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Abstract: Efficient visible-light-induced radical cascade trifluoromethylation/cyclization of inacti-
vated alkenes with CF3Br, which is a nonhygroscopic, noncorrosive, cheap and industrially abundant
chemical, was developed in this work, producing trifluoromethyl polycyclic quinazolinones, benzim-
idazoles and indoles under mild reaction conditions. The method features wide functional group
compatibility and a broad substrate scope, offering a facile strategy to pharmaceutically produce
valuable CF3-containing polycyclic aza-heterocycles.

Keywords: bromotrifluoromethane; visible-light induction; trifluoromethylation; cyclization; poly-
cyclic quinazolinone; polycyclic benzimidazole; polycyclic indole

1. Introduction

Organofluorides are ubiquitous in pharmaceuticals, agrochemicals and functional
materials owing to their high lipophilicity, improved metabolic stability and enhanced
bioactivity compared with their parent molecules [1–6]. Until now, more than 340 flu-
orinated pharmaceuticals and 420 fluorinated agrochemicals have been registered and
used commercially, which account for 20% of clinical drugs and 35% of commercial agro-
chemicals, respectively [7,8]. Thus, organofluorides have become increasingly important
in developing new pharmaceuticals and agrochemicals. Among the various organofluo-
rides, trifluoromethyl compounds are of great importance due to their frequent appearance
in drug and pesticide molecules. This fact has stimulated intensive investigations of
trifluoromethylation in organic compounds, and various trifluoromethylation methodolo-
gies have been developed. In particular, the appearance of versatile trifluoromethylation
reagents such as the Togni [9–11], Umemoto [12], Ruppert–Prakash [13,14] and Langlois [15]
reagents [16,17] have greatly pushed forward the development of trifluoromethylation
methodologies through electrophilic, nucleophilic and radical processes. However, all of
these reagents are expensive, and none of them are commercially available in bulk quanti-
ties for the time-being. Hence, the exploration of new cost-effective and atom-economic
trifluoromethylation methods using easily available trifluoromethylation reagents in bulk
quantities in industry is of great value. To address this question, cost-effective and readily
available trifluoroacetic acid (TFA), trifluoroacetic anhydride (TFAA) and triflic anhydride
(Tf2O) have recently been investigated as trifluoromethylation reagents under diverse
catalysis by Zhang, Stephenson, Qing and Ritter, etc. [18–29].

As an extinguishant and refrigerant (R-13B1), CF3Br is available in large quantities at
a low price (21 USD/kg) in industry. Although CF3Br has been tested as a trifluoromethy-
lation reagent before, it has not been fully investigated in the trifluoromethylation process
compared to other trifluoromethylation reagents. Screening of the literature shows that
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CF3Br can be reduced to a trifluoromethyl anion via electrochemical reduction [30,31],
active metal reduction [32,33], or by P(NEt2)3 [34] to react with aldehydes or ketones to give
alcohols, or to react with TMSCl to give TMSCF3 (Scheme 1a). Secondly, CF3Br can be re-
duced to a trifluoromethyl radical by Na2S2O4 [35] or the transition metal complex [36–39]
to couple with aromatic rings or alkenes to give trifluoromethyl compounds (Scheme 1b).
In 2018, Zhang′s group reported that CF3Br could be activated by visible-light catalysis to
produce a trifluoromethyl radical and induce a radical addition reaction with alkenes and
alkynes (Scheme 1c) [40]. This process features an environmentally friendly and sustainable
strategy to activate CF3Br. In our previous work, the visible-light-induced trifluoromethyla-
tion of O-silyl enol ether was initially tested using CF3Br as trifluoromethyl reagent under
visible-light catalysis (Scheme 1d) [41]. As our research on CF3Br is on-going, we herein
report a visible-light-induced radical cascade trifluoromethylation/cyclization reaction,
which provides a series of trifluoromethylated polycyclic quinazolinones, benzimidazoles
and indoles, using CF3Br as a trifluoromethyl source (Scheme 1e). This transformation
provides a facile way to construct polycyclic aza-heterocycles, which are usually found
in various pharmaceutical compounds (Scheme 2). Moreover, this approach features a
low-cost trifluoromethyl source and wide substrate tolerance compared with other meth-
ods [42–48].
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2. Results and Discussion

The initial investigation commenced with the reaction of 3-(pent-4-en-1-yl)quinazoline-
4(3H)-one (1a) and CF3Br (2) in the presence of tris(2-phenylpyridine)iridium (fac-IrIII(ppy)3)
in acetonitrile (CH3CN) under the irradiation of a 5 W blue LED (460–465 nm). The antici-
pated product 3a was obtained with only a 5% yield (Table 1, entry 1). In view of the great
influence of solvent effects on the reaction, various commonly used solvents including
dichloromethane (DCM), toluene (Tol), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO),
N, N-dimethylformamide (DMF) and N-methyl pyrrolidone (NMP) were tested; NMP
proved to be the most suitable solvent, in which the product 3a was obtained in a 30%
yield (Table 1, entries 2–7). Subsequently, the screening of different light sources and their
strength showed that the 5 W blue LED was optimal for the reaction (Table 1, entries 8–10).
To further improve the product yield, several Lewis acids were examined. Notably, the
addition of LiCl (1.0 equiv.) as an additive significantly accelerated the reaction rate, and the
desired product 3a was obtained in an 83% yield (Table 1, entries 11–15). Afterwards, the
screening of the loading of the photocatalyst (PC) indicated that 1 mol % of fac-IrIII(ppy)3
was still the most suitable amount (Table 1, entries 14, 16 and 17). Finally, control exper-
iments showed that a photocatalyst or light source is necessary for this transformation
because there was no product formed in the absence of the photocatalyst or blue LED light
(Table 1, entries 18 and 19). Thus, the optimal reaction conditions were to perform the
reaction with 1 equiv. of 3-(pent-4-en-1-yl)quinazoline-4(3H)-one, under 1 atm CF3Br, in
the presence of fac-IrIII(ppy)3 in NMP, under the irradiation of a 5 W blue LED, with 1 equiv.
of LiCl as the additive.

Table 1. Optimization of Reaction Conditions a.
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1 1.0 mol% 5 W blue LED - CH3CN 5%
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With the optimal reaction conditions in hand, the substrate scopes were investigated.
First, various N-alkenyl quinazolinones 1 were examined (Scheme 3). The results indicated
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that substrates containing both electron-donating (methyl and methoxy) and electron-
withdrawing groups (fluoro-, chloro- and trifluoromethyl) at the 5-, 6-, 7- or 8-position of
the quinazolinone ring were well tolerated and provided the corresponding ring-fused
quinazolinones in 30% to 73% yields (Scheme 3, 3b–3o). N-alkenyl quinazolinones pos-
sessing disubstituted benzene rings reacted well to generate the desired products 3p–3r in
32−81% yields (Scheme 3, 3p–3r). In addition, five- and seven-membered cyclized products
3s–3v were acquired in 30−76% yields (Scheme 3, 3s–3v). Finally, when the benzene ring
of the quinazolinone was replaced by a pyridine or thiophene moiety, the corresponding
products 3w and 3x were isolated in 41% and 69% yields (Scheme 3, 3w and 3x).
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Next, various N-alkenyl pyrroles and N-alkenyl indoles 4 were applied in the standard
conditions. As illustrated in Scheme 4, N-alkenyl pyrroles with acetyl groups at the 2-
position gave five- and six-membered cyclization products (Scheme 4, 5a and 5b). However,
pyrroles with methyl at the 2-position and without substituents failed to produce the
desired product (Scheme 4, 5c and 5d). These results indicated that electron-withdrawing
substitution on the pyrrole was favorable to the reaction. Afterwards, N-alkenyl indoles
containing different substituents were also examined in this transformation. Similarly,
indoles with electron-withdrawing substituents (e.g., Ac, CF3CO and CO2Me) at the 3-
position produced the desired products (Scheme 4, 5e–5h), while no desired product was
detected when the R group at the 3-position was H or methyl (Scheme 4, 5i and 5j).

In order to further investigate the substrate generalities, various N-alkenyl benzimida-
zoles 6 were applied to the reaction (Scheme 5). When 1-(pent-4-en-1-yl)-1H-benzimidazole
reacted with CF3Br under the standard reaction conditions, the six-membered cyclic
product 7a was produced in a 70% yield. The other derivatives of 1-(pent-4-en-1-yl)-
1H-benzimidazole with both electron-donating and electron-withdrawing groups on their
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phenyl rings also produced the corresponding products in good yields (Scheme 5, 7b–7f).
Subsequently, the reaction was extended to linear and branched N-butenyl benzimida-
zole, and the corresponding five-membered cyclization products 7g and 7h were also
generated smoothly, albeit with decreased yields (Scheme 5, 7g and 7h). Moreover, 7-
azobenzimidazole and theophylline were successfully used in this reaction to give the
products 7i and 7j with good yields of 62% and 70% (Scheme 5, 7i and 7j).
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3. Gram-Scale Synthesis

To probe the practical utility of this trifluoromethylation process, a gram-scale reaction
of 3-(pent-4-en-1-yl) quinazolin-4(3H)-one was performed with 1 mol % catalyst loading,
which proceeded smoothly to produce the desired product 3a in a 60% yield (Scheme 6).
Experimental details and characterization data for products are in Supplementary Materials.
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4. Proposed Mechanism

To probe the reaction mechanism, the radical scavenger 2,2,6,6-tetramethyl-1-piperidinoxyl
(TEMPO, 2.0 equiv.) was added in the reaction of 1a with CF3Br under the standard reaction
conditions. The formation of the product 3a was completely inhibited (Scheme 7, a). When
radical scavenger 1,1-diphenylethylene (2.0 equiv.) was added to the reaction, product 3a
was not formed; only the trifluoromethyl radical trapping compound (3,3,3-trifluoroprop-1-
ene-1,1-diyl)dibenzene 8 as produced in a yield of 64% (Scheme 7, b). These results imply
that the trifluoromethyl radical was involved as the reactive species in the reaction.
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In light of our experimental results and the literature descriptions [47,48], a reaction
mechanism is tentatively proposed in Scheme 8. Under the activation of LiCl, N-alkenyl
quinazolinones 1a convert to more electrophilic lithium-activated N-alkenyl quinazoli-
nones A. Meanwhile, the visible light induced the transformation of the photocatalyst
fac-IIIIr(ppy)3 to the excited-state fac-IIIIr(ppy)3*, which reduced CF3Br to generate a tri-
fluoromethyl radical along with the generation of the fac-IVIr(ppy)3 complex via a single-
electron transfer (SET). Then, the addition of the trifluoromethyl radical onto the C = C
bond of lithium-activated N-alkenyl quinazolinones A gave radical intermediate B, which
underwent intramolecular radical cyclization to offer the intermediate C, followed by a
further 1,2-hydrogen shift process to yield the intermediate D. The intermediate D was
then oxidized by fac-IVIr(ppy)3 to form the cation E. Finally, product 3a was obtained with
the loss of a proton.
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5. Conclusions

In conclusion, we have developed efficient visible-light-induced radical trifluoromethy-
lation/cyclization for the synthesis of potential bioactive trifluoromethylated polycyclic
quinazolinones, benzimidazoles and indoles. This system has the advantages of high
step-economy and low-cost, which renders this protocol highly attractive for the synthesis
of CF3-containing polycyclic aza-heterocycles.
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