene, etc.) are relatively rare, which is due to the fact that their corresponding
aromatic aldehydes are much less studied. In particular, bisantrene, a symmetric deriva-
tive of 9, 10-anthracene dihydrazone, was successfully developed as a novel anticancer
drug and started to be applied in clinical chemotherapy in the 1990s. It is also acted as a
derivative of anthracycline anticancer drugs [17].

On the other hand, studying the biological activity of metal complexes is attractive to
many researchers, especially to inorganic chemists. Metal complexes can exert both the ac-
tivity of the organic ligand and the metal center through coordination and can even achieve
a positive synergistic effect to obtain better biological activity [18]. Admittedly, the ligands
of many metal complexes might not show any potential biological activity and may mainly
act as carriers by coordinating with the central metals to carry or wrap them to the target
cell or tissue region to exert their activities [19]. Additionally, it should be also admitted
that the formation of highly active metal complexes in polycyclic aromatics may also bring
about varying degrees of toxicity or side effects [20]. Nevertheless, the activity level of the
metal complexes is closely related to the role and biochemical function of the central metal
ions themselves. For example, copper is an essential trace element in the life process and
plays an important role in maintaining the redox cycle capacity of living systems [21,22].
Y. Gou et al. recently reported three fluorescent dithiocarbazate—copper complexes that
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showed significantly higher cytotoxicity to several pancreatic cancer cells than ligands and
cisplatin [23]. Confocal fluorescence imaging showed that one of the complexes, complex 3,
which was primarily targeted at mitochondria, was able to kill pancreatic cancer cells by
triggering multiple mechanisms. It was reported to be the first copper(II) complex to trigger
the ferroptosis pathway in cancer cells. In addition, iridium(III) complexes with different
functions have been reported to trigger the ferroptosis pathway by targeting mitochondria
or lysosomes [24,25] or to trigger light-induced ferroptosis in hypoxic tumor cells through
photodynamic pathways, leading to cancer cell death [26]. Obviously, bifunctional com-
plexes based on “active metal + active ligand” should be emphasized as a hot research
direction and as the foundation of metal complex research, as they show more design space
and selectivity [27].

As mentioned above, aromatic hydrazone compounds have exhibited significant and
extensive bioactivities. Thus, more and more attention has been paid to the research
on metal complexes with an aromatic hydrazone as the active ligand in recent years,
with the abundant research reports on the metal complexes of phenylhydrazone being
due to the simple availability and large number of phenylhydrazone derivatives [28–30].
In comparison, polycyclic aromatic hydrazones were found to be able to obtain more
significant aromatic planar properties by further extending the hyperconjugated structure
of the benzene ring. Therefore, relatively less attention has been paid to the metal complexes
of polycyclic aromatic hydrazones, especially according to the reports on their biological
activities. It is of great significance to further study the metal complexes of polycyclic
aromatic hydrazones by considering their potential medicinal prospects. However, the
related commentary on their research progress and orientation remains undeveloped.
Thus, based on the continuous work and efforts by the authors on the metal complexes
of anthrahydrazone as well as on their anticancer activity in recent years, the recent
progress surrounding the metal complexes of polycyclic aromatic hydrazones (such as
naphthylhydrazone, phenanthrylhydrazone, and anthrachydrazone) and their biological
activities was reviewed for the first time [31–33]. We hope this work presents a primary
overview of this research field, which is still less focused on and less systematic, to relevant
researchers. Through the existing research work, some possible rules of the structure–
activity relationship could be summarized and more promising exploration directions were
found, providing a reference and basis for better and higher-level research exploring the
bioactive metal complexes of polycyclic aromatic hydrazones.

2. The Antibacterial Activity Study
2.1. Antibacterial Metal Complexes of Naphthylhydrazone

Hydrazones have been widely used in medicine, agricultural chemicals, functional ma-
terials, etc., due to their potential pharmacological activities, including anticancer [34–36],
antibacterial [37,38], anti-inflammatory [39,40], and antiviral [41,42] effects, among others.
Naphthalene is a double ring formed by two benzene rings in parallel and is the simplest
polycyclic aromatic hydrocarbon. It has long been attempted to introduce a naphthalene
ring into the structure of hydrazone to form a new hydrazone with distinct structural
characteristics and potentially rich pharmacological activities, among which antibacterial
and anticancer activities are the most extensive.

2.1.1. The First Transition Metal Complexes of Naphthylhydrazone with
Antibacterial Activities

Kalagouda B. Gudasi et al. [43] first synthesized and characterized the novel naph-
thylhydrazone ligand with N-phenylglycine as its side chain as well as its copper(II),
nickel(II), cobalt(II), manganese(II), and zinc(II) complexes in 2006 (Figure 1). All of these
complexes showed an octahedral geometry of the metal center and similar coordination
characteristics, as suggested by spectroscopic studies. The spectral results speculated that
the naphthylhydrazone ligand tridentate coordinated with the metal ions via deproto-
nated naphtholate-O, azomethine-N, and carbonyl-O. The antibacterial and antifungal
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activities of the complexes showed that they all exhibited stronger and broader-spectrum
biological antibacterial activity than the ligand or the metal salts alone. Then, Balakrishnan
Murukan et al. [44] reported the new naphthalyl-dihydrazone in 2007, which is formed by
the condensation of isatin monohydrazone with 2-hydroxy-1-naphthaldehyde to afford
its new manganese(III), iron(III), and cobalt(III) complexes (Figure 1). The spectral anal-
ysis indicated that the naphthalene-dihydrazone ligand coordinated with the transition
metal ions by deprotonated naphtholate-O, azomethine-N, and carbonyl-O atoms. The
coordination center of these complexes was suggested to form an octahedral geometry
according to infrared spectroscopy (IR) and nuclear magnetic resonance (NMR) spectral
analysis. The in vitro antibacterial activities of the compounds against several bacterial
strains were determined. The results showed that the antibacterial activity of the ligand was
weaker than the complexes. The antibacterial activity of the complex was similar to that of
the complexes with Schiff’s base, hydrazone, or thiosemicarbazone as the corresponding
ligands, as reported in previous literature. It was speculated that the chelation between the
ligand and metal ions could greatly reduce the polarity of the metal ions and increase the
lipophilicity of the whole complex to facilitate its interaction with lipid substances (such as
the cell membrane and macromolecular hydrophobic regions).
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Figure 1. Some representative first transition metal complexes of naphthylhydrazone with N-
phenylamino derivatives as the side chain.

In 2008, A. P. Gulya et al. [45] reported the synthesis and antibacterial activity of a
series of copper(II) complexes with naphthalidenethiosemicarbazone and sulfanilamide as
co-ligands. The influences of Cu(II) and the phenyl group on the skeleton of thiosemicar-
bazone on their antibacterial activity towards 10 different G+/G− bacteria strains were
discussed, in which the coccal test strains showed the highest sensitivity towards the
Cu(II) complexes bearing norsulfazole, ethazole, or sulfadimezine groups as co-ligands.
Additionally, the intraspherical ligands affected both their bacteriostatic and bactericidal
abilities directly. Under the modulated side chain of thiosemicarbazone or the type of
co-ligands, the minimum inhibitory concentration and microbial biomass carbon (MIC and
MBC) values increase (corresponding to decreased antibacterial activity), such as when the
phenyl group of naphthylhydrazone is removed, or the streptocide or sulfacyl group takes
the place of norsulfazole, ethazole, or sulfadimezine. These results suggest the potential for
seeking antibacterial drugs from the bio-metal complexes of naphthyl-thiosemicarbazone.

Sangamesh A. Patil [46] further studied a series of Co(II)/Ni(II)/Cu(II) complexes
bearing novel naphthalylhydrazones with coumarin-type side chains in 2011 (Figure 2).
It was found that all of these metal complexes showed a six-coordinated octahedral ge-
ometry by the tridentated hydrazone ligand via phenolic-O, azomethine-N, and amide
carbonyl-O atoms; two H2O; and lactonyl O from another hydrazone ligand to form a
one-dimensional chain polymer. These complexes were soluble in dimethyl formamide
(DMF) or dimethyl sulfoxide (DMSO) and melted at higher temperatures. Electrochemical
studies of the Cu(II) and Ni(II) complexes showed that they were one-electron-transfer
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quasi-reversible redox pairs. It was also found that the metal complexes had stronger
antibacterial activity against some typical bacteria (E. coli, S. aureus, B. subtilis, and S. typhi)
and fungi (C. albicans, A. Niger, and Cladosporium) than the ligand, indicating that the
synergistic action of the ligand and metal ions significantly enhanced the antibacterial
activity. Then, H.G. Aslan et al. [47] reported new Co(II), Ni(II), and Cu(II) complexes of
2-hydroxy-1-naphthylhydrazone bearing benzenesulfonyl on the side chain in 2013, as
shown in Figure 2. Unfortunately, these complexes showed lower antibacterial activity than
the ligand alone against a series of bacteria strains, including both G+- and G−-type, and
even fungi, which was not consistent with the trend of increased activity of the complexes
reported before. Thus, it should be noted that the antibacterial activity of the metal complex
of naphthylhydrazone is not unidirectionally enhanced by the coordination of metal ions
with the ligand. The antibacterial activity of the complex might depend on the potential
synergistic effect between the ligand and the metal ion, and the specific coordination mode
or the corresponding existing species in solution should be also considered.
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amide as side chain.

Meanwhile, K.R. Sangeetha Gowda et al. [48] reported six Co(III) and Ni(II) complexes
of NIH (2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone) by introducing the typical
N,N′-bidentate co-ligand (phen or bipy) (Figure 3). The central Co(III)/Ni(II) was six-
and five-coordinated by the tridentate 2-hydroxy naphthylhydrazone via the phenolic-
and amide carbonyl-O atoms and the azomethine N atom, along with bipyridine and
o-phenanthroline, respectively. The deoxyribonucleic acid (DNA)-binding properties of
these complexes were also studied by spectral analyses and in DNA viscosity experiments.
The results indicated that those complexes bearing phen or bipy as the co-ligand showed
stronger intercalative DNA-binding abilities towards DNA as well as DNA photo-cleavage
potentials. In view of their Kb values, the two Co(III) complexes of NIH bearing phen (1)
or bipy (2) were 4.6 × 104 and 4.1 × 104 M−1, and those for the corresponding two Ni(II)
complexes (3 and 4) were 4.9 × 104 and 4.2 × 104 M−1, which were obviously higher than
the Co(III) (5) or Ni(II) (6) complexes of NIH alone, with Kb only being 3.6 × 104 M−1 and
2.8 × 104 M−1, respectively. Accordingly, their antibacterial activities were found to be
basically coincident with the respective Kb values, further implying the key roles of both
the metal center and the co-ligand (phen or bipy), which are believed to be responsible for
the improved bioactivities [49,50]. Nevertheless, the differences between the metal center
Co(III) and Ni(II) were not further reflected in the DNA-binding ability and in vitro an-
tibacterial activity. Although the two co-ligands (phen/bipy) also did not show differences
in their antibacterial activity, the complex with phen did exhibit stronger DNA-binding
ability, which should be related to its larger planar conjugated area.
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Additionally, Omima M.I. Adly et al. [51] synthesized a similar type of 2-hydroxy-
1-naphthylhydrazone bearing a 1,2,4-triazin side chain. Since a 3-thioxo group exists on
the triazin, this ligand coordinated to the metal center (Cu(II), Co(II), Ni(II), Zn(II), Cd(II),
VO(IV), and UO2(VI)) in a tridentate mode via phenolic-O, azomethine-N, and thioxo-
S. Although the coordination geometry showed diversity, such as planar, tetrahedral,
pyramidal, or octahedral diversity, all of the transition metal complexes formed in the
mononuclear type, as determined by ultraviolet—visible (UV—Vis), electron spin resonance
(ESR), and magnetic analysis. They were also tested to determine their in vitro antibacterial
activity towards the typical G+ (S. aureus and B. subtilis) and G− (S. typhi and E. coli) strains
as well as towards the fungi C. albicans. Although most of the complexes showed obviously
higher antibacterial activity than the ligand, their activity was still intermediate or low
(<2/3 of mean zone diameter of the corresponding positive control), except for the Cd(II)
complex (Cd(HL)(NO3)), which showed comparable activity to the positive control towards
B. subtilis and S. typhi.

Eight transition metal complexes (Co(II), Ni(II), Cu(II), and Zn(II)) were also syn-
thesized from a 2-hydroxy-1-naphthylhydrazone ligand bearing a p-nitrobenzamide side
chain, and o-phenanthroline or 5-chloro-8-hydroxyquinoline was introduced as the co-
ligand by Ganga K. Rajam et al. [52], the structure of which was analyzed by means of X-ray
diffraction (XRD), as indicated in Figure 4. Compared with the ligand, the antibacterial
experiments showed that the complexes had enhanced antibacterial activity but were still
inferior to the positive control drug, Endofill. The proliferation of B. subtilis and S. aureus
was highly inhibited at the MIC value of 200 µg/mL, while E. coli and P. putida were not
significantly inhibited in the presence of these complexes. Alternatively, the antifungal
activity of the complexes was found to be poor, with the MIC values being about as high as
1 mg/mL, and no obvious antifungal activity was observed at lower concentrations.
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Figure 4. The transition metal complexes of naphthylhydrazone with p-nitrobenzamide as a side
chain together with o-phenanthroline or 5-chloro-8-hydroxyquinoline as the co-ligand.

Sedaghat’s group also reported four Cu(II)/Zn(II) complexes of 2-hydroxy-1-naphth
ylhydrazone with a phenylthiosemicarbazone side chain by introducing 4,4′-bipy (N,N′-
bidentate), imidazole, or 2-methylimidazole (N-monodentate) as the co-ligand [53]. The
hydrazone ligand tridentated to the center Cu(II) or Zn(II) via the deprotonated phenolic-O
and thiol-S as well as via the azomethine-N atom together with the auxiliary co-ligand N
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atom to form the coordination sphere of the metal complex in the electric neutral state. As
the co-ligand, bipy could help to form a binuclear complex, such as complex 4 in Figure 5.
The metal complexes showed significantly higher antibacterial activity than the hydrazone
ligand towards the tested B. subtilis, S. aureus, and P. aeruginosa strains. For copper(II),
complex 3, in particular, the inhibition zone against P. aeruginosa reached 30 mm, which
suggested far more sensitivity to 3 than the ligand as well as to the two positive controls,
nalidixic acid and vancomycin.
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Figure 5. The Cu(II)/Zn(II) complexes of naphthylhydrazone with phenylthiourea as side chain
together with several N-co-ligands.

Recently, Ayman K. El-Sawaf et al. [54] reported a series of mononuclear Co(II)/Ni(II)/
Cu(II) complexes of 2-hydroxy-1-naphthylhydrazone with an antipyrine side chain, which
was synthesized by condensation on the introduced 4-amino of antipyrine (Figure 6). The
hydrazone ligand in this work also coordinated to the metal center via O/N/S atoms,
similar to the complexes mentioned above [53], but the S atom of the thione group (C=S)
was in the electroneutral state, so the co-ligand R involved in the coordination sphere was
belonged to a−1-charged group, such as Cl−, OAc−, or ClO4

−. Two typical bacteria strains,
S. aureus and E. coli, were chosen to test the antibacterial activities of these compounds
based on the inhibition zone. It was found that all seven transition metal complexes showed
higher activity than this hydrazone ligand bearing an antipyrine side chain, although they
were still not as active as enrofloxacin. Similarly, the copper(II) complex 5 resulted in the
biggest inhibition zone, with diameters of 14.8 and 16.1 mm against S. aureus and E. coli,
respectively. The antibacterial activity results also showed that in addition to the differences
in the metal centers, the difference in the −1-charged R group also significantly affected the
activity of the complexes, which might be related to the dissociation kinetics of the complex
in solution.

The vanadium complexes of naphthylhydrazone were not explored by W. Li et al.
until 2015 [55]. They synthesized the first V(V) complex of 2-hydroxy-1-naphthylhydrazone
by introducing the indole-3-acetamide group as the side chain so that an O/N/O-tridentate
coordinated the mode of the ligand to the V=O moiety, as indicated in Figure 7. Both the
results of the inhibition zone and MIC values clearly indicate that this vanadium complex
demonstrated higher inhibition activity during the proliferation of different typical strains,
including E. coli, P. aeruginosa, B. subtilis, and S. aureus. Towards P. aeruginosa, the inhibition
zone of the complex was three times larger than that of the ligand, and the MIC value
was only one-quarter that of the ligand. However, it was still not as active as the positive
control, penicillin G. Then, S. Yousef Ebrahimipour et al. [56] reported three very similar
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vanadium(V) complexes of 2-hydroxy-1-naphthylhydrazone with a benzamide side chain
in 2016 (Figure 7), which were fully characterized on the structures. The coordination mode
of these complexes was similar to those reported by Li et al. In this work, they explained
the transformation of the ligand from the keto-form to the deprotonated enol-form under the
coordination to V=O along with the deprotonated MeOH/EtOH/n-PrOH, which acted as
the co-ligand. The antibacterial activities of the three complexes ([VO(L)(MeOH)(OMe)] (1),
[VO(L)(OEt)] (2) and [VO(L)(OPr)] (3)) towards E coli, S. aureus, and methicillin-resistant
S. aureus (MRSA) were determined. The results showed that they all had significant
antibacterial activities at higher concentrations of 500 and 1000 µg/well. In particular,
complex 1 was also highly sensitive to the MRSA-resistant strain, and its corresponding
inhibitory zone (30.5 and 28 mm) was higher than that of normal S. aureus (26 and 20 mm).
Moreover, this antibacterial activity of complex 1 was significantly stronger than that of the
two positive controls (cefixime and azithromycin), whose inhibition zones against MRSA
were only 12 mm and 15.5 mm, respectively. A molecular docking study showed that the
docking energy and binding energy of complex 1 to the key antibacterial target, glCN-6-P
synthase, were −8.46 and −5.33 kcal·mol−1, respectively, indicating that complex 1 is a
good inhibitor of GLCN-6-P synthase.
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benzamide as a side chain.

On the other hand, Ayman H. Ahmed et al. [57] synthesized a novel dihydrazone of
2-hydroxy-1-naphthylhydrazone linked by oxalate. Additionally, a new binuclear nickel(II)
complex was achieved, which was coordinated by the bridging ligand of dihydrazone
linked by oxamide, as shown in Figure 8. Meanwhile, three new nickel(II) complexes
of 2-hydroxyphenylhydrazone were also synthesized for comparison, but they were all
mononuclear. The antimicrobial results indicated different sensitivities of the five tested
bacteria (B. subtilis, S. pneumoniae, E. coli, S. racemosum, and A. fumigatus) against these
nickel(II) complexes. The dihydrazone ligand L2 exhibited the highest activity among the
hydrazone ligands. Ni(II) complex 3 showed higher inhibition on B. subtilis, S. pneumoniae,
and E. coli, while complex 2 showed a better effect on S. racemosum and A. fumigatus.
However, there was not much difference in the overall antibacterial activity between the
Ni(II) complexes and the ligands. It was deduced that these compounds inhibited the
microbes by blocking the metal-binding sites of microbial enzymes. They could also
interfere with cell respiration, preventing protein synthesis and further limiting microbial
proliferation. Since the nickel(II) center was generally not regarded as being the most
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effective in terms of antimicrobial activity, more transition metal complexes of these ligand
types should be encouraged for further exploration.
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by oxamide.

2.1.2. The Second and Third Transition Metal Complexes of Naphthylhydrazone with
Antibacterial Activities

Early in 2008, R. Prabhakaran et al. [58] synthesized and characterized three palla-
dium(II) complexes of 2-hydroxynaphthylhydrazone (phenylhydrazone was also involved)
containing N-substituted thiosemicarbazide as a side chain (Figure 9). In each complex, the
ligand was also coordinated with the central Pd(II) via the O/N/S-tridentate coordination
mode. By comparing the in vitro antibacterial activity of these complexes, it was found
that the activity of N-phenyl-substituted hydrazone Pd(II) complex 2 was significantly
higher than that of N-methyl-substituted hydrazone Pd(II) complexes 3 and 1, so the over-
all antibacterial activity order was as follows: 2 > 1 > 3. These results indicated that the
different ligand substituents could significantly affect the overall antibacterial activity of
the complexes. For complex 2, the authors also discussed the possible SAR, suggesting
that its high activity was related to the co-existence of two electron-withdrawing groups,
naphthalene and benzene, and the chelation of the hydrazone ligand also greatly reduced
the polarity of the central metal ions and increased the lipophilicity, which was conducive
to the penetration of the complex into the lipid layer of the cell membrane. Recently,
Nirmalya Bandyopadhyay et al. [59] synthesized a 2-hydroxylnaphthylhydrazone ligand
with 3-substituted 2-ketoxime butane as a side chain using THF (tetrahydrofuran) as a
solvent and further obtained a new four-coordinated Pd(II) metal complex for the first
time (Figure 9). Structural characterization studies, including X-ray single-crystal diffrac-
tion analysis, showed that the central Pd(II) of the complex was in the “N/N/O/Cl−”
coordination environment of a distorted planar square, in which Cl acted as the potential
leaving group. Electrochemical study of this Pd(II) complex with Ag/AgCl as a reference
electrode in DMF solution revealed an irreversible Pd(II)/Pd(I) redox property at ~0.646 V.
The results of in vitro antibacterial tests and SEM (scanning electron microscopy) observa-
tions showed that this complex had good antibacterial activity against a variety of typical
pathogens and fungi, while the naphthylhydrazone ligand had no antibacterial activity. At
the concentration of 100 µg/mL, the inhibition zone of the complex to each strain ranged
from 11 to 26 mm, and the MIC values were between 100 and 200 µg/mL.
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Similarly, the corresponding Pd(II) and Pt(II) complexes were simultaneously synthesized
when the benzenesulfyl group was set as the side chain of 2-hydroxylnaphthylhydrazone, as
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previously reported by H. Güzin Aslan et al. [47]. The results showed that both the Pd(II) and
Pt(II) complexes showed good antibacterial activities against all of the tested Gram-negative
and Gram-positive bacteria, which were also higher than those of the Ni(II)/Cu(II)/Co(II)
complexes reported at the same time. It can be seen that different metal ions combine with
the same naphthylhydrazone ligand and play different synergistic effects, thus affecting the
complex’s level of antibacterial activity. This is also one of the attractive features prompting
discussions of the crucial role of metals in medicine.

G. Raja et al. [60] reported three ruthenium(II) complexes of 2-hydroxylnaphthalenehyd
razone (those of phenylhydrazone were also involved) with α-furfuraldehyde amidyl
thiourea as a side chain. Among these complexes, the new naphthylhydrazone ligand
coordinated to Ru(II) in an O/N/S/N-tetradentate chelation mode, while the C=O group
and PPh3/AsPh3/Py occupied the other two positions of the octahedral coordination con-
figuration, as shown below in Figure 10. The results of the antibacterial activities indicated
that for the ligand, the inhibition zones for S. aureus and E. coli had the ranges of 12~25 mm
and 3~21 mm, respectively. However, the inhibition zones of the three Ru(II) complexes
at the same concentration did not show obvious advantages. E. coli was more sensitive to
the complexes than S. aureus, implying that the chelating coordination of this ligand with
Ru(II) was beneficial to improving its transmembrane capacity to G− bacteria.
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Figure 10. Three ruthenium(II) complexes of naphthalenehydrazone with α-furfuraldehyde amidyl
thiourea.

The similar coordination pattern for the ruthenium(II) complex of naphthylhydrazone
was reported by Soumitra Dinda et al. [61]. The naphthylhydrazone ligand in this work
used benzothiazole or pyridine as the side chain, but this naphthylhydrazone ligand did not
contain 2-OH, something that is relatively rare among existing studies (Figure 11). It was
confirmed by X-ray single-crystal diffraction analysis that the ligands of these complexes
were all electron donors to Ru(II) through N,N′-bidentate chelation, but the coordination N
atom in this work was not from azomethine-N, but was instead from the deprotonated -NH
groups of the hydrazone, which was attributed to the more flexible acylhydrazone. The
C=O group and Cl− combined with the two N atoms to form the equatorial plane of the
Ru(II) coordination octahedron, while the two PPh3 occupied the axial position. Multiple
transitions in the electron spectra of complexes can also be explained by the time-dependent
density functional theory (TDDFT). The antibacterial activities of the Ru(II) complexes
were tested in vitro for up to 12 typical pathogens. The results showed that the tested fungi
(Malassezia, Alternaria, Exserohilum, and Aspergillus) were not particularly sensitive to the
complexes. Interestingly, however, the tested bacteria were sensitive to both complexes, and
complex 4 was the most active, while the side chain of its corresponding naphthylhydrazone
ligand was benzothiazole. It appears an aromantic ring plane with a larger area helps to
increase the antibacterial activity of the metal complexes of naphthylhydrazone, which is
consistent with previous findings.
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Figure 11. The ruthenium (II) complexes of pyrene/naphthyl hydrazone with benzothiazole or
pyridine as a side chain.

In 2013, Tahereh Sedaghat’s group reported the synthesis of a series of isobinuclear
organotin(IV) complexes based on dinaphthylhydrazone ligands (diphenylhydrazone lig-
ands were also involved), which were linked by hexyldiamide, 2′/2′ ′- (or 2′/4′ ′-)diamide
diphenylamine (Figure 12) [62–64]. The structures of these new compounds were char-
acterized by IR, elemental analysis, and X-ray single-crystal diffraction analysis. In the
above complexes, each dihydrazone acted as a tetra-base ligand in the form of enol, and
tridentate coordinated with each central Sn(IV) via phenol-O, azomethine-N, and enol-O.
Each Sn(IV) had a five-coordinated geometry, with the other two positions occupied by a
pair of methyl/butyl/phenyl groups to form a symmetric binuclear complex. The in vitro
antimicrobial activities of some of the ligands and all of the complexes towards the typical
G+ bacteria (B. subtilis and S. aureus) and G− bacteria (E. coli and P. aeruginosa) were tested
and compared with the positive control drugs (vancomycin and nalidixic acid) [62,63]. The
results showed that most of the complexes showed stronger antibacterial activity than the
ligands. However, it is noteworthy that the dihydrazone ligand linked by the aromatic
diphenylamine as well as its Sn(IV) complex showed no significant inhibitory activity
against these tested strains [64].
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In addition to the Sn(IV) complexes of bishydrazone, Sedaghat’s group [65–67] also re-
ported a series of mononuclear organotin (IV) complexes of 2-hydroxylnaphthylhydrazone,
in which the side chain of the hydrazone was phenylthiocarbazone, resulting in a dianionic
ligand undergoing tridentate chelation by phenol-O, azomethine-N, and thiol-S. The co-
ordination number of these Sn(IV) complexes was also five, and the other two sites were
similarly occupied by methyl/phenyl groups (Figure 13) [65]. By comparing the antibac-
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terial activities of these compounds in vitro, it was found that the naphthylhydrazone
ligand showed weak antibacterial activity (except for the 5′-Br-phenylhydrazone), while
the corresponding organotin(IV) complexes showed stronger antibacterial activity over-
all. In addition, the antibacterial activity of the complexes with different methyl/phenyl
groups was also different, suggesting that the antibacterial activity of the complex depends
on both the naphthylhydrazone ligand and the organic groups directly coordinated to
Sn(IV). On the other hand, when 2-furanformamide [66] or isoniazid [67] was substituted
for phenylthiosemicarbazide on the side chain of a naphthylhydrazone, the correspond-
ing Sn(IV) complex exhibited different antibacterial activity. In terms of the ligand, the
activity of the naphthylhydrazone bearing a 2-furanformamide side chain was higher
than that of 5′-Br-phenylhydrazone. In contrast, the corresponding phenyl-coordinated
organotin(IV) complex was more active than the methyl-coordinated one [66]. However,
for the Sn(IV) complex of naphthylhydrazone with isoniazid as a side chain, its overall
antibacterial activity was significantly decreased, and only showed weak antibacterial
activity for the G+ bacteria (B. subtilis and S. aureus). For the two G− strains (E. coli and
P. aeruginosa), however, the antibacterial activity was lost, even when the concentration
was increased to 40 mg/mL [67]. Prior to this, in 2006, M. A. Salam et al. [68] reported
a 2-hydroxylhydrazone ligand with a N-ethyl-substituted thiosemicarbazone as the side
chain (Figure 13) as well as some of its mononuclear organotin (IV) complexes. In addi-
tion to the O/N/S-tridentate hydrazone, Cl− and the methyl/butyl/phenyl group also
coordinated with Sn(IV) to form five-coordinated organotin (IV) complexes. The in vitro
antibacterial activity results showed that these organotin (IV) complexes also had good
antibacterial activity against the tested typical pathogens, but only the Sn(IV) complex
with diphenyl coordination had similar antibacterial activity to the positive control drug,
ciprofloxacin, and the other compounds had lower antibacterial activity than ciprofloxacin.
The inhibition zones of the butyl-Sn(IV) and methyl-Sn(IV) complexes ranged from 22.5
to 25.8 mm, suggesting that the organic groups that had coordinated to the central Sn(IV)
had a significant effect on their biological activity, and this enhanced activity might be due
to the chelation of the naphthylhydrazone ligand with Sn(IV), increasing the lipophilicity
required for these Sn(IV) complexes to penetrate the bacterial membranes.
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2.2. Antibacterial Metal Complexes of the Other Polycyclic Aromatic Hydrazones

There are limited studies on the antibacterial activities of polycyclic aromatic hydra-
zones with more than two rings. Previously, Floyd A. Beckford et al. [69–71] studied
anthrahydrazone-based compounds. In 2006, they synthesized two novel anthrahydrazone
and benzoanthrahydrazone ligands bearing a thiourea side chain via the condensation
reaction of thiosemicarbazide or its N-ethyl derivatives with 9-anthracaldehyde or benzoan-
thrquinone, respectively, and then synthesized the corresponding heavy metal complexes,
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examples of which include zinc(II), cadmium(II), and mercury(II) (Figure 14). In the metal
complex of anthrahydrazone with thiourea as a side chain, the ligand is chelated with
Zn(II)/Cd(II)/Hg(II) by thiourea-S and azomethine-N. The stoichiometric ratio of metal
to the ligand of the zinc(II) complex is 1:2, and that of the Hg(II) and Cd(II) complexes is
1:1 [71]. In vitro antibacterial activity tests showed that all complexes had certain inhibitory
effects on both the G+ strains (B. cereus and S. aureus) and the G− strains (P. vulgaris,
E. faecalis and S. typhimurium), and their activity was generally higher than that of the
ligand. Among them, the Cd(II) and Hg(II) complexes were the most sensitive to B. cereus
and P. vulgaris, respectively, with inhibition zones of 6 mm at 0.001 M. However, the ligand
demonstrated no activity towards the G+ strains, and the inhibition zones towards G−
strains were also 53 mm [71].
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Figure 14. Zinc(II), cadmium(II), and mercury(II) complexes based on novel anthrahydrazone ligand
with thiourea side chain.

They also reported on the corresponding ruthenium(II) complexes and tested the
antibacterial activity of each compound against several typical pathogens using the disk
diffusion and chemo-luminescence methods (Figure 15). The results showed that the ac-
tivity of the two anthrahydrazone ligands was superior to that of the Ru(II) complexes.
Among them, the anthrahydrazone ligand with thiourea as a side chain had the highest
antibacterial activity. The antibacterial zone of E. faecalis in particular reached 10 mm
(0.001 M), which was much higher than that of the benzoanthrahydrazone ligand and two
Ru(II) complexes and more than twice that of the positive control drug, chloramphenicol.
Unfortunately, each Ru(II) complex showed no significant antibacterial activity, indicating
that not all hydrazone ligands can improve their activity after coordination with metal ions,
and the role of metal ions was thus more interesting to explore further [69]. Subsequently,
in 2011, they synthesized another organic ruthenium(II) complex with p-methyl isopropyl-
benzene as the co-ligand [70], which not only showed antitumor activity, but also showed a
significant bacteriostatic effect against G+ bacteria, especially against B. cereus, with a MIC
value as low as 5 µM. The MIC value of this Ru(II) complex against E. faecalis also reached
20 µM, although it was still inactive against G− bacteria at the maximum concentration
tested [70].
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Recently, Santosh Kumar et al. [72] also reported a novel 1-acenaphthenone hy-
drazone ligand with 3-(4-benzylpiperidyl) thiourea as side chain and further synthe-
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sized four new transition metal complexes based on this ligand (Figure 16). The four
Co(II)/Ni(II)/Cu(II)/Zn(II) complexes were all hexagonal octahedral complexes, in which
two acenaphthenone hydrazone ligands tridentate coordinated in cis- form via carbonyl-O,
azomethine-N and thiol-S. The measured room-temperature magnetic moments of the
Co(II) and Ni(II) complexes indicated that they were in a high spin state and adapted a
distorted octahedral configuration. In vitro antibacterial test results showed that all of the
complexes (<50 µg/mL) had better antibacterial activity against the same pathogen than
the ligand (>100 µg/mL). Especially for the Ni(II) complex, although its activity was still
lower than gentamicin (1–2 µg/mL), it showed the strongest inhibitory activity against all
of the tested pathogens with MIC values of 5~10 µg/mL. The interaction patterns of the
Ni(II) complex with E. coli and B. subtilis were also examined using a scanning electron
microscope (SEM). The results showed that the cell walls of bacteria treated with Ni(II)
complex were damaged. Therefore, it was speculated that the cell wall damage was one of
the key mechanisms for the complex to effectively inhibit the proliferation of the pathogens.
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3. The Anticancer Activity Study
3.1. Anticancer Metal Complexes of Naphthylhydrazone
3.1.1. The First Transition Metal Complexes with Anticancer Activities

Vanadium is one of the important essential elements for life. The electronic structure of
its valence shell (3d34s2) gives it diverse valence states. Vanadium plays an important role
in living organisms, such as in cells and physiological media, in which vanadium mainly
exists in the complex form of +4-charged VO2+ (oxyvanadium cation) and +-charged VO2

+

or polyvanadate. According to the principle of similarity of ions, vanadium complexes
have a wide range of biological activities that can regulate the redox process in cells
and interfere with the metabolism of calcium, iron, and phosphate in vivo [73]. At the
same time, vanadium complexes also have a variety of pharmacological activities, such as
hypoglycemic [74] and hypolipidemic activities [75]. However, the research on vanadium
complexes is still mainly focused on its antidiabetes and anticancer activities, especially
the former, which is a large area of concern. Although vanadium complexes have been
found to have a significant tumor prevention effect in the long term, there are still very few
reports about the vanadium complexes of naphthylhydrazone [76,77].

In 2012, Jiazheng Lu et al. [76] synthesized four hexa-coordinated VO complexes of
the O/N/S tridentate 2-hydroxylnaphthylhydrazone ligand (including phenylhydrazone)
by using thiourea as a side chain and aided by various N,N′-bidentate co-ligands such as
o-phenanthroline and bipyridine (Figure 17). Their binding properties to DNA were studied
by spectroscopic analysis, viscosity determination, and thermal denaturation analysis. The
results showed that four vanadium(IV) complexes could intercalate with DNA and cleave
plasmid pBR322 DNA effectively. Meanwhile, these V(IV) complexes showed significant
cytotoxic activity against two tested cancer cell lines, myeloma (Ag8.653) and glioma
(U251), and were significantly superior to those V(IV) complexes of phenylhydrazone
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as the same series. In particular, for the V(IV) complex with o-phenanthroline as a co-
ligand, the half maximal inhibitory concentration (IC50) values were towards Ag8.653,
and U251 reached 4 nM and 7 nM, showing extremely high anticancer activity in vitro.
Subsequently, this group [78] replaced the side chain group with isoniazide and synthesized
a series of vanadium(IV) complexes with similar structure under the same conditions. The
results showed that these V(IV) complexes had the ability to scavenge ·OH radicals under
certain conditions and had good inhibitory activity against MCF-7, SH-SY5Y, and SK-N-SH
cancer cell lines, especially against neuroblastoma cells. Additionally, the complexes with
phenanthroline as a co-ligand showed the highest activity towards two neuroblastoma cell
lines, SH-SY5Y and SK-N-SH, with IC50 values of 3.95 µM and 1.21 µM, respectively. Similar
to the complexes reported above, the V(IV) complex of naphthylhydrazone with isoniazide
as a side chain showed higher anticancer activity than the phenylhydrazone complex of
the same series, and the complex with o-phenanthroline as a co-ligand also demonstrated
the most significant anticancer activity. According to the SAR of the V(IV) complexes of
these two kinds of naphthylhydrazone, the anticancer activity of O/N/S-tridentate VO
complexes may be higher than that of O/N/O-tridentate VO complexes.
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side chains.

This research group [77,79,80] as well as Yin-Liang Bai et al. [81] selected a naphthyl-
hydrazone ligand with thiourea as the side chain that showed higher anticancer activity
and further introduced phenylimidazolphenanthroline and pyrazinphenanthroline as new
co-ligands (Figure 17). They also continued to synthesize V(IV) complexes with a sim-
ilar coordination structure. The results showed that the new V(IV) complex could also
effectively cleave DNA and showed good anticancer activity, and the complex with higher
activity could block the tumor cell cycle and induce apoptosis. These experimental results
are helpful to further explore and understand oxyvanadium(IV) complexes based on naph-
thylhydrazone as potential metal-based anticancer agents. The results showed that the
V(IV) complexes bearing phenylimidazolphenanthroline were superior to those bearing
pyrazinphenanthroline, the anticancer activities of which were 2~28 times those of the latter.
Specifically, the anticancer activity of the V(IV) complexes of phenylimidazolphenanthro-
line was closely related to the substituents on the benzene ring (such as CF3, Cl, NO2, etc.),
among which the corresponding complexes with benzene with para-CF3 had significantly
better anticancer activity than those substituted on the ortho- or meso- positions.

The group of Rupam Dinda [82–84] reported the vanadium complex of 2-hydroxynapht
hylhydrazone using benzoylhydrazine instead of isoniazide as a side chain, in which the
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-NH2 or -OH introduced to the 2-position of benzene ring was used for SAR comparison
(Figure 18). In each complex, two naphthylhydrazone ligands were coordinated with
the center V(IV) in an O/N/O-tridentate chelation mode to form a hexagonal octahedral
geometry. Therefore, the complex was of the non-VO type but could be stable in both
the solid and solution states, which is very rare in a non-VO(IV) complex. All of these
complexes showed in vitro anticancer activity and had good insulin-fitting activity [83].
Some complexes were found to undergo a valency transition in aqueous solution, and
their interaction sites with ubiquitin and lysozyme proteins were found by molecular
docking [84]. Recently, they further synthesized three new VO(IV) complexes with a dis-
torted octahedral configuration by introducing bipyridine and o-phenanthroline as the
co-ligand and using S-methyl dithiourea as the side chain of the naphthylhydrazone ligand
(including phenylhydrazone) (Figure 18) [85]. All of the complexes could bind to ct-DNA
and human serum albumin (HSA) to different degrees. The binding constants to the DNA
of the V(IV) complexes of naphthylhydrazone, with o-phenantholine and bipyridine as
the co-ligand were 8.24 × 103 and 3.66 × 104 M−1, and to HSA, they were 3.87 × 106 and
9.75 × 106 M−1, respectively. This suggests that different co-ligands may affect the binding
ability of the corresponding complexes with HSA and DNA. Furthermore, these VO(IV)
complexes also inhibited the proliferation of human cervical cancer cells (HeLa) and mouse
embryonic fibroblasts (NIH-3T3).
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In order to improve the selectivity, transport, and activity of iron-based anticancer
agents, Jinxu Qi et al. [86] designed pro-drugs based on the N-donor residues of the human
serum albumin (HSA) IIA subdomain as the carrier, in which six new Fe(III) complexes of
2-hydroxylnaphthylhydrazone with N-substituted thiourea as the side chain were set for
the central drugs (Figure 19). They could bind with HSA to form the HSA complex as pro-
drugs. The in vitro antitumor activity of the Fe(III) complexes encapsulated with HSA was
significantly increased. The activity of the Fe(III) complex of 2-hydroxylnaphthylhydrazone
with N-piperidinium thiourea as the side chain (complex 12) was the highest. In vivo
antitumor experiment results showed that complex 12 and the HSA-12 complex could
inhibit the proliferation of liver cancer, and the HSA-12 complex had stronger targeting
and therapeutic effects than 12. Due to strong binding to the IIA subdomain of HSA,
certain properties of the Fe(III) complexes were improved, including delivery efficiency,
antitumor activity, and selectivity. Compared with the Fe(III) complexes alone, the HSA
complexes had better tolerability, higher drug accumulation in tumor tissues, and lower
toxicity, suggesting better antitumor effects with fewer side effects. These results suggest
that the intravenous administration of the Fe(III) complex of 2-hydroxylnaphthylhydrazone
using HSA as a pro-drug carrier might be a promising approach for targeted tumor therapy.
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Figure 19. Six new Fe(III) complexes of 2-hydroxylnaphthylhydrazone with N-substituted thiourea
side chains.

Copper is also one of the essential trace elements in the life process and maintains
the redox cycling ability in biological systems. This is because of the various coordination
modes and sensitive redox states of copper that occur when researchers combine it with
organic ligands with potential pharmacological activity and try to maximize the potential
pharmacological activity of both.

Soma Mukherjee et al. [87] synthesized a 2-hydroxylnaphthylhydrazone ligand with
a 2-pyridinyl group as a side chain and achieved a new cationic Cu(II) complex through
the coordination reaction of this hydrazone ligand to copper(II) by the tridentate phenol-
O, azomethine-N, and pyridine-N atoms along with the existing H2O and SO4

2− as the
counter ions. Thus, the complex had a four-coordinate and slightly distorted planar quadri-
lateral geometry. The binding mode of this Cu(II) complex with DNA was studied by
UV—Vis spectroscopy, fluorescence emission spectroscopy, viscosity experiments, and
thermal denaturation analysis. In vitro testing of the anticancer activity showed that the
Cu(II) complex had antiproliferative activity against HeLa cells and could block the cell
cycle at the G2/M phase but could not induce apoptosis, showing its unique anticancer
mechanism. S.M. Pradeepa et al. [88] designed a new m-benzenebisnaphthylhydrazone
using m-benzenebisacylhydrazine as a bridging group, as shown in Figure 20 below. Three
transition metal complexes (Co, Ni, Cu) were synthesized as potential new photosensitizers
for photodynamic therapy. The central metal of each complex was tetradentate-chelated
with the two azomethine-N atoms and two 2-phenol-O atoms of this bisnaphthylhydra-
zone ligand. The Cu(II) complex was determined to interact with DNA, mainly by the
surface-groove-binding mode, and could cleave supercoiled plasmid DNA under 365 nm of
ultraviolet light, which significantly enhanced the cytotoxic effect of the complex towards
A549 lung cancer cells. Additionally, the proliferation inhibition rate of the Cu(II) complex
on the cancer cells was obviously higher than those of the bisnaphthylhydrazone ligand
and the other two complexes. It was speculated that the singlet oxygen produced by
the Cu(II) complex under these conditions played an important role in DNA photolysis.
Therefore, it showed significant cytotoxic activity and was regarded as a potential PDT
(photodynamic therapy) reagent. Iran Sheikhshoaie et al. [89] synthesized a ternary mixed
copper(II) complex using a 2-hydroxynaphthylhydrazone ligand with an acetamide side
chain and o-phenanthrene as the co-ligand. X-ray single-crystal diffraction analysis showed
that the central Cu(II) complex had a five-coordinate tetragonal pyramidal geometry that
was coordinated with the O/N/O-tridentate naphthylhydrazone and N,N′-bidentate o-
phenanthrene (Figure 20). The in vitro anticancer activity showed that the complex had
strong growth inhibition on MCF-7 human lung cancer cell lines, much higher than the
naphthylhydrazone ligand, o-phenanthroline, and Cu(NO3)2 alone.

In recent years, F. Yang’s group has also become interested in the metal complexes of 2-
hydroxylnaphthylhydrazone [90–92]. They selected benzoamide and 2′-hydroxylbenzoamide
as the side chains of naphthylhydrazone to synthesize the corresponding ligands and further
selected imidazole, benzimidazole, pyridine, etc., as co-ligands to synthesize a series of
copper(II) complexes with relatively high anticancer activity (Figure 21). Among them, several
Cu(II) complexes of naphthylhydrazone along with the pyridine co-ligand could cleave DNA,
block the cell cycle, and eventually induce cell apoptosis [91]. Those Cu(II) complexes with
imidazole or benzimidazole co-ligands could combine with HSA to form an HSA-Cu complex.



Molecules 2022, 27, 8393 18 of 56

Similarly, the HSA-Cu complex showed higher cytotoxicity, could more efficiently arrest
the cell cycle and lead to cell death through the reactive oxygen species (ROS)-mediated
mitochondrial pathway in the tested cancer cells compared to the Cu(II) complex alone [92].
Comparing the anticancer activity of the Cu(II) complexes, the results indicated that the
Cu(II) complexes with these N-containing heterocycle co-ligands (imidazole, benzimidazole,
pyridine, and triazole) exhibited more significant antitumor activity. On the other hand, the
Cu(II) complexes of 2-hydroxylnaphthylhydrazone with 2′-hydroxybenzoamide as a side
chain had comparatively weaker activity, showing a certain structure–activity relationship.
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Figure 21. A series of Cu(II) complexes of naphthylhydrazone with benzamide derivatives as side
chains together with different co-ligands for SAR studies, recently reported by F. Yang’s group.

Nádia Ribeiro et al. [93] recently reported two copper (II) complexes of 2-hydroxynapht
hylhydrazone with imidazolamide as a side chain (Figure 22). The structural difference
was determined by whether the 1-N atom of imidazolium is replaced by 2′-pyridine. Their
IC50 values for MCF-7 cancer cells were almost the same and were about 2.6 µM. While
for PC3 cancer cells, the pyridine-substituted one still had an IC50 value of about 2.6 µM,
but that of the non-substituted one was 7.71 µM, which was weaker than the previous
one. Both complexes could effectively bind with DNA and HSA. Experimental analysis
showed that the mechanism of cell death of the tested PC3 cells caused by the complexes
was not the apoptosis-mediated by the activation of caspases-3/7 but was instead mediated
by changing the membrane potential of PC3 cells, thereby affecting the imbalance of
physiological elements such as P, K, and Ca in cells. Yihong Wang’s group [94] also recently
synthesized a 2-hydroxylnaphthylhydrazone ligand with piperidinyl thiourea as a side
chain as well as its copper(II) complex (Figure 22), in which the naphthylhydrazone ligand
was coordinated with Cu(II) in an O/N/S-tridentate chelation mode and formed a planar
quadrilateral configuration with a Cl atom. In vitro anticancer screening towards four
typical human cancer cell lines (HeLa, T-24, BEL-7404, and NCI-H460) indicated that the
ligand had the significant characteristic of being a cytotoxic agent, with IC50 values ranging
from 3 to 4 µM. The Cu(II) complex showed higher activity with IC50 values of 70–90 nM.
Compared with the ligand, the in vitro activity of the Cu(II) complex against all of the
tested cancer cell lines was more than 40 times higher, and it could significantly induce
the apoptosis of HeLa cells at lower concentrations. Studies on the apoptosis mechanism
showed that this Cu(II) complex could effectively catalyze the production of ROS via
hydrogen peroxide, and the excessive ROS further led to the dysfunction of mitochondrial
membrane potential and promoted the release of mitochondrial apoptotic factors.
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thiourea as side chains.

On the other hand, Rupam Dinda’s group also synthesized two specific copper(I)
complexes of naphthylhydrazone (Figure 23) [95]. Less commonly, this naphthylhydrazone
ligand does not contain a 2-hydroxyl group, while the side chain group was selected to be
(p-X-phenyl)thiourea (X = Cl or Br). Therefore, this naphthylhydrazone only coordinated
with Cu(I) through S atoms, while another two PPh3 and one halogen atom (the same as
the X atom on the side chain) coordinated with the center Cu(I), forming a four-coordinated
tetrahedral configuration. The results showed that the complex could bind to ct-DNA
via the groove-binding mode and showed photo-induced DNA cleavage activity, which
could have been achieved through singlet oxygen and hydroxyl radical pathways. Both
the two Cu(I) complexes had certain and similar in vitro growth-inhibitory activity against
HeLa cancer cells, but compared with the reported Cu(II) complexes of naphthylhydrazone
above, the activity difference was up to several hundred times, and the IC50 value was only
approximately 30 µM. The significant difference in activity may be related to the coordina-
tion mode of the two kinds of copper complexes. We think the large steric hindrance of
the two PPh3 groups, which have binding affinity to the softer Cu(I), might significantly
block the copper center from exerting its action mechanism which may affect the anticancer
activity of these Cu(I) complexes. Moreover, the lack of rigidity of the Cu(I) complexes
might also lead to a decrease in its DNA binding ability.
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Figure 23. A pair of Cu(I) complexes of the mono-coordinated naphthylhydrazone by S atoms from
the p-halophenyl thiourea side chain, reported by Rupam Dinda’s group.

Very recently, this group [96] also reported a new binuclear zinc(II) complex of 2-
hydroxynaphthylhydrazone with p-methoxyphenyl thiourea as a side chain, in which each
central Zn(II) had a five-coordinated pyramidal geometry. Both naphthylhydrazone ligands
coordinated with Zn(II) via O/N/S-tridentate chelation, while two phenolic-O atoms acted
as bridging atoms to link the two Zn(II) atoms. Each Zn(II) also had a DMSO molecule
involved in coordination, occupying the conical position of the pyramid, thus forming the
symmetric binuclear Zn(II) complex. This special Zn(II) complex showed strong binding
ability to both DNA and HSA. In addition, it had obvious growth inhibitory activity against
a human cervical cancer cell line (HeLa) and a colon cancer cell line (HT-29), with IC50
values of 16.26 µM and 18.32 µM, respectively, and could further induce the apoptosis
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of cancer cells. In addition, the phosphatase activity of this Zn(II) complex was detected
using bis(2,4-dinitrophenyl) phosphoric acid (BDNPP) as a substrate, but unfortunately, no
significant catalytic activity of the complex was found.

Anticancer nickel(II) complexes of naphthylhydrazone have also been explored and
studied in the past ten years. Paramasivam Krishnamoorthy et al. [97] started related
research on this topic in 2012. They designed three 2-hydroxylnaphthylhydrazone ligands
with furan, thiofuran, and pyridine amides as side chains and then synthesized three new
corresponding nickel(II) complexes (Figure 24). In addition to the O/N/O-ternary-chelated
naphthylhydrazone ligands, the fourth coordination position was occupied by PPh3, form-
ing a planar quadrilateral configuration. The in vitro anticancer test results showed that the
three Ni(II) complexes had certain inhibitory effects on the proliferation of the three kinds
of cancer cells, especially A431 cells, showing stronger proliferation than in the HeLa and
HepG2 cell lines, while neither the ligand nor nickel salt demonstrated obvious inhibitory
activity. On the other hand, almost none of these Ni(II) complexes were toxic to the normal
cell line (NIH3T3), suggesting that the complexes had some toxic selectivity to cancer
cells. In addition, these Ni(II) complexes can effectively bind to DNA and HSA, which
provides some insight into the action mechanism for their anticancer activity. However,
Ni(II) complex 6, which contains a pyridine side chain, has the strongest binding ability
to DNA and HSA, showing a certain structural—activity relationship. Furthermore, the
anticancer activity of complex 6 was also more significant in vitro. Therefore, for SAR, it
was primarily speculated by the authors that the size of the heterocyclic ring (from a five-
membered ring to six-membered ring) and the electronegativity of the heterocyclic atoms
in the side chain of naphthylhydrazone could affect the anticancer activity of the complex.
However, compared with the Cu(II) complexes of the similar naphthylhydrazones reported
previously, the anticancer activities of these Ni(II) complexes are obviously weaker.
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At about the same time, Sayanti Datta [98] and R. Prabhakaran et al. [99] also synthe-
sized corresponding Ni(II) complexes using a 2-hydroxynaphthylhydrazone ligand with
thiourea or ethylthiourea as the side chain (Figure 24). Among them, the Ni(II) complex
with pyridine as the co-ligand showed higher activity, with an IC50 value of 7.6 µM against
the MCF-7 human breast cancer cell line. The complex could induce apoptosis to a certain
extent (about 6.8%) in MCF-7 cells at the level of 10 µM, but this ratio of apoptosis was
actually not high, suggesting that apoptosis induction was not the primary anticancer
mechanism of this Ni(II) complex. In addition, it also showed that the Ni(II) complex
was also an effective catalyst for the Heck-type C-C coupling reaction [98]. Experimental
studies on the other two Ni(II) complexes (thiourea and N-ethylthiourea as side chains)
showed that they have certain antioxidant activities that could effectively eliminate 1,1-
diphenyl-2-picrylhydrazine (DPPH) and also overcome the resistance of A549 cells to
cisplatin [99].

We have also introduced three kinds of transition metal complexes of m-benzenebisnap
hthylhydrazone, previously developed by S.M. Pradeepa et al. [88]. In addition to the
four-coordinated copper(II) complex, the other two kinds of Co(II) and Ni(II) complexes
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had a six-coordinated octahedral configuration, while two axial positions of the octahedron
were occupied by two H2O molecules, as indicated in Figure 25. They could also be
used as new photosensitizers for PDT. Unlike the previous Cu(II) complex, the Co(II)
and Ni(II) complexes bound to DNA in a covalent manner, and the cytotoxicity of the
two complexes towards A549 was lower than that of the Cu(II) complex, suggesting that
different metal centers may significantly affect the anticancer activity of the corresponding
metal complexes.
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Nanjan Nanjundan et al. [100] reported the design and synthesis of a naphthylhy-
drazone (phenylhydrazone was also involved) with S-allyldithiocarbazate as a side chain,
and the corresponding nickel(II) complex was further obtained (Figure 26). Since the
corresponding naphthylhydrazone ligand did not bear 2-OH, the Ni(II) complex was
four-coordinated by two naphthylhydrazone ligands via imine-N and thiol-S to form a
symmetrical Ni(II) complex with planar quadrilateral geometry. The binding constant
of this naphthylhydrazone-Ni(II) complex with DNA was 3.54 × 104 M−1, which was
weaker than that of the corresponding phenylhydrazone-Ni(II) complex. On the con-
trary, the naphthylhydrazone-Ni(II) complex showed a higher binding ability with bovine
albumin (BSA), with a Stern—Volmer binding constant, KSV, of 5.8 × 104 M−1, which
was stronger than that of the corresponding phenylhydrazone-Ni(II) complex. In ad-
dition, this Ni(II) complex showed moderate cytotoxicity to the Vero and HeLa cancer
cell lines, with IC50 values of 65.51 and 25.13 µg/mL, respectively, slightly weaker than
the corresponding phenylhydrazone-Ni(II) complex. Nádia Ribeiro et al. [101] recently
synthesized an O/N/O-tridentate six-coordinated zinc(II) complex using the same two
2-hydroxy-naphthylhydrazones with methylimidazolamide as a side chain (Figure 26). The
photophysical properties of the naphthylhydrazone ligands and Zn(II) complexes were
studied by means of theoretical calculations. The results showed that the keto-tautomerism
of the ligand under excitation was stabilized in the energy-accessible triplet states, but not
in the Zn(II) complex. The binding ability of the Zn(II) complex with DNA was measured as
a fluorescence probe. Compared to the Cu(II) complex with the same ligand [93], although
the Cu(II) complex had stronger cytotoxicity (IC50 = 7.71 µM) to PC3 cells than the Zn(II)
complex (IC50 = 35.2 µM) towards the MCF-7 cell line, the Zn(II) complex had the highest
inhibitory activity, with an IC50 of 0.53 µM, which is rare in studies on the Zn(II) complexes
of naphthylhydrazone, and was also much stronger than the Cu(II) complex of the same
ligand, which also showed a comparatively high inhibitory activity (IC50 = 2.58 µM).

From these results, we are not arbitrarily inferring that the activities of the metal
complexes of the O/N/S-tridentate naphthylhydrazone are higher than those of the
O/N/O-tridentate ones. The influence of the central metals as well as the properties
of the substituent groups of the side chains on the activity cannot be ignored. Therefore, it
is necessary to explore and discuss the structure–activity relationship with regard to the
anticancer activity in this research area.
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3.1.2. The Second and Third Transition Metal Complexes of Naphthylhydrazone with
Anticancer Activities

In 2008, Sarmistha Halder et al. [102] reported two palladium (II) complexes of 2-
hydroxynaphthylhydrazone with thiosemicarbazide as a side chain, comparing them
to the corresponding Pd(II) complexes of 2-hydroxyphenylhydrazone (Figure 27). For
the Pd(II) complexes with a typical four-coordinated mode, PPh3 and p-methylpyridine
were selected as co-ligands to compare the SAR and also compared the O/N/S-tridentate
naphthylhydrazone (or phenylhydrazone) ligand to the central Pd(II). In vitro anticancer
activity tests showed that the Pd(II) complex of naphthylhydrazone with PPh3 as a co-ligand
had almost no inhibitory activity against HL-60 and U-937 cancer cell lines, with IC50 values
exceeding 200 µM, significantly higher than those of the corresponding Pd(II) complexes
of phenylhydrazone (IC50 = 0.6~4.8 µM). However, the in vitro anticancer activity of the
Pd(II) complexes of naphthylhydrazone and phenylhydrazone with p-methylpyridine as
a co-ligand were very similar, with all of the IC50 values in the range of 6~7 µM, and did
not show the influence of the number of rings of aromatic hydrazone on their anticancer
activities. The results of this SAR are also rarely reported in related research work, showing
an interesting contrast.
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Figure 27. Two palladium(II) complexes of naphthylhydrazone with thiourea as a side chain along
with PPh3 or p-methylpyridine as co-ligands.

Wilfredo Hernández et al. [103] also carried out a very similar study using the same
central metal, Pd(II), and the same phenylthiourea side chain (Figure 28). However, they
focused on the influence of the positions of hydrazone and the substituted groups on
the naphthalene ring over their anticancer activities. To this end, they designed two
naphthylhydrazone ligands: one was a 1-naphthylhydrazone ligand of the same type
previously reported but without 2-OH substitution and with a N-phenylthiourea side
chain; the other was a rare reported ligand and 1-nitro-2-naphthylhydrazone with a N-
phenylthiosemicarbazide side chain. Accordingly, they also obtained two new Pd(II)
complexes and carried out subsequent screening and comparison with the Pd(II) complexes
of three other non-naphthylhydrazone ligands. The results showed that the five Pd(II) com-
plexes exhibited different anticancer activities in vitro. The IC50 values of these Pd(II) com-
plexes against the six tested cancer cell lines (H460, DU145, MCF-7, M14, HT-29, and K562)
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ranged from 0.01 to 10 µM, with a difference of up to 1000 times, and the Pd(II) complex of
the phenylhydrazone ligand was still the most active. In terms of naphthylhydrazone, the
anticancer activity of the two ligands was relatively weak and were higher than 25 µM, with
some even higher than 250 µM. However, the two corresponding naphthylhydrazone-Pd(II)
complexes showed significantly higher inhibitory activity against all of these cancer cell
lines, with IC50 values in the range of 0.65~2.39 µM, 12 times higher than that of the ligand.
K562 was the most sensitive cell line for both Pd(II) complexes, with IC50 values of 1.84 and
0.65 µM. In contrast, the rare Pd(II) complex of the 1-nitro-2-naphthylhydrazone ligand
showed higher activity, with overall activity 2~3 times that of the common complexes of
1-naphthylhydrazone. Therefore, it is necessary to strengthen and expand the research on
metal complexes of the 2-naphthylhydrazone ligand to find more potential metal-based
anticancer agents.
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naphthylhydrazone, both with phenylthiourea as a side chain.

In the above exploration, Wilfredo Hernández et al. found that a Pd(II) complex with
2-OH phenylhydrazone had the best activity, so they further attempted to synthesize the
Pd(II) complexes with 2-hydroxylnaphthylhydrazone, and the side chain was still regulated
by whether or not there was a phenyl group (Figure 29) [104]. Four new Pd(II) complexes
were thus synthesized using the orthogonal method. The results of the in vitro cellular
screening showed that the anticancer activity of all of the Pd(II) complexes was still higher
than that of the ligands, indicating that the combination of Pd(II) and naphthylhydrazone
formed a positive synergistic effect. Compared with the Pd(II) complexes, the overall
activity of the Pd(II) complex decreased when the naphthylhydrazone (without 2-OH) side
chain only contained phenyl. For 2-hydroxylnaphthylhydrazone, the presence of phenyl
on the side chain also weakened the overall activity of the Pd(II) complex. The authors
deduced that the presence of phenyl on the side chain of thiosemicarbazide might lead to
the loss of the inhibitory activity against cancer cells due to its high steric hindrance. When
the side chain group remained unchanged, the presence of 2-OH reduced the inhibitory
activity of the corresponding Pd(II) complex of naphthylhydrazone to a certain extent. This
result appears to be somewhat contrary to the anticancer activity of the metal complexes of
2-hydroxylphenylhydrazone mentioned above, suggesting the complexity of SAR studies.
Therefore, the design of naphthylhydrazone without 2-OH and the synthesis and anticancer
activity of its metal complexes should be further developed. It should be noted that the
loss of 2-OH would also result in the loss of the O/N/X-tridentate coordination mode
of naphthylhydrazone ligands. Therefore, special consideration should be given to the
selection and design of the side chain groups so that the complexes can maintain the
necessary coordination stability.
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Figure 29. A series of palladium(II) complexes of naphthylhydrazone with N-substituted thiourea
side chain.

Meanwhile, R. Prabhakaran’s research group [105] also selected the same 2-hydroxylna
phthylhydrazone ligand with a thiosemicarbazone side chain and synthesized two similar
naphthylhydrazone-Pd(II) complexes using PPh3 and AsPh3 as the co-ligands (Figure 30).
The binding property of the two Pd(II) complexes with ct-DNA and BSA was also investi-
gated. The results showed that the binding mechanism between the Pd(II) complex and
BSA belonged to the static quenching. The BSA binding affinity of the Pd(II) complex with
AsPh3 as a co-ligand was stronger. At the same time, compared with the previous work
of Sarmistha Halder et al. [102], we further tested the in vitro activity towards two other
cancer cell lines (A549 and HepG2), and the results showed that the two Pd(II) complexes
still had certain inhibitory activity against the A549 and HepG2 cell lines, with IC50 values
ranging from 9 µM to 22 µM, all of which were superior to the corresponding naphthylhy-
drazone ligands, and the sensitivity to HepG2 cells was slightly higher. In addition, the
results showed that the Pd(II) complex could maintain its growth-inhibitory activity on
typical cancer cells after the introduction of bulk co-ligands with steric hindrance, such as
PPh3 and AsPh3.
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Figure 30. Two palladium(II) complexes of naphthylhydrazone with thiourea side chain with PPh3

and AsPh3 co-ligands, reported by R. Prabhakaran’s research group.

Recently, Feng Yang’s group [106] also reported five platinum(II) complexes of 2-
hydroxynaphthylhydrazone with benzamide as a side chain, in which the benzene ring
of the side chain was substituted with -Cl, -OH, and tert-butyl groups (Figure 31). These
Pt(II) complexes were characterized by X-ray single-crystal diffraction analysis. The crystal
structure of each Pt(II) complex showed that the naphthylhydrazone ligand was coordi-
nated with Pt(II) in a N/O-bidentate mode, although there was 2-OH on the naphthalene
ring, which could be due to the weak coordination affinity between the softer Pt(II) and the
harder O atom. Therefore, the other two central Pt(II) coordination sites were occupied by
a Cl atom and DMSO to complete the classical planar quadrilateral geometry of Pt(II). All
five Pt(II) complexes were found to be cytotoxic compounds, and their antitumor activi-
ties were not lower than that of cisplatin, except for HeLa cells. The IC50 values ranged
from 4.38 to 25.16 µM. By comparing the SAR, it was found that the anticancer activity
of the complex was improved by the modification of the -OH and tert-butyl groups on
the para-position of the benzene ring. Cell-uptake studies showed that platinum mainly
existed in the membrane of the nucleus and mitochondria. In addition, all Pt(II) complexes
could inhibit telomerase activity, target c-myc, and trigger apoptosis while also leading to
cell cycle arrest in the S phase. In addition, Pt(II) complexes can also cause mitochondrial
dysfunction, resulting in increased ROS production, decreased ∆ψm, increased cytochrome
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C production, and an increased caspase-3/-9 ratio, showing the typical apoptotic character-
istics of the mitochondrial pathway. These results strongly suggest that the Pt(II) complexes
of naphthylhydrazone induce the apoptosis cancer cells via multiple mechanisms.
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Figure 31. A series of Pt(II) complexes of naphthylhydrazone with different benzamide derivatives
as side chains.

Early in 2010, Višnja Vrdoljak et al. [107] reported a series of +6 molybdenum(VI)
complexes containing different substituent groups with aromatic hydrazones as ligands, in-
cluding two Mo(VI) complexes with 2-hydroxylnaphthylhydrazone (Figure 32). This is also
the first report detailing the biological activity of naphthylhydrazone-Mo(VI) complexes,
in which the side chains of naphthylhydrazone were chosen to be thiourea and phenylth-
iourea, respectively. Among all of these complexes, the hydrazone ligands all coordinated
with Mo(VI) in O/N/S-tridentate mode. The Mo(VI) complexes of two naphthylhydrazone
showed significant differences in their anticancer activity. The Mo(VI) complex with a
thiourea side chain showed no significant anticancer activity (IC50 > 5 µM) but was toxic to
WI-38 normal cells. The Mo(VI) complex with a phenylthiourea side chain had the highest
inhibitory activity against each cancer cell line (IC50 values were all <1 µM), even higher
than the two positive control drugs, cisplatin and etoposide, indicating that it is a highly
cytotoxic compound, but the inhibitory activity was still lower than that doxorubicin, a
typical anthracycline anticancer drug. However, the author had also previously reported
the anticancer activity of each hydrazone ligand mentioned above and found that the
Mo(VI) complexes reported here showed activity that was no higher than the correspond-
ing ligands, suggesting that Mo(VI) coordination could not further enhance the anticancer
activity of these hydrazone compounds.
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Very recently, Rupam Dinda’s group [108] also explored a new Mo(VI) complex of
naphthylhydrazone with a +6-charged MoO2 moiety as the center (Figure 33). The side
chain group of the 2-hydroxylnaphthylhydrazone was p-pyridinamide and coordinated
with Mo(VI) in O/N/O-tridentate mode, while imidazole was used as the co-ligand to
achieve a new six-coordinated Mo(VI) complex of naphthylhydrazone, which was com-
pared with three other Mo(VI) complexes of phenylhydrazone. All four complexes were
characterized by spectroscopic methods and X-ray single-crystal diffraction analyses. The
results showed that the Mo(VI) complex of naphthylhydrazone could bind DNA more
efficiently (3.57 × 104 M−1) than the other three Mo(VI) complexes. Moreover, it also
showed higher inhibitory activity against two cancer cell lines (HT-29 and HeLa), with IC50
values of 20.63 and 4.41 µM, respectively, which were also significantly higher than those
of the other three Mo(VI) complexes of phenylhydrazone (IC50 = 60~177 µM). From the
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perspective of SAR, the anticancer activity of the Mo(VI) complex of naphthylhydrazone
was higher than those of the other three, and its unique p-pyridinamide side chain group
might also play a special role because other phenylhydrazone-Mo(VI) complexes have also
used imidazole as a co-ligand. However, the differences in the side chain groups make
their anticancer activity significantly weaker, suggesting that the imidazole co-ligand is not
the key functional group contributing to anticancer activity.
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Figure 33. A MoVIO2 complexes of naphthylhydrazone with isonicotinamide as the side chain and
with imidazole as the co-ligand.

As mentioned above, R. Prabhakaran’s group [109–111] not only reported on palla-
dium(II) complexes of naphthylhydrazone, but also synthesized seven Ru(II) complexes
via the coordination reaction of the lead compound, [RuHCl(CO)(PPh3)3], with the 2-
hydroxylhydrazone ligand with a similar methyl/ethyl thiourea side chain. The central
Ru(II) has a typical six-coordinated mode. In addition to the naphthylhydrazone ligand,
there were also Cl, CO, and PPh3 co-ligands, as shown in Figure 34 below. When the
R-group comprised H or two substituents, methyl/ethyl, the corresponding complexes
could bind ct-DNA and BSA and inhibit the proliferation of tumor cells, showing good
cytotoxicity. However, when the co-ligand was the same, regardless of whether the N/S-
bidentate ligand or O/N/S-tridentate ligand was coordinated with Ru(II), when the side
chain was ethyl thiourea, the inhibition activity of the complex towards A549 cell pro-
liferation was significantly better than that of thiourea or methyl thiourea. In addition,
the ethyl-substituted Ru(II) complex could be successfully embedded into mesoporous
silica. The main components of the embedding complex began to release after 20 h, and the
maximum level could be reached at 96 h [109].
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ethylthiourea as the side chain, reported by R. Prabhakaran’s group.

Interestingly, we found that when the R-group was methyl, the N/S-bidentate chela-
tion mode of the naphthylhydrazone ligand in the polar solvent gradually changed to the
O/N/S-tridentate mode at room temperature; that is, the 2-OH of the naphthylhydrazone
began to participate in the coordination. Unfortunately, the configuration transformation
occurred in the solution. Therefore, it was difficult to detect the bioactivity of the converting
intermediates. In terms of the anticancer activity, in the case of the same substituents, the
O/N/S-tridentate complex had better inhibition activity than the N/S-bidentate complex
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against the A549 and HepG2 cancer cell lines. It was suggested that the increased electron
delocalization in the five-membered ring and six-membered ring promoted the decrease
in electron density on Ru(II), thus improving the penetration ability of the complex to
cells. The density functional theory (DFT) study also showed that the Ru(II) complexes of
O/N/S-tridentate mode had lower energy than the five-membered or four-membered ring
Ru(II) complexes as well as a higher-tension N/S-bidentate mode [110].

In 2013, Sellappan Selvamurugan et al. [112] also reported a new ruthenium(II) com-
plex of 2-hydroxynaphthylhydrazone that had good symmetry and a side chain of 2′-
hydroxynaphthyl S-methyl isopropyl thiosemicarbazide (called S-methylisothiosemicarbaz
one Schiff’s base by the authors) (Figure 35). They also synthesized three other simi-
lar phenylhydrazone-Ru(II) complexes. These Ru(II) complexes also had a typical oc-
tahedral geometry. The results showed that this Ru(II) complex of naphthylhydrazone
([Ru(CO)(PPh3)(L)]) had good scavenging activity against DPPH, ·OH, and ·NO, with
IC50 values of 50.25, 6.17, and 13.96 µM, respectively. Compared with the ligands (67.87,
21.49, and 32.79 µM), the scavenging activity of the Ru(II) complexes was 1.3, 3.5, and
2.3 times higher. However, there was no significant difference in the antioxidant ac-
tivity between it and the other three Ru(II) complexes. Furthermore, the inhibition
of Ru(II) complexes against the human breast cancer cell line MCF-7 and the human
skin cancer cell line A431 in vitro was determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyltetrazoliumbromide (MTT) assay. The results were somewhat disappointing, as
the activity of this Ru(II) complex was weaker than that of the other three Ru(II) complexes
of phenylhydrazone. Subsequently, Govindan Prakash et al. [113] carried out similar work
to Sellappan Selvamurugan. The ruthenium(III) complex was synthesized using the same
quasi-symmetric 2-hydroxylnaphthylhydrazone ligand and was compared with the corre-
sponding Ru(III) complexes of phenylhydrazone (Figure 35). The experiments determining
the antioxidant activity showed that the two Ru(III) complexes had certain scavenging
activities against DPPH, ·OH, ·NO, and H2O2 when using PPh3 and AsPh3 as co-ligands.
The IC50 values of DPPH, ·OH, ·NO, and H2O2 of [RuCl(AsPh3)(L)] were 33.7, 19.2, 29.4,
and 37.0 µM, respectively, and were 1~2 times of those of [RuCl(PPh3)(L)], indicating that
the same type of co-ligand also affected the antioxidant activity of the complex. Compared
with the Ru(II) complex mentioned above, the Ru(III) complexes studied in this paper only
had 1/3~1/2 of the previous scavenging activity for ·OH and ·NO, but it significantly
improved the scavenging activity for DPPH. Therefore, the different valence states of the
metal center also affected the selectivity of the complexes when scavenging different free
radicals. In addition, the complex [RuCl(AsPh3)(L)] also had certain inhibitory activity
on the proliferation of MCF-7 cells, but the IC50 value was only 21.19 µM, which was
significantly weaker than the corresponding phenylhydrazone-Ru(III) complexes.
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group (left) and Sellappan Selvamurugan’s group (right).

Eswaran Jayanthi et al. [114] reported Ru(III)/Ru(II) complexes of naphthylhydrazone
with benzamide as a side chain (Figure 36). They found that regardless of whether or not
KOH was added in the experiment, ruthenium complexes with different valence states
formed, proposing a suitable mechanism for decomposition and alcohol dehydrogenation
based on the Grubbs re-decomposition catalyst. The binding ability to DNA/HSA and
the cytotoxicity of these four ruthenium complexes with different co-ligands (Cl, CO, and
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As/PPh3) can be listed in the order of 1 > 3 > 2 > 4. These ruthenium complexes all pro-
moted the release of lactate dehydrogenase (LDH), NO, and ROS in A549 cells, suggesting
that the complexes could induce apoptosis and inhibit the proliferation of cancer cells.
The combination of the biological prospects associated with +2- and +3-charged ruthe-
nium complexes really revealed the influence of the structure and oxidation state of the
metallodrugs on their biological activities. When 2-OH was not deprotonated, the naph-
thylhydrazone ligand coordinated with Ru(III) through the N/O-bidentate chelation mode,
and the retained 2-OH provided an effective site for hydrogen bonding with biomolecules.
If 2-OH was deprotonated, then phenole-O participated in the coordination, while the same
naphthylhydrazone ligand coordinated with Ru in an O/N/O-tridentate chelation mode,
where ruthenium was +2-charged. Additionally, the Ru(III) complexes with PPh3 as the
co-ligand showed higher activity than those with AsPh3 as the co-ligand.
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Figure 36. Ruthenium complexes of naphthylhydrazone with benzamide side chain reported by
Eswaran Jayanthi’s group.

3.2. Anticancer Metal Complexes of Anthrahydrazone

In terms of structure, anthracene has only one more aromatic ring than naphthalene,
but it is undeniable that since the discovery of anthracycline (doxorubicin, daunorubicin,
etc.) [115] in the 1960s, more and more compounds based on the anthracene structure have
shown effective and extensive inhibitory effects on malignant tumors. Until now, anthracy-
clines remain one of the most commonly used drugs in chemotherapy regimens for various
malignancies. However, reports on the metal complexes of anthrahydrazone that are based
on the parent structure of anthracene are not as common as those of naphthylhydrazone.
However, as a less-covered field, scholars around the world are still carrying out more and
newer research work in this field.

3.2.1. The First Transition Metal Complexes of Anthrahydrazone with Anticancer Activities

Since an aldehyde group is necessary for the synthesis of hydrazone and since the
9-anthracene aldehyde is the most common and easily available anthracene aldehyde,
metal complexes of anthrahydrazone mainly refer to those of 9-anthrahydrazone, as shown
in the following section. These reports are mostly from the past 10 years, indicating that
the research work in this area still has broad enough space to expand and deepen.

A special 9-anthrahydrazone ligand was reported in 2013 by Sengottaiyan
Poornima et al. [116]. They synthesized a novel 9-anthrahydrazone with a triazole deriva-
tive as a side chain via the condensation of a 9-anthracene aldehyde with 3,5-bis(2′-
pyridine)-1,2,4-triazole, as shown in Figure 37 below. In particular, in the nickel(II) complex
synthesized from this anthrahydrazone ligand, the hydrazone bond does not participate in
coordination, but chelates two Ni(II) atoms with two pyridin-N atoms and 1,2-N atoms
of triazole to form a highly symmetrical binuclear nickel(II) complex. Since the whole an-
thrahydrazone is neutral, the coordination unit was +4-charged, making the whole complex
a cationic water-soluble nickel(II) complex (2). A simple hydrazone ligand with a triazole
side chain and nickel(II) complex (1) was also synthesized for comparison. The authors
studied their binding abilities to DNA and BSA and their anticancer activity. The results
show that the two Ni(II) complexes interact with DNA in intercalative mode, and the bind-
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ing constants were 2.36 × 105 and 4.87 × 105 M−1, respectively. The binding constants of
the complex with BSA were 0.71× 106 and 5.62× 106 M−1, respectively, suggesting that the
complex could induce changes in protein conformation. The calculated results of it binding
with DNA and BSA also showed that the presence of an anthracene group increased the
area of the conjugated plane and the hydrophobicity of the anthracene ligand, which was
conducive to its binding affinity to the two biological macromolecules. In addition, the
Ni(II) complex 2 of triazolanthrahydrazone also showed twice the inhibitory activity of
Ni(II) complex 1 without anthracene on HeLa and BeWo cells, with IC50 values of 13.30
and 17.06 µM, respectively, suggesting that the presence of anthracene could increase the
proliferation inhibition of the cancer cells.
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Figure 37. Symmetric binuclear nickel(II) complexes of 9-anthrahydrazone with triazole derivative
as a side chain.

Subsequently, Anup N. Kate et al. [117] synthesized a copper(II) complex of 9-anthrach
ydrazone in N/S-bidentate mode using thiourea as a side chain (Figure 38) and charac-
terized its coordination structure by means of spectroscopy, electrochemistry, and crystal-
lographic methods. The results showed that the anthrahydrazone ligand and its Cu(II)
complex could effectively bind DNA and BSA through intercalation and hydrophobic
interaction, respectively. In contrast, the Cu(II) complex had a dynamic quenching mode
on the fluorescence of BSA, while the anthrahydrazone ligand had a static quenching mode.
Even without the addition of other reagents, the Cu(II) complex could effectively cleave
pBR322 plasmid DNA under the irradiation of 365 nm of UV light. Due to the inherent
fluorescence characteristics of the anthracene ring, the anthrahydrazone ligand and its
Cu(II) complex were found to mainly be distributed in the nucleus of HeLa cells under a
fluorescence microscope, which further suggests that the nucleus and DNA might be its
potential anticancer targets. Meanwhile, the Cu(II) complex induced apoptosis in HeLa cell
more strongly than the ligand.
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Alvin A. Holder’s team [118,119] also attempted to synthesize a novel vanadium(IV)
complex and cobalt(III) complex of 9-anthrahydrazone with methyl thiourea as a side chain
by introducing different co-ligands (Figure 39). In 2012, they reported the synthesis of a
lead complex with tryptophan, salicylic acid, and VOSO4 and further mix-coordinated with
the above 9-anthrahydrazone ligand to synthesize a new V(IV) complex as well as two other
V(IV) complexes of non-anthrahydrazone ligands. Interestingly, when dissolved in DMSO
solution, these V(IV) complexes were found to be oxidized to +5-charged V(V) complexes
in air, as characterized and confirmed by ESI-MS and 51V-NMR. Their in vitro cytotoxicity
towards three typical colon cancer cell lines and the normal colonic myofibroblasts CCD-



Molecules 2022, 27, 8393 30 of 56

18Co was tested. The results showed that the proliferation of various colon cells was
increasingly inhibited according to the incubation time of the complex with the cells, but
the inhibitory activities of the anthrahydrazone-V(IV) complex on cancerous and non-
cancerous colon cells were different, and the IC50 value of the complex was 208.0 µM after
72 h treatment with CCD-18Co cells. The IC50 values of HT-29, HCT-116, and Caco-2 were
100.3, 115.0 and 147.1 µM, respectively, under the same treatment time, indicating a certain
toxicity selectivity to cancer cells. However, according to the IC50 value, the anticancer
activity of this special V(V)/V(IV) complex was relatively weak, and its inhibitory effect on
colon cancer cells was much lower than that of etoposide. However, its toxicity towards
normal colon cells was also much lower than that of etoposide, so it still showed a certain
medicinal prospect [118].
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Subsequently, in 2020, they further synthesized a novel Co(III) complex using the same
9-anthrahydrazone ligand by introducing o-phenanthroline as a co-ligand (Figure 40) [119].
The 9-anthrahydrazone and two o-phenanthrenes both coordinated with Co(III) via N/S-
and N/N-bidentate chelation modes, respectively, to form a hexahedral complex. Since
all three ligands are electrically neutral, this coordination unit existed as a +3-charged
cationic species. Similar to most anthrahydrazone complexes, this complex could interact
with ct-DNA in the intercalative mode, but the binding intensity was weak, with a binding
constant (Kb) of 1.6 × 104 M−1, which is much lower than that of the 9-anthrahydrazone
ligand (Kb = 8.1 × 105 M−1). This may be related to the steric hindrance of this octahedral
Co(III) complex. On the other hand, the anthrahydrazone ligand and its Co(III) complex
showed good inhibition ability on Topo I and IIα, suggesting that topoisomerase is still
a potential anticancer target of these anthracycline derivatives. At the cellular level, the
ligand did not significantly inhibit cell proliferation, but the IC50 value of the Co(III)
complex was 34.4 ± 5.2 µM after being treated with 4T1-Luc cells for 24 h, and it could
activate the caspase 3/7 cascade through the mitochondrial pathway, ultimately inducing
cell apoptosis. These results indicated that as a metal center, Co(III) played an important
role in the anticancer activity of this anthrahydrazone complex.

Neethu K.S et al. [120] introduced five- and six-membered heterocycles (such as
furan, thiophene, and phenol) into the amide side chain of 9-anthrahydrazone, synthesized
a series of new 9-anthrahydrazone ligands, and then coordinated with nickel(II) and
copper(II) to synthesize four respective complexes of anthrahydrazone (Figure 41). The
four complexes all formed to have a planar quadrilateral coordination geometry, and the
two anthrahydrazone ligands symmetrically coordinated to the central Ni(II)/Cu(II) via
N/O-bidentate chelation. The interaction of the complexes with DNA and BSA was studied
by UV—Vis and fluorescence spectral analyses and viscosity experiments. The results
showed that the complex also interacted with DNA, and the binding constants were in
the range of 5.453 × 103~7.143 × 105 M−1. Meanwhile, the complex also showed a strong
binding effect with BSA. The MTT assay was used to test the inhibitory activity of each
complex against the colon cancer cell line (HCT-15). The corresponding IC50 values ranged
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from 13.90 µM to 18.26 µM, which was even stronger than cisplatin (IC50 = 25.4 µM). In
addition, the cytotoxicity of each complex to the normal skin cell line (L929) was very low,
with IC50 > 150 µM, similar to cisplatin. These results indicated that the complexes had
some cytotoxic selectivity against colon cancer cells. Further studies showed that all of the
complexes could induce the apoptosis of cancer cells and had good scavenging ability on
DPPH-free radicals.
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Figure 41. Co(II)/Ni(II) complexes of 9-anthrahydrazone with different heterocyclic acylamides as a
side chain.

In recent years, Floyd A. Beckford’s group has carried out a number of valuable
studies on the metal complexes of 9-anthrahydrazone. Gallium(III) complexes of anthrahy-
drazone with (N-ethyl/phenyl) thiourea as a side chain were reported for the first time
(Figure 42) [121]. In each complex, three anthrahydrazone ligands coordinated with Ga(III)
via N/S-bidentate mode, where each deprotonated thiol group gave a −1 valence, making
the whole complex electrically neutral. The Ga(III) complexes with different thiourea side
chains showed significant anticancer activity against two human colon cancer cell lines,
HCT-116 and Caco-2, that increased in a time-dependent manner within 24~72 h, with
IC50 values ranging from 4.7 to 44.1 µM. However, their cytotoxicity against the normal
colon cell line CCD-18Co was much lower. Through SAR comparison, the Ga(III) complex
of the thiourea side chains showed the highest activity, with an IC50 of 4.7 µM after 72 h
of treatment, while the complex of the N-phenylthiourea side chain showed the lowest
activity, with an IC50 of 44.1 µM for Caco-2 cells, which was only 1/10 of that of the Ga(III)
complex with the thiourea side chain. This means that steric hindrance of side chain groups
is not conducive to the anticancer activity of this variety of complexes. In addition, the three
complexes could intercalate with the DNA and cleaved DNA with binding constants, Kb,
with values ranging from 7.46 × 104 to 3.25 × 105 M−1. Compared with the DNA-binding
analysis, there seemed to be no direct correlation between the DNA-binding ability of the
complex and its in vitro anticancer activity. According to the calculated binding constants
between has and the complexes (in the range of 104~105 M−1), the higher the steric hin-
drance of the side chain substituents, the lower the binding ability. They subsequently
calculated the binding property of the complex with DNA, ribonucleotide reductase, and
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HSA via molecular docking. However, the results showed that the complex with the best
anticancer activity also had the largest binding constant with DNA.
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side chain.

Our research group at Guangxi Normal University, Guilin, China also started to study
the metal complexes of 9-anthrahydrazone derivatives about 10 years ago. Our work was
inspired by the anthrahydrazone structure of bisantrene, which had been developed and
marketed for clinical use in cancer chemotherapy but has not achieved further success
due to its poor water solubility and high toxicity. Bisantrene has a symmetric anthracene
dihydrazone structure and has shown high cytotoxicity via the introduction of an imidazo-
line group with strong alkalinity on both side chains of anthracene. Therefore, we used
sisantrene as the parent structure to improve the anticancer effect of this anthrachydrazone
through structural modification and the formation of metal complexes.

At first, we chose to retain one side chain of bisantrene to achieve 9-anthrahydrazone
with imidazolinyl as side chain (9-imidazolinyl anthrahydrazone or anthracene-9-imidazoli
nylhydrazone, 9-AIH). A series of platinum(II) complexes of 9-AIH were thus synthesized,
and their anticancer activities were tested in vitro. However, the results showed that the
activities of these 9-AIH-Pt(II) complexes, represented by the cisplatin-like type, were all
lower than those of the 9-AIH ligand, although their toxicities to HL-7702 normal liver
cells were also lower [122]. In 2015, we discovered and reported a highly active copper(II)
complex of 9-AIH (Figure 43) [123]. This anthrahydrazone ligand coordinated with Cu(II)
via N,N-bidentate chelation and formed a planar quadrilateral configuration together with
two Cl atoms. The Cu(II) complex showed significant anticancer activity in vitro, with IC50
values ranging from 0.94 to 3.68 µM against five typical human cancer cell lines and were
significantly higher than those of 9-AIH (4.86 to 12.13 µM). This Cu(II) complex could cause
cancer cell death by blocking the cell cycle and activating the ROS-related mitochondrial
pathway. Under the same conditions, the ligand did not exhibit such an action mechanism,
fully demonstrating the unique anticancer mechanism of Cu(II), which gave us a good
reference value.
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Subsequently, we attempted to change the imidazoline side-chain group of bisantrene
into other N-containing aromatic rings to obtain more new metal complexes of anthrahy-
drazone so that more comprehensive SAR studies could be carried out. Two new copper(II)
complexes were thus synthesized by replacing imidazoline with pyrimidine on the side
chain of anthrahydrazone to obtain pyrimidine anthrahydrazone (PMAH), which also
contains two N atoms on the ring (Figure 43) [124]. In these two complexes, the PMAH lig-
and coordinated with Cu(II) through azomethine-N and pyrimidin-N via a N,N-bidentate
chelation mode. The two PMAHs and a Cl atom formed a five-coordination tetragonal
cone configuration. The only difference between the two complexes was whether there
was a -CF3 group on the pyrimidine ring or not. Both Cu(II) complexes could bind to DNA
by intercalation and were also effective Topo I inhibitors. They also showed significant
proliferation inhibition on the six cancer cell lines tested. Through SAR comparison, it
was found that the presence of the electron-withdrawing group -CF3 on the pyrimidine
obviously weakened its activity and was speculated to be still related to steric hindrance.
However, the Cu(II) complex of higher-activity PMAH without a substituent could still
maintain a stable coordination state in H2O in the presence of HSA. Additionally, it could
also block the cell cycle and induce cell apoptosis. We further found that this Cu(II) complex
showed a significant in vivo inhibitory effect on T-24 tumor proliferation in a xenograft
tumor model of nude mice. Although the in vivo inhibitory effect of the Cu(II) complex
was still weaker than the clinical drug, cisplatin, this was the first in vivo pharmacological
study on the metal complex of anthrahydrazone.

On the other hand, we continued to adjust the side chain of 9-anthrahydrazone and
introduced another pharmacodynamic group, quinoline, to obtain a new anthrahydra-
zone, anthracene-9-quinolinylhydrazone (AQH), which was used as a ligand to synthesize
and characterize four new transition metal complexes (Cu(I), Co(II), Ni(II), and Zn(II))
(Figure 44) [125]. Interestingly, the redox reaction occurred when the AQH ligand was
chelated with Cu(II), thus accidentally obtaining the first Cu(I) complex of anthrachydra-
zone. More surprisingly, only the Cu(I) complex of this series of AQH—metal complexes
showed significant and broad-spectrum anticancer activity in vitro. Although the activity
of the Cu(I) complex of AQH was slightly weaker than those of the above-mentioned Cu(II)
complexes of 9-AIH and 9-PMAH, this further suggested that in addition to different types
of the central metals, the changes in the redox state also had a significant effect on anticancer
activity. The anticancer mechanism of the AQH-Cu(I) complex against the most sensitive
MGC-803 cells suggests that it can significantly induce the apoptosis of cancer cells through
the mitochondrial pathway rather than by blocking the cell cycle. Further EPR and elec-
trophoresis results showed that the presence of Cu(I) could catalyze the generation of ·OH
and other radicals in the H2O2 system. Although no significant Cu(II) signals were detected
at the cellular level, the total ROS level in MGC-803 cells was weakened after incubation
with AQH-Cu(I). Considering the complexity of the cell and other possible reductants, we
still could not exclude that the potential redox activity between Cu(I) and Cu(II), which
plays a key role in the anticancer activity of the complex. Meanwhile, autophagy was
also observed in cancer cells treated with AQH-Cu(I), suggesting the complexity of its
anticancer mechanism. These results suggested that Cu(I) induced multiple anticancer
mechanisms and played an important role in the anticancer activity of the complex. This
study also further enriched the structural library of metal complexes of anthrahydrazone,
as well as the related SAR research.

In recent years, based on studies of the metal complexes of 9-anthrahydrazone, our
research group started to carry out non-symmetric synthesis on the two side chains based
on the structure of 9,10-anthracene dialdehyde by retaining the -CHO group on one side of
anthracene and forming various hydrazones containing N-heterocyclic side chains (such
as pyrimidine, imidazoline, benzothiazole, etc.) on the other side, which we named 9-
aldehyde-10-anthrahydrazone [31–33,126]. A series of novel aldehyde anthrahydrazone
ligands and their metal complexes were thus synthesized and explored. To our knowledge,
this is the first time that a non-symmetric anthrahydrazone with different groups on
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two sides of the anthracene ring has been synthesized. It should be also acknowledged
that such research was derived from bisantrene, which has a symmetrical anthracene
bishydrazone structure. Additionally, the aim of retaining the aldehyde group on the other
side of the anthrahydrazone is for the condensation of different amino compounds via
the aldehyde group, thus creating a large number of non-symmetric anthrahydrazone
derivatives, in order to provide a wealth of new compounds for the further exploration of
their biological activities.
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Figure 44. The first copper(I) complex of 9-quinolinylhydrazone showing significant and broad-
spectrum anticancer activity in vitro.

The transition metal complexes of 9-aldehyde-10-anthrahydrazone that we obtained
mainly contained those of Mn(II), Cu(II), and Zn(II) (Figure 45). Most of the complexes
of p-aldehyde anthrahydrazone had a binuclear structure. The results showed that Cu(II)
complexes of p-aldehyde anthrahydrazone had higher anticancer activity in vitro. In the
Cu(II) complexes, the side chain groups of anthrahydrazone also had a significant effect on
the activity, and the activity sequence was benzothiazole > imidazoline > dimethylpyrimi-
dine. Among the three binuclear metal complexes of p-aldehyde anthrahydrazone with
the same imidazoline side chain as bisantrene, the order of activity was Mn > Zn > Cu.
Therefore, it is difficult to accurately summarize the SAR from the existing limited metal
complexes of p-aldehyde anthrahydrazone. Additionally, the metal center and side chain
groups as well as the substituent seem to have the most critical influence on the anticancer
activity of the complexes. However, factors such as the solubility and coordination mode
of the complex should not be ignored. Therefore, more metal complexes of p-aldehyde
anthrachydrazone need to be synthesized and explored to build a richer library of this kind
of metal complexes for SAR studies.
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3.2.2. The Second and Third Transition Metal Complexes of Anthrahydrazone with
Anticancer Activities

As early as 2009, Floyd A. Beckford et al. [70,127,128] designed and synthesized a series
of 9-anthrachydrazones with N-substituted thiourea as side chains and used them as the
active ligands to coordinate with Ru(II) through N/S-bidentate chelation. Benzene and p-
cymene were used as Π-bonding co-ligands. Four corresponding organometallic Ru(II) com-
plexes were synthesized and characterized, and their structures are shown in Figure 46. The
anticancer activities of these Ru(II) complexes against several human cancer cell lines were
compared via an in vitro test. The results showed that the N-substituent group had an obvi-
ous effect on the anticancer activity of Ru(II) complexes: CH3 > H > C6H5 > C2H5 [70,127].
In addition to the metal complex with a N-ethyl thiourea side chain, the MDA-MB-231
cell line was the most sensitive to the other three Ru(II) complexes (IC50 = 2~9 µM), while
cisplatin only had inhibitory activity of 730 µM. Thus, the Ru(II) complexes of anthrahy-
drazone retained the high cytotoxic selectivity of anthracyclines to breast cancer cells. The
N-ethyl-substituted complex showed weak and unsatisfactory inhibitory activity on colon
cancer cells. After 72 h, the IC50 values of two kinds of colon cancer cells, HCT-116 and
Caco-2, were only 200~225 µM, and there were no significant differences in their inhibitory
effect on normal colon tissue cells. However, the complex showed a strong binding effect
with HSA and DNA and could significantly inhibit the activity of Topo II, suggesting that it
might be able to inhibit other different types of cancer cells. Then, an organometallic Ru(II)
complex with benzene as the Π-bonding co-ligand was synthesized by a novel microwave-
assisted synthesis method. The side chain group of anthrahydrazone was thiourea or
N-ethyl thiourea [128]. In previous studies, Ru(II) complexes with a N-ethyl thiourea
side chain had the lowest activity, but the authors continued to select the Ru(II) complex
replaced by N-ethyl, which may be related to its strong binding affinity with HSA/DNA
and Topo II inhibition. The results showed that the aryl Ru(II) complexes of the two an-
thrahydrazones could bind with DNA and HSA intensively and inhibit the proliferation of
the two colon cancer cells, HCT-116 and cacO-2. The activity of the N-ethyl-substituted
Ru(II) complex was 1~2 times that of the non-substituted Ru(II) complex. Furthermore, the
anticancer activity of the Ru(II) complex against both cancer cells was also higher than that
of the Ru(II) complex with the same side chain but with the co-ligand p-cymene, suggesting
that the corresponding Ru(II) complex might have higher in vitro anticancer activity when
there are no substituents on the benzene ring of the co-ligand [70,127,128].
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Figure 46. Organo-Ru(II) complexes of 9-anthrachydrazone with N-(methyl/ethyl/phenyl)-
substituted thiourea as side chains, as reported by Floyd A. Beckford’s group.

In addition, Floyd A. Beckford’s group continued to introduce different co-ligands,
such as o-phenanthrene and bipyridine, and also synthesized and characterized two new
series of mixed ligand Ru(II) complexes of 9-anthrahydrazone using a microwave-assisted
method. Thiourea, methyl thiourea, and ethyl thiourea were selected to be the side
chains of each series of anthrahydrazones (Figure 47) [129]. The coordination configu-
rations of these Ru(II) complexes are similar to those of the mixed ligand Co(III) com-
plexes of 9-anthrahydrazone and o-phenanthroline/bipyridine, as previously reported by
Alvin A. Holder et al. [119]. Competitive fluorescence analysis of DNA and DNA viscosity
experiments conducted using ethidium bromide (EB) as a probe showed that the two



Molecules 2022, 27, 8393 36 of 56

Ru(II) complexes bind to DNA via intercalation with a strong binding ability. The six
Ru(II) complexes significantly inhibited the proliferation of two types of colon cancer cells
(HCT-116 and HT-29) and two types of breast cancer cells (MDA-MB-231 and MCF-7). The
inhibitory activity on breast cancer cells was much higher than that of cisplatin. Through
SAR comparison, the anticancer activity of the Ru(II) complexes with o-phenanthroline as a
co-ligand was significantly higher than those with bipyridine as a co-lignad. On the other
hand, with the substitution of a methyl or ethyl group to the N- of thiourea side chain,
the anticancer activity also increased. This further indicates that the co-ligand and the
side chain substituents of anthrahydrazone were important factors affecting the anticancer
activity of the complex under the same coordination mode. In addition, anthrahydrazone
itself also has a certain level of cytotoxicity, and the coordination with metal ions could
exert a positive synergistic effect, significantly enhancing and regulating the anticancer
activity and action mechanism of the complex.

Molecules 2022, 27, x FOR PEER REVIEW 38 of 58 
 

 

anticancer activity when there are no substituents on the benzene ring of the co-ligand 

[70,127,128]. 

 

Figure 46. Organo-Ru(II) complexes of 9-anthrachydrazone with N-(methyl/ethyl/phenyl)-substi-

tuted thiourea as side chains, as reported by Floyd A. Beckford’s group. 

In addition, Floyd A. Beckford’s group continued to introduce different co-ligands, 

such as o-phenanthrene and bipyridine, and also synthesized and characterized two new 

series of mixed ligand Ru(II) complexes of 9-anthrahydrazone using a microwave-assisted 

method. Thiourea, methyl thiourea, and ethyl thiourea were selected to be the side chains 

of each series of anthrahydrazones (Figure 47) [129]. The coordination configurations of 

these Ru(II) complexes are similar to those of the mixed ligand Co(III) complexes of 9-

anthrahydrazone and o-phenanthroline/bipyridine, as previously reported by Alvin A. 

Holder et al. [119]. Competitive fluorescence analysis of DNA and DNA viscosity experi-

ments conducted using ethidium bromide (EB) as a probe showed that the two Ru(II) 

complexes bind to DNA via intercalation with a strong binding ability. The six Ru(II) com-

plexes significantly inhibited the proliferation of two types of colon cancer cells (HCT-116 

and HT-29) and two types of breast cancer cells (MDA-MB-231 and MCF-7). The inhibi-

tory activity on breast cancer cells was much higher than that of cisplatin. Through SAR 

comparison, the anticancer activity of the Ru(II) complexes with o-phenanthroline as a co-

ligand was significantly higher than those with bipyridine as a co-lignad. On the other 

hand, with the substitution of a methyl or ethyl group to the N- of thiourea side chain, the 

anticancer activity also increased. This further indicates that the co-ligand and the side 

chain substituents of anthrahydrazone were important factors affecting the anticancer ac-

tivity of the complex under the same coordination mode. In addition, anthrahydrazone 

itself also has a certain level of cytotoxicity, and the coordination with metal ions could 

exert a positive synergistic effect, significantly enhancing and regulating the anticancer 

activity and action mechanism of the complex. 

 

Figure 47. Ru(II) complexes of 9-anthrachydrazone with o-phenanthrene or bipyridine as the co-

ligand. 

Recently, we also synthesized a 9-anthrahydrazone ligand and its Ru(II) complex us-

ing benzothiazole as a side chain (Figure 48) [130]. It was found that the Ru(II) complex 

showed better anticancer activity than the ligand and showed obvious cell selectivity. In 

addition, we attempted to compare the anthrahydrazone with the aforementioned non-

symmetric aldehyde anthrahydrazone via SAR and thus synthesized two Pt(II) complexes 

Figure 47. Ru(II) complexes of 9-anthrachydrazone with o-phenanthrene or bipyridine as the co-ligand.

Recently, we also synthesized a 9-anthrahydrazone ligand and its Ru(II) complex using
benzothiazole as a side chain (Figure 48) [130]. It was found that the Ru(II) complex showed
better anticancer activity than the ligand and showed obvious cell selectivity. In addition,
we attempted to compare the anthrahydrazone with the aforementioned non-symmetric
aldehyde anthrahydrazone via SAR and thus synthesized two Pt(II) complexes of anthrahy-
drazone with pyrimidine side chains: PMAH-Pt and APMAH-Pt (Figure 48) [131]. Among
the two complexes, the anthrahydrazone ligand coordinated with Pt(II) in N/N-bidentate
chelation mode via azomethine-N and pyrimidine-N together with two Cl atoms to form a
typical planar quadrilateral configuration similar to that of cisplatin. The only difference
between the two Pt(II) complexes is whether there is 10-CHO on the other side of the
anthrahydrazone. The results of in vitro antitumor activity screening showed that the
presence of 10-CHO in the anthrahydrazone was not conducive to increasing the overall
cytotoxicity, which was possibly due to the enhanced steric hindrance or polarity of the
anthracene ring since DNA and topoisomerase are regarded as the anticancer targets of
anthracyclines. The anticancer mechanism of PMAH-Pt, which had higher activity, was
found to be similar to that of PMAH-Cu with the same ligand. At the cellular level, it could
arrest the cell cycle of T-24 and MGC-803 cells in G2/M phase and induce cell apoptosis.
At the molecular level, it could bind to DNA by means of intercalation and effectively
inhibit the activity of Topo I, making it an effective Topo I inhibitor. It should be noted
again that although the presence of a p-aldehyde group might reduce the cytotoxicity
of anthrahydrazone and its metal complexes to a certain extent, it also reduces the tox-
icity of such anthrahydrazone derivatives to normal cells, thus providing a basis for its
transformation from highly cytotoxic compounds to functional anticancer compounds.
However, the retention of 10-CHO provides a pre-embedded site for introducing func-
tional groups and also provides more possibilities for the design of metal complexes of
non-symmetric anthrahydrazones.
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Figure 48. The Ru(II) and Pt(II) complexes of 9-anthrachydrazone with benzothiazole and pyrimidine
as side chains.

In addition, we also reported two other ionic-type metal complexes of aldehyde an-
thrachydrazone with 4′/6′-dimethylpyrimidine side chains, AMPMAH-Rh/Ir, which were
different from the above-mentioned ones because of the substitution of 4′- and 6′-CH3 on
the pyrimidine ring, as shown in Figure 49 [33]. The characteristics of the two complexes
were that one N atom of the pyrimidine of anthrahydrazone was protonated to present a +1
valence, and the central Rh(III) or Ir(III) existed in the form of anionic [Rh/IrCl4(DMSO)2]−,
presenting a −1 valence and thus keeping the whole complex electrically neutral. Unfor-
tunately, their anticancer activities were not significant in vitro, except those of T-24 and
NCI-H460, but they were not toxic to the normal human liver cell line HL-7702, indicating
that their hepatotoxicity was very low and significantly lower than cisplatin. AMPMAH-Ir
in particular could effectively inhibit the proliferation of two typical human cancer cell
lines, T-24 and NCI-H460, with IC50 values of 9.05 µM and 10.98 µM, respectively, and
had no significant toxicity to normal liver cells (IC50 > 20 µM), showing good cytotoxic
selectivity. According to existing research results, although the ionic complexes did not
directly coordinate with the metal ions on the surface, the species that existed in solution
were complicated and involved some coordinated ligand–metal species that are likely to
have key proliferation-inhibitory activities. This is one of the reasons why ionic complexes
are also significantly more active than ligands [132].
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Figure 49. Two special ionic Rh(III)/Ir(III) complexes of p-aldehyde anthrachydrazone with a
dimethylpyrimidine side chain.

3.3. Anticancer Metal Complexes of the Other Polycyclic Aromatic Hydrazones

Pyrene is another variety of important polycyclic aromatic hydrocarbons. However,
due to the possible difficulties related to synthesis and the increased toxicity of pyrenehy-
drazone and its metal complexes, few related studies have been reported. In 2015, Suwarna
A. Ingle et al. [133] reported a pyrene hydrazone ligand with thiourea as a side chain and its
binuclear copper(II) complex (Figure 50). They fully characterized its structure by means of
elemental analysis, 1H-NMR, IR, electrospray ionization—tandem mass spectrometry (ESI-
MS), cyclic voltammetry, UV—Vis spectroscopy, and fluorescence spectroscopy. Similar to
the anthrahydrazone mentioned above, the pyrenehydrazone ligand also coordinated with
the central Cu(II) through the N/S-bidentate chelation mode, and the two nitrates acted as
bridge ligands for the two Cu(II) through O atoms to form a symmetric, four-coordinated
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binuclear Cu(II) complex of pyrenehydrazone. The intercalation of pyrenehydrazone and
the Cu(II) complex with DNA was expected due to the hyperconjugated planar structure
of pyrene. In addition, the photo-induced cleavage (74%) of pBR-322 DNA by the Cu(II)
complex was significantly stronger than that by the pyrenehydrazone ligand (14%). The
study of the action mechanism showed that the complex could induce singlet oxygen
during DNA cleavage. DFT calculations showed that the Cu(II) complex could gener-
ate singlet oxygen more efficiently than the ligand, and the highest occupied molecular
orbital—lowest unoccupied molecular orbital (HOMO-LUMO) gap (0.332 eV) was smaller
than that of the pyrenehydrazone ligand (0.629 eV). At the cellular level, the photo-toxicity
of the complex and ligand to B16F10 melanoma cells was compared under the 365 nm of
UV light and without UV light. The results showed that neither compound resulted in a
large amount of cell death when incubated in the dark. However, cancer cells incubated
with the Cu(II) complex had a significantly higher mortality rate than those incubated with
the pyrenehydrazone ligand when exposed to 365 nm of UV light. The authors attributed
this to the fact that the Cu(II) complex was more likely to produce singlet oxygen under
photosensitization.
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bridged by two nitrate co-ligands.

Nandhagopal Raja et al. [134] also reported on a pyrene hydrazone ligand with
thiourea as a side chain. The difference was that they introduced methyl and phenyl
groups into the N-containing thiourea for SAR comparison. They further synthesized and
characterized a series of new organometallic Ru/Rh/Ir complexes of pyrene hydrazone
together using p-cymene or η5-C5Me5 as the co-ligand (Figure 51). The pyrene hydrazone
ligand also chelated with the metal center via the N/S-bidentate mode. By comparing
the results of the anticancer activity tests in vitro, it can be seen that the overall order of
activity of the three pyrenehydrazone complexes was Rh(III) > Ir(III) > Ru(III), in which the
Ru(III) and Ir(III) complexes showed weak inhibitory activity towards the tested cancer cell
lines, with IC50 values ranging from 18 µM to 90 µM. The Rh(III) complex showed strong
anticancer activity, with IC50 values in the range of 5~18.2 µM. For the same metal, the
N-substituents of the thiourea side chain of pyrene hydrazone also had a weak effect on
the activity of the complexes, and the order of activity was H > Ph > Me, which might also
be related to the steric hindrance of the side chain. The highest activity was observed in the
Rh(III) complex without the N-substituent, with IC50 values towards A549 and HeLa cells
of 5.1 and 5.2 µM, respectively. Moreover, the toxicity of the Rh(III) complex towards HEK-
293 human embryonic kidney cells was very low (166.5 µM), showing strong cytotoxicity
selectivity. The Rh(III) complex with N-phenylthiourea as a side chain produced the second
highest anticancer activity, with IC50 values of 9.3 µM for A549 cells and 9.6 µM for HeLa
cells. Both of the Rh(III) complexes could arrest the A549 cell cycle in the G2/M phase and
induced cell apoptosis. At 10 µM, both of the Rh(III) complexes induced 20% and 25% of
apoptosis in A549 cancer cells.
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Figure 51. Organo-Ru(III)/Rh(III)/Ir(III) complexes of pyrene hydrazone with (N-methyl/phenyl)-
substituted thiourea as the side chain.

Recently, Ramasamy Raj Kumar et al. [135] also reported two series of three half-
sandwich ruthenium(II) complexes of pyrene hydrazone by using benzamide instead of
thiourea as the side chain and either enzene or p-cymene as the co-ligand (Figure 52).
The only structural difference of each series of complexes was that the p-substituents
of benzoamide were H, Br, and -OCH3. In each complex, the pyrene hydrazone ligand
coordinated with Ru(II) through the N/O-bidentate chelation mode. In addition to the
aryl co-ligand, there was one Cl atom that acted as the potential leaving group in each
complex, giving the whole complex a typical octahedral configuration. The structures of
the complexes were characterized by IR, elemental analysis, and NMR. In vitro cytotoxicity
screening was carried out for breast cancer cell line MCF-7 and lung adenocarcinoma
cell line A549 together with the NIH-3T3 normal cell line. The results showed that the
cytotoxicity of the six complexes towards NIH-3T3 cells was generally low. However, they
showed different cytotoxicity levels to the two cancer cell lines. The IC50 values of the three
Ru(II) complexes with a p-cymene co-ligand were in the range of 11.9~45 µM, stronger
than those of the Ru(II) complexes with benzene as a co-ligand (IC50 = 30~50 µM). When
the co-ligand was the same, the p-substituent group of benzamide affected the activity
of the Ru(II) complexes in the order of H > OCH3 > Br. In particular, the Ru(II) complex
with a p-cymene co-ligand and without a p-substituent had the most significant inhibition
on the proliferation of A549, with an IC50 value of 11.9 ± 0.7 µM. It also showed much
lower toxicity towards normal NIH-3T3 cells (IC50 = 225.3 µM), with a selectivity index
(SI) of 18.9. These results indicated that the complex had significant cytotoxic selectivity
against A549. In addition, the results of AO/EB and Hoechst 33258 cell staining and flow
cytometry analysis showed that the Ru(II) complex caused cancer cell death mainly by
inducing apoptosis. By analyzing the DNA content in the cell cycle distribution, it was
found that the Ru(II) complex could block A549 cells in the G0/G1 phase.
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with benzene or p-cymene as a co-ligand.

In the past year or two, Carolina G. Oliveira et al. have reported similar work using
N-substituted thiourea as a side chain and a pyrene hydrazone ligand of the same type that
had been chelated with Pd(II) or Pt(II) to obtain corresponding metal complexes, in which
ethyl and cyclohexyl are selected as side chain substituents.
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In the past two or three years, Carolina G. Oliveira et al. [136,137] have also reported
similar work as Nandhagopal Raja et al. [134], with N-substituted thiourea being used
as the side chain of a pyrene hydrazone ligand and chelated with Pd(II) or Pt(II) to ob-
tain corresponding metal complexes. Two four-coordinated Pd(II) complexes were first
reported, with the main difference being that the substituents of the thiourea side chain
are N-ethyl and N-cyclohexyl, respectively, for SAR. The other two coordination positions
were occupied by PPh3 and Cl atoms, and their structures were characterized by mass
spectrometry, NMR, elemental analysis, and other methods, as shown in Figure 53 [136].
Their antitumor activity and mechanism on human ovarian cancer line A2780 and the
cisplatin-resistant strain A2780/cis were studied in vitro. The results showed that there
was no significant difference in the anticancer activity of the two pyrene hydrazone ligands
against the two cancer cell lines. After the coordination of pyrene hydrazone with Pd(II),
the overall inhibitory activity of the compound was significantly increased, and the activity
was closely related to the N-substituent group. The IC50 value of the N-ethyl-substituted
Pd(II) complex towards the A2780 cell line was 0.74 µM, 10 times that of the N-cyclohexyl
one (7.6 µM), showing a significant SAR. Interestingly, for the A2780/cis cell line, the IC50
of the N-ethyl-substituted Pd(II) complex was 35.8 µM, and its inhibitory activity was
only 1/10 that of N-cyclohexyl (IC50 = 3.16 µM). In conclusion, the N-substituent of the
thiourea side chain was very important for the anticancer activity and cell selectivity of the
corresponding Pd(II) complex. Inductively coupled plasma mass spectrometry (ICP-MS)
was used to detect the uptake of the Pd(II) complex in A2780 cells. The accumulation
of the N-cyclohexyl-substituted Pd(II) complex was 7 ng, much higher than that of the
N-ethyl-substituted one. At the same time, only 18% of the N-ethyl-substituted Pd(II) com-
plex could cross the cell membrane, while the more lipophilic N-cyclohexyl one achieving
70% cell membrane penetration, although its cytotoxicity was still low, which might be
also related to the steric hindrance of N-cyclohexyl. However, considering that the two
complexes show opposite activity against A2780/cis cell line, it can be suggested that their
anticancer mechanisms might be different. It would be interesting to further explore their
action mechanisms at the molecular level.
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a side chain.

Subsequently, Carolina G. Oliveira et al. [137] further synthesized four symmetrical
tetranuclear Pd(II) and Pt(II) complexes using the same pyrene hydrazone ligand, represent-
ing the first reported metal complexes of tetranuclear polycyclic hydrazones to date. The
coordination structures of these complexes were consistent, as shown in Figure 54. Different
from the above-mentioned mononuclear Pd(II) complexes of pyrene hydrazone, in these
complexes, each pyrene hydrazone ligand not only coordinated with Pd(II)/Pt(II) through
methylimide-N and thiol-S, but also coordinated with Pd(II)/Pt(II) through the 2′-C atom
on the pyrene ring. Thus, the C/N/S-tridentate coordination pattern was formed, which
is rare in the complexes of anthrachydrazone and pyrene hydrazone. In addition, each S
atom acted as a bridging atom to connect two adjacent Pd(II)/Pt(II) to form a symmetric
macrocyclic organometallic complex. The structure of each complex was characterized by
IR, NMR, mass spectrometry (MS), and high-performance liquid chromatography (HPLC).
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The in vitro antiproliferative activities of pyrene hydrazones with a N-ethyl/N-cyclohexyl-
substituted thiourea side chain and their four complexes on cervical cancer cell line A2780
and normal cell line MRC5 were compared based on SAR. The results showed that the
Pd(II)/Pt(II) complexes with a N-ethyl substituent had higher activity, with IC50 values
of 1.27 µM (Pd) and 0.37 µM (Pt), respectively, which were dozens of times higher than
those substituted by N-cyclohexyl. They also had almost no toxicity to normal MRC5
cells (IC50 > 100 µM), showing excellent cytotoxicity selectivity, which was consistent with
the activity trend of the mononuclear Pd(II) complexes above. The experimental results
regarding the cell cycle, cell membrane integrity, and induction of cell apoptosis of these
tetranuclear complexes shows that their anticancer mechanism was different from that of
cisplatin, and they did not show significant effects on the anticancer target: DNA. Therefore,
they might have good potential and prospects in overcoming drug resistance to cisplatin.
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Figure 54. The novel symmetric tetranuclear Pd(II)/Pt(II) complexes of pyrene hydrazone with
(N-ethyl/phenyl)-substituted thiourea as a side chain.

As early as 1997, Maria C. Rodriguez-Arguelles et al. [138] reported a new acenaphthe-
hydrazone ligand with thiourea as a side chain and coordinated it with iron(II), nickel(II),
copper(II), and zinc(II) to form four corresponding metal complexes (Figure 55). The
structures were characterized by IR and NMR. It was observed for the first time that an
acenaphthehydrazone ligand could inhibit cell proliferation and induce cell differentiation
in the tested dose range. The acenaphthehydrazone ligand achieved 40% inhibition of
DMSO-induced cell differentiation at 2 or 9.3 µg/mL, much higher than the corresponding
ligands that had been previously reported, and failed to detect activity at higher doses
(30 µg/mL). However, the Zn(II), Ni(II), and Fe(II) complexes showed a strong inhibitory
effect on DMSO-induced cell differentiation, although they had no obvious inhibitory
effect on cell proliferation at low doses. At low concentrations (2 µg/mL), they could
achieve a 50~90% inhibition rate on DMSO-induced cell differentiation. Although the
Cu(II) complex showed moderate activity, it was obviously lower than the metal complexes
of other series of thiourea. Confusingly, the Cu(II) complex showed no inhibitory activity on
DMSO-induced cell differentiation at the lower dose of 0.5 µg/mL, although the inhibition
rate of the Cu(II) complex seemed to be the second highest among all of the compounds
tested, as viewed from the histogram results. Additionally, the authors also did not test the
activity of the Cu(II) complex at higher doses (such as 2 µg/mL). The results of the reverse
transcriptase activity assay showed that the Zn(II) complex could promote the release of
virions at 2 µg/mL, but the Cu(II) complex could not completely inhibit the retrovirus
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replication at the same concentration, with only 25% inhibition. However, the Ni(II) and
Fe(II) complexes showed no activity during retrovirus release.
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Figure 55. A six-coordinated nickel(II) complex by two same acenaphthehydrazone with thiourea as
a side chain.

Overall, despite the research on the metal complexes of pyrene hydrazone and ace-
naphthehydrazone that has been carried out to some extent, when considering the limited
studies regarding these anticancer metal complexes, the toxicity studies are still very in-
sufficient, especially when considering that pyrene/acenaphthene is accepted as a type of
carcinogenic compound. Thus, future research in this domain is necessary. Otherwise, the
anticancer activity of pyrene hydrazone/acenaphthehydrazone and their metal complexes
cannot be objectively recognized, as there is limited scientific evidence demonstrating their
medicinal potential.

4. The Metal Complexes of Polycyclic Hydrazones for the Bioactive-Related Targets

In 2010, Yanling Xiang et al. [139] reported a 2-hydroxylnaphthylhydrazone ligand
and its zinc(II) complex and studied the interaction between the Zn(II) complex and BSA
using fluorescence and electronic absorption spectroscopy. In Tris-NaCl buffer solution
with pH = 7.4, when the excitation wavelength was 370 nm, the fluorescence intensity
of the Zn(II) complex was significantly enhanced at 475 nm after the addition of BSA.
Conversely, the complex could quench the intrinsic fluorescence of BSA. According to the
Stern—Volmer equation and the UV—Vis absorption spectra of the Zn(II) complex after
adding BSA, the fluorescence-quenching mechanism was presumed to be static quenching.

In 2016, Satyajit Mondal et al. [140] reported on bipyridine with o-phenanthroline
as a co-ligand and synthesized the Co(III) and Ni(II) complexes of 9-anthrachydrazone
with benzamide as a side chain (Figure 56). Their structures were characterized by IR,
UV—Vis, ESI-MS, and elemental analysis. The coordination mode was further determined
by X-ray single-crystal diffraction analysis. The results showed that the coordination
environment of the two metal centers was the same distorted octahedron. The two an-
thrahydrazone ligands coordinated with Co(III)/Ni(II) via N/O-bidentate mode as well as
with bipyridine/o-phenanthrene via N/N-bidentate mode. This was also commonly found
in the previous hydrazone complexes with bipyridine/o-phenanthroline as a co-ligand.
UV—Vis absorption spectroscopy, fluorescence spectroscopy, and DNA viscosity exper-
iments showed that the two complexes could bind with ct-DNA, but the binding mode
was not the common intercalation mode, which was ascribed to the octahedral geometry of
the complexes coordinated with the ligands in bidentate mode. In particular, the Co(III)
complex with 3,5-di-tert-butylcatechol (3,5-DTBCH2) as a substrate showed significant
catecholase mimicase activity. Kinetic determination showed that the oxidation rate of
catechol followed the saturation kinetics relative to the substrate, and the kcat value was
very high: 1.00 × 105 h−1. The authors carefully deduced the oxidation mechanism on the
molecular level, and it was determined that the redox property of Co(III)/Co(II) plays a
key role, and thus, the Ni(II) complex did not exhibit catecholase activity.
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Figure 56. Ni(II)/Co(III) complexes of 9-anthrachydrazone with a benzamide side chain and with
bipyridine or o-phenanthroline as a co-ligand.

Subsequently, Sunshine Dominic Kurba et al. [141] also reported the biomimicase ac-
tivity of a homobinuclear vanadium(V) complex involving 2-hydroxylnaphthylhydrazone
(Figure 57). To be exact, it was actually a symmetrical dinaphthylhydrazone ligand joined
by the condensation of 1,4-succinylhydrazine. The crystal structure and coordination
mode of the complex were characterized and calculated by X-ray single-crystal diffraction
analysis and density functional theory (DFT) analysis and were further compared with
two similar vanadium(V) complexes of diphenylhydrazone. All three complexes were
successfully used as model compounds of a functional catechin oxidase to oxidize 3,5-di-
tert-butylcatechol to 3,5-di-tert-butyl-o-benzoquinone under the condition of an oxygen
atmosphere. The system followed Michaelis–Menten kinetics with respect to the substrate.
From the key kinetic parameters for the catalytic oxidation of the three complexes, the
Vmax of the naphthylhydrazone-V(V) complex was 1.47 × 10−4 M·s−1, which was lower
than those of the other two phenylhydrazone-V(V) complexes (5.03 × 10−4 M·s−1 and
3.57 × 10−4 M·s−1). In contrast, the KM value of the naphthylhydrazone-V(V) complex was
2.94 × 10−4 M·s−1, higher than those of the other two phenylhydrazone-V(V) complexes
(1.60 × 10−3 M·s−1 and 1.42 × 10−3 M·s−1). In addition, the binding property of the
V(V) complexes with BSA was studied by fluorescence spectroscopy. It was found that
the binding affinity of the naphthylhydrazone-V(V) complex to BSA was 2.41 × 108 M−1,
which was also higher than those of the two phenylhydrazone-V(V) complexes (2.25 and
2.13 × 108 M−1).

Molecules 2022, 27, x FOR PEER REVIEW 46 of 58 
 

 

joined by the condensation of 1,4-succinylhydrazine. The crystal structure and coordina-

tion mode of the complex were characterized and calculated by X-ray single-crystal dif-

fraction analysis and density functional theory (DFT) analysis and were further compared 

with two similar vanadium(V) complexes of diphenylhydrazone. All three complexes 

were successfully used as model compounds of a functional catechin oxidase to oxidize 

3,5-di-tert-butylcatechol to 3,5-di-tert-butyl-o-benzoquinone under the condition of an ox-

ygen atmosphere. The system followed Michaelis–Menten kinetics with respect to the sub-

strate. From the key kinetic parameters for the catalytic oxidation of the three complexes, 

the Vmax of the naphthylhydrazone-V(V) complex was 1.47 × 10−4 M·s−1, which was lower 

than those of the other two phenylhydrazone-V(V) complexes (5.03 × 10−4 M·s−1 and 3.57 × 

10−4 M·s−1). In contrast, the KM value of the naphthylhydrazone-V(V) complex was 2.94 × 

10−4 M·s−1, higher than those of the other two phenylhydrazone-V(V) complexes (1.60 × 

10−3 M·s−1 and 1.42 × 10−3 M·s−1). In addition, the binding property of the V(V) complexes 

with BSA was studied by fluorescence spectroscopy. It was found that the binding affinity 

of the naphthylhydrazone-V(V) complex to BSA was 2.41 × 108 M−1, which was also higher 

than those of the two phenylhydrazone-V(V) complexes (2.25 and 2.13 × 108 M−1).  

 

Figure 57. A symmetrical binuclear vanadium(V) complex of a special dinaphthylhydrazone ligand 

linked by the condensation of 1,4-succinylhydrazine with two 2-hydroxylnaphthaldehydes. 

Meanwhile, Ming-Kun Yu et al. [142] reported a new 2-hydroxynaphthylhydrazone 

with p-hydroxyphenylacetamide as a side chain (Figure 58). A new binuclear copper(II) 

complex was synthesized by using it as the active ligand. The coordination environment 

of each Cu(II) can be regarded as a distorted rectangular pyramid, with each naphthylhy-

drazone coordinating with Cu(II) in an O/N/O-tridentate mode, in which the deproto-

nated hydroxyl-O atom acts as the bridging atom to link the two Cu(II) complexes. An-

other NO3− on each Cu(II) occupies the top position of the pyramid. The coordination 

structure was determined by X-ray single-crystal diffraction analysis. The structural char-

acteristics of the Cu(II) complex under different conditions were also studied by IR, UV—

Vis, and electron paramagnetic resonance (EPR) spectral analyses. The magnetic proper-

ties of the complex were measured according to the EPR spectrum and magnetic suscep-

tibility, which indicated that there was weak antiferromagnetic exchange and magnetic 

exchange between the two Cu(II) ions. The apparent activation energy of thermal decom-

position showed that the Cu(II) complex had better thermal stability than the ligand. The 

results of the UV—Vis and DNA viscosity experiments showed that classical intercalative 

binding existed between ct-DNA and the naphthylhydrazone or its Cu(II) complex. The 

binding constant of the Cu(II) complex to ct-DNA was 6.24 × 106 M−1, which was twice that 

of the ligand. The exothermic curves of their interactions with BSA were further measured 

by microcalorimetry. The results showed that both of them were endothermic reactions, 

and the reaction time was 27~42 min. The change in the interaction enthalpy (ΔH) of the 

Figure 57. A symmetrical binuclear vanadium(V) complex of a special dinaphthylhydrazone ligand
linked by the condensation of 1,4-succinylhydrazine with two 2-hydroxylnaphthaldehydes.

Meanwhile, Ming-Kun Yu et al. [142] reported a new 2-hydroxynaphthylhydrazone
with p-hydroxyphenylacetamide as a side chain (Figure 58). A new binuclear copper(II)
complex was synthesized by using it as the active ligand. The coordination environment of
each Cu(II) can be regarded as a distorted rectangular pyramid, with each naphthylhydra-
zone coordinating with Cu(II) in an O/N/O-tridentate mode, in which the deprotonated
hydroxyl-O atom acts as the bridging atom to link the two Cu(II) complexes. Another
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NO3
− on each Cu(II) occupies the top position of the pyramid. The coordination structure

was determined by X-ray single-crystal diffraction analysis. The structural characteris-
tics of the Cu(II) complex under different conditions were also studied by IR, UV—Vis,
and electron paramagnetic resonance (EPR) spectral analyses. The magnetic properties of
the complex were measured according to the EPR spectrum and magnetic susceptibility,
which indicated that there was weak antiferromagnetic exchange and magnetic exchange
between the two Cu(II) ions. The apparent activation energy of thermal decomposition
showed that the Cu(II) complex had better thermal stability than the ligand. The results of
the UV—Vis and DNA viscosity experiments showed that classical intercalative binding
existed between ct-DNA and the naphthylhydrazone or its Cu(II) complex. The binding
constant of the Cu(II) complex to ct-DNA was 6.24 × 106 M−1, which was twice that of the
ligand. The exothermic curves of their interactions with BSA were further measured by
microcalorimetry. The results showed that both of them were endothermic reactions, and
the reaction time was 27~42 min. The change in the interaction enthalpy (∆H) of the Cu(II)
complex bound with BSA was 30.3 kJ·mol−1, which was seven times that of the ligand.
Subsequently, fluorescence spectroscopy was used to study the BSA binding properties.
The results showed that the binding effect of the Cu(II) complex was more than twice that
of naphthylhydrazone ligand, similar to the above DNA-binding effect.
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Figure 58. A symmetric binuclear copper(II) complex of 2-hydroxynaphthylhydrazone with p-
hydroxyphenylacetamide as a side chain.

As mentioned earlier, Rupam Dinda’s group has carried out valuable explorations
in the study of the anticancer metal complexes of naphthylhydrazone. In addition, they
have also reported four similar V(V) complexes of 2-hydroxylnaphthylhydrazone with
o-hydroxybenzamide as a side chain and a further binuclear V(V) complex with 4,4′-
bipyridine as a bridging ligand, as shown in Figure 59 below [143]. The structures and
coordination modes of the complexes were characterized by various spectral analyses and
X-ray single-crystal diffraction analysis, and the DNA/BSA-binding and catalytic properties
of the complexes were studied. UV—Vis, cyclodextrin (CD), fluorescence spectroscopy,
and thermal denaturation analysis showed that each complex could bind to the minor and
major grooves of double-stranded DNA, and the binding constants were in the range of
104~105 M−1. The binding affinities of the two V(V) complexes when there was methyl
substitution on the C atom (R2-) of the imine (C=N) of hydrazone were 7.16 × 105 M−1 and
2.73× 105 M−1. The binding constants of BSA and BSA were in the range of 1010~1011 M−1.
Moreover, the methyl-substituted complexes in the R2- position also had strong DNA
photo-cleavage activity. The oxidative bromination of styrene and salicylaldehyde as
well as the oxidation of methyl phenyl sulphide catalyzed by the five V(V) complexes
were examined, all of which showed a high conversion ratio (>90%) and higher turnover
frequency (TOF). In the oxidation bromination of styrene in particular, the conversion ratio
and TOF reached the ranges of 96~98% and 8000~19,600 (h−1), respectively, indicating that
these VVO complexes might be potentially good catalysts.
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Figure 59. Some vanadium(V) complexes of naphthylhydrazone with an o-hydroxybenzamide side
chain, reported by Rupam Dinda’s group.

Taking the antidiabetic oxovanadium complexes of N1,N4-diarylidene-thiosemicarbaz-
idato’s ligand as a reference, Berat Ilhan-Ceylan et al. [144] designed a 2-hydroxylnaphthylh-
ydrazone ligand with N-salicylic aldehyde thiourea as the side chain and synthesized four
VO(IV) complexes of the same series of naphthylhydrazone by changing the S-substituents
(methyl/ethyl/propyl/allyl) of thiourea (Figure 60). The structures and electronic states of
the complexes were characterized by elemental analysis, IR, NMR and EPR. The EPR signals
of the complexes both in the solid powder and solution state were detected and compared.
The results indicated that all of them showed a single asymmetric line shape. A theoretical
fitting study proved the presence of axial symmetry around the paramagnetic VO(IV).
Cyclic voltammetry showed that there were two metal-based reversible redox peaks near
500 mV and −800 mV, corresponding to the VIVO/VVO and VIVO/VIIIO single-electron
redox peaks, respectively. The range of 50~350 mV was considered to be the reduction
reaction of the ligands. They also found that that the antioxidant capacity of the VO(IV)
complexes increased with the increase in the carbon number in the saturated hydrocarbon
on the S-substituent group of thiourea, so the VO(IV) complex with S-propyl had the
highest antioxidant activity. These VO(IV) complexes were considered to be promising
antidiabetic compounds.
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aldehyde thioureas as side chains.

Currently, there are more than 44 million people suffering from Alzheimer’s disease
(AD) worldwide. However, there are currently only symptomatic treatments for AD, and
there is no cure pathway. In view of the multifactorial pathogenesis of AD, there is still a
lack of effective comprehensive treatment approaches, so it is necessary to develop new
multi-target drugs. Recently, Duraippandi Palanimuthu et al. [145] reported a series of new
N-benzylpiperidine thiosemicarbazide derivatives and their Cu(II)/Fe(III) complexes based
on the pharmacophore (1-benzylpiperidine) of an acetylcholinesterase (AChE) inhibitor,
donepezil, which also included a same-series derivative (NBPT) containing naphthylhy-
drazone moiety, as demonstrated in Figure 61 below. Of these compounds, pyridoxal
4-N-(1-benzylpiperidine-4-yl) thiosemicarbazoureas (PBPT) is the lead compound. These
compounds were designed to address five key characteristics of AD, including low acetyl-
choline levels, dysfunctional autophagy, disrupted metal metabolism, protein aggregation,
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and oxidative stress. The authors primarily determined the in vitro anticancer activity tests
for these compounds and then conduted systematic studies on anti-AD related mechanisms.
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The proliferation inhibition activity towards SK-N-MC neuroepithelioma cells showed
that NBPT showed moderate inhibitory activity among these compounds, with an IC50
value of 8.86 µM; however, that of the Fe(III) complex of NBPT was only 52.90 µM, while
that of the Cu(II) complex reached 1.81 µM. This should be related to the cytotoxicity
of Cu(II) itself. Further studies on the anti-AD mechanism did not involve the metal
complexes. Alone, NBPT showed differences in the examined anti-AD mechanisms. For
example, it had a relatively significant iron-chelating efficiency, inhibited copper-mediated
amyloid B aggregation, failed to inhibit H2O2-mediated cytotoxicity due to its own cy-
totoxicity, and, together with moderate AChE inhibitory activity, it induced autophagy.
These properties provide scientific data for the lead compound, PBPT, as a promising and
potential multifunctional anti-AD agent.

Mustapha C. Mandewale et al. [146] also designed and synthesized a series of acylhy-
drazone derivatives based on the key anti-tuberculosis pharmacophore, 3,4-dihydroquinolin-
2(1H)-one, as well as Zn(II) complexes, in which a derivative of 1-hydroxynaphthylhydrazone
and its corresponding Zn(II) complex was included (Figure 62). Their structures were char-
acterized by IR, NMR, and elemental analysis. Regarding the Zn(II) complex of naphthyl-
hydrazone, two naphthylhydrazone ligands coordinated with the central Zn(II) through
the N/O-bidentate chelation mode via azomethine-N and phenyl-O, and two H2O were
also involved to form a typical octahedral coordination configuration. The Alamar Blue
method was used to detect the primary anti-tuberculosis activity of the compounds. The
results showed that these Zn(II) complexes showed significant inhibitory activity against
Mycobacterium tuberculosis. The inhibition rate of the Zn(II) complex of this only naphthylhy-
drazone was 84.1% at 3.12 µg/mL, while the inhibition rate of the ligand was only 2.6%. When
the concentration increased to 12.5 µg/mL, the Zn(II) complex could reach 99.2%. However,
the anti-tuberculosis activity of this Zn(II) complex of naphthylhydrazone was not the best
according to a comprehensive comparison.
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At the same time, Gonzalo Scalese et al. [147] reported a new mixed-ligand oxo-
vanadium(V) complex using 2-hydroxynaphthylhydrazone with a urea side chain and
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8-hydroxyquinoline (8-HQ) as two bioactive ligands in order to find new vanadium(V) com-
plexes against Trypanosoma cruzi. An SAR study was also performed by comparing the V(V)
complexes of three similar 2-hydroxyphenylhydrazone ligands (Figure 63). The structures
of these V(V) complexes were characterized in both the solid and solution states. In each
complex, the central VO(V) was chelated by the O/N/O-tridentate hydrazone ligand and
N/O-bidentate 8-HQ. The authors further investigated the bioactivity of Trypanosoma cruzi
superembryos (CL Brener) and Vero cells as mammalian cell models. The results showed
that the IC50 of these mixed-ligand VO(V) complexes against T. cruzi ranged from 6.2 to
10.5 µM, which was similar to the activity of nifurtimox and 8-HQ, but 4~7 times higher
than that of the free hydrazone ligand. Comparatively, the VO(V) complex ([VVO2(L-H))])
with only the hydrazone ligand had little inhibitory activity and low selectivity against
parasites. Thus, the introduction of the 8-HQ co-ligand significantly improved the activity
and selectivity. The parasites treated with the complex did not show a late apoptotic
or necrotic phenotype, suggesting a different mechanism of cell death. In vivo toxicity
studies on zebrafish models showed that the most representative VO(V) complex with the
highest antiparasitic activity, although not with the naphthylhydrazone ligand, showed
non-toxicity at higher concentrations of 25 µM. These results indicate that this variety of
VO(V) complexes has good medicinal prospects for the treatment of parasitic diseases.
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5. Conclusions

According to the overall research results regarding the metal complexes of polycyclic
aromatic hydrazones, we have created a preliminary understanding on their explicit biolog-
ical activities and potential medicinal prospects. Considering that there are abundant ways
to design and synthesize metal complexes, there is still broad space for further exploration
and discovery. From the results reported here, we have also realized some characteristics
and shortcomings, especially regarding SAR, including the following:

1. We found that there is a significant structure—activity relationship for the anticancer
activity of the metal complexes of hydrazones, but this relationship is very compli-
cated because the influencing factors include the central metal, number of hydrazone
rings, side chain groups, substituents of the side chain groups, and co-ligands (as
illustrated in Scheme 1). Therefore, in order to further understand and clarify the
structure—activity relationship of these anticancer metal complexes, it is necessary
to guide the rational design of metal drugs and to synthesize and test more aromatic
hydrazone metal complexes with anticancer activity. However, through the combina-
tion of available reports presented here, we have found some rules and characteristics
regarding SAR on the metal complexes of polycyclic aromatic hydrazones. From
the perspective of side chains, thiourea and acylhydrazone showed better bioactivity,
which seems to be related to the addition of auxiliary chelating sites. Furthermore, this
also makes the complexes more stable, which contributes to exerting the synergistic
effect between the central metal and the hydrazone. In addition, a more alkaline
N-heterocyclic (such as imidazoline) seems to be beneficial to increase the activity if
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the side chain has a N-heterocyclic pharmacophore, as suggested by our reported and
unreported results [123]. Considering that it is easier for a stronger alkaline N atom
to be protonated into quaternary ammonium salt, it is speculated that this could be
related to the influence of the charged property of the side chain when acting on its
potential intracellular targets. In addition, when viewed from the metal center, the cop-
per(II) complexes of such hydrazones exhibited significantly higher pharmacological
activity, which was primarily ascribed to the bioactivity of copper(II) itself. However,
the potential toxicity of copper(II) complexes should also be considered seriously.
Other metal centers, however, did not show distinct and predictable activity patterns,
which means that different metal complexes of polycyclic aromatic hydrazones are
still worth exploring more widely.

2. Furthermore, according to the complexes reported in this review, the antitumor and
antibacterial activities of the complexes of naphthylhydrazone were almost found to
be higher than those of the corresponding phenylhydrazone [58,76,78,85], although
the metal complexes of phenylhydrazone were not specifically discussed here. In
addition, when used as co-ligands, o-phenanthroline and bipyridine could effectively
improve the antitumor activity, and o-phenanthroline was even better than bipyridine,
as reported in the mentioned vanadium and ruthenium complexes as well as in some
instructional reviews [49,50,76,78,85,129]. In fact, this pattern was also observed in
our unreported study on the metal complexes of anthrahydrazone. We think that the
expansion of the aromatic ring and the addition of the co-ligand obviously increase
the lipophilicity of the complex, which could enhance its ability to penetrate the cell
membrane and thus improve its absorption efficiency by cells or bacteria. However,
the metal complexes of anthrahydrazone should not be taken lightly. Although it is
generally believed that the toxicity and carcinogenicity risks of anthracyclines increase
as the number of cycles increases, it is worthwhile to further enrich the metal com-
plexes of anthrahydrazone by considering the successful application of anthracyclines
such as doxorubicin. We also think that aromatic hydrazone compounds with more
than four rings are not only rarely studied, but also do not exhibit the prospect of
medicinal applications due to their obvious high toxicity and poor solubility.

3. When testing the anticancer activity, more normal human cells should be selected as
cell lines to reflect the cytotoxicity of the metal complexes of naphthylhydrazone more
comprehensively. Furthermore, it is regrettable to note that many of the metal com-
plexes of naphthylhydrazone that have been reported to show very high anticancer
activity in vitro have not been thoroughly studied and evaluated for their anticancer
activity in animals. It is suggested that further work should be conducted in this area
to promote research on the drug properties of hydrazone metal complexes, especially
those candidate complexes that have shown high activity in vitro.

In this review, for the first time, we summarized the studies on the biological activity,
such as the antibacterial and anticancer activity, of various metal complexes of polycyclic
aromatic hydrazones in combination with our own work on the anticancer metal complexes
of anthrahydrazone. It should be mentioned that the work in this direction has not received
much attention. On the other hand, there is much more research on the biological activity
of the metal complexes of phenylhydrazone than those of polycyclic aromatic hydrazones.
Due to energy limitations, we were unable to provide a corresponding review and intro-
duction. It is hoped that experts who are interested in this topic will be able to carry out
further work and provide higher-level direction and guidance for researchers in this field.
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