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Abstract: Tellurium was successfully incorporated into proteins and applied to protein structure
determination through X-ray crystallography. However, studies on tellurium modification of DNA
and RNA are limited. This review highlights the recent development of Te-modified nucleosides,
nucleotides, and nucleic acids, and summarizes the main synthetic approaches for the preparation of
5-PhTe, 2′-MeTe, and 2′-PhTe modifications. Those modifications are compatible with solid-phase
synthesis and stable during Te-oligonucleotide purification. Moreover, the ideal electronic and
atomic properties of tellurium for generating clear isomorphous signals give Te-modified DNA and
RNA great potential applications in 3D crystal structure determination through X-ray diffraction.
STM study also shows that Te-modified DNA has strong topographic and current peaks, which
immediately suggests potential applications in nucleic acid direct imaging, nanomaterials, molecular
electronics, and diagnostics. Theoretical studies indicate the potential application of Te-modified
nucleosides in cancer therapy.

Keywords: tellurium; crystallography; nucleic acids

1. Introduction

Beyond all doubt, nucleic acids are the most important biomolecules for all known forms
of life, which store all genetic information and pass it from one generation to the next. Extensive
studies of nucleic acid have revealed its structure, functions, and properties [1–4]. The unique
properties of nucleic acid promote its application in lots of areas such as diagnostics [5–12],
therapeutics [13–18], crystallography [19–22], catalysis [23–27], material science [28–32], as well
as vaccinology [33–38]. It is worth mentioning that nucleic acid as a therapeutic has greatly
developed in recent decades and 14 oligonucleotide drugs have been approved since 1998,
including siRNA, antisense, aptamer, etc. [39].

Notably, modified nucleic acid has played a vital role in almost all the above applica-
tions, because of the narrow chemical diversity and poor physiological stability of nucleic
acids which restrict their utilization. Various strategies of modification have been employed
to develop novel DNA and RNA analogs to overcome those limitations, such as changing
the structure of the backbones [40–48], sugars [49–55], nucleobases [56–65], introducing
different functional groups to endow the nucleic acid with specific function [66–73], or
introducing special elements that do not exist in nucleic acids such as fluorine [74–77],
bromine [78–80], mercury [81], and other heavy atoms [82].

As the same group element of tellurium, selenium modifications have been widely
applied for protein structure determination, by replacing the sulfur in methionine, in which
the selenium can be used as an ideal scattering center for multiwavelength anomalous
dispersion (MAD) [83–86]. The selenium-derivatized nucleic acid (SeNA) has also achieved
great success in 3D crystal structure determination and selenium has been introduced
to different positions of the ribose, the phosphate backbone, as well as the nucleobases
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(Scheme 1) [87–98]. These works have been well reviewed here [99,100]. It is worth
mentioning that the incorporation of 2′-selenium modified nucleoside into DNA oligo
not only solved the phase problem but also greatly facilitated crystallization, especially
because, compared with protein crystallization, there are greater challenges in nucleic
acid crystallization due to the negatively charged repetitive phosphate groups. Besides
crystallography studies, selenium-modified nucleic acids have also been found to improve
the specificity and sensitivity of DNA polymerization [12,47,101] However, compared with
selenium, the application of tellurium in nucleic acid is still quite limited.
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2. Discussion

Tellurium is a metalloid located in group VI, also known as chalcogens, of the peri-
odic table following sulfur and selenium. Its chemical or physical properties, reactivities,
structures, and functions have been well studied and show multiple potential applica-
tions in different areas [102–107]. Tellurium has a larger radius (1.35 Å) and a weaker
electronegativity (2.0) in comparison to sulfur (1.04 Å, 2.58) and selenium (1.17Å, 2.55). The
larger electrovalent and coordination sphere radius provide tellurium with strong metallic
properties and result in weak covalent bonds with carbon and hydrogen [108]. Elemental
tellurium has a lower abundance (1 ppb) than gold, platinum, or “rare-earth” elements
on Earth [109]. Naturally occurring tellurium contains a series of isotopes, including 120Te
(natural abundance 0.09%), 122Te (2.55%), 123Te (0.89%), 124Te (4.74%), 125Te (7.07%), 126Te
(18.84%), 128Te (31.74%), and 130Te (34.08%) [110], which result in a unique isotope pat-
tern in mass spectrometry for Te-containing compounds. Meanwhile, the diamagnetic
nucleus 125Te (spin 1/2) enables Te-NMR studies and has wide chemical shifts ranging
from −1400 ppm to 3400 ppm, which facilitates the identification of tellurium compounds
with different chemical environments. Moreover, it also has excellent sensitivity due to the
high natural abundance (7.07%) compared with 13C (1.1%) [111].

Although it belongs to the chalcogen family, the structures and chemical properties
of tellurium compounds frequently differ from its family members [86,112]. For example,
with the same range of oxidation states from −2 to +6 as sulfur and selenium, the higher
oxidation states of tellurium are more stable due to the lower ionization energies [113,114].
In addition, the σ- and π- bond energies of tellurium are also significantly lower than
their chalcogen analogs, [112,115–117] which contributes to its higher lability such as
photochemical sensitivity [118] and lower tendency to catenate [119–122] compared to
sulfur and selenium. Another intriguing feature of the chemistry of tellurium compounds
is its proclivity to engage in hypervalent interactions, which was rationalized in terms of
three-center–four-electron (3c–4e) bonding, charge-transfer interactions, hyperconjugation,
and secondary bonding interactions (SBIs) [123–129].

Tellurium was successfully incorporated into protein in a tellurium-tolerant fungus
in 1989, which was achieved by growing the Te-resistant fungi on a sulfur-free medium,
and an extraordinarily high level of tellurium was detected [130]. Later, telluromethionine
was reported to be selectively incorporated into dihydrofolate reductase [131]. Further
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studies optimized the bioincorporation technique of TeMet into protein and provide a
promising approach for the X-ray structure study of protein [132]. The absorption edge of
tellurium is about 0.3 Å, which indicates that it is not as suitable as selenium (0.9795 Å) as
a scattering center in a MAD experiment. But the ideal electronic and atomic properties
of tellurium for generating clear isomorphous signals make it a suitable heavy-atom for
isomorphous replacement without the need for synchrotron radiation [108]. Interestingly,
besides being covalently incorporated into protein to solve the phasing problem, the
tellurium-centered Anderson–Evans polyoxotungstate (TEW) was used as a universal
additive to enable or improve the crystallization of proteins to achieve high-quality crystals
through electrostatic interactions [133]. Moreover, it was found that the incorporation of
tellurium into phycocyanin (PC) and allophycocyanin (APC) enhanced their antioxidant
activities [134].

Te Modifications in Nucleoside, Nucleotide, and Nucleic Acids

The incorporation of Te into nucleic acid has also been achieved in the past decades.
The first Te-modified nucleoside was reported [135] by Huang et al. in 2008 and then
successfully incorporated into DNA oligo through solid-phase synthesis [136] (Scheme 2).
The tellurium functionality was protected by alkylation with either the phenyl or methyl
group and was introduced into the 2′-position of both uridine and ribo-thymidine with
good yield.
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Interestingly, unlike the MeSe functionality [19,93,137–140], the 1′,2′- and 2′,3′-eliminations
were observed during Te functionalization when using sodium borohydride as reducing
reagent at room temperature (Scheme 3), which provides a new method for the synthesis of
the 2′,3′-didehydro-2′,3′-didoxynucleotides (d4Ns).

To get the desired product X, a stronger reducing reagent and lower temperature
(0 ◦C) were applied together with crown ether (12-crown-4) to chelate the lithium ions
to enhance the MeTe reactivity. The desired product was obtained in 47% yield with
the 1′,2′-elimination products as the major byproduct. Both PhTe- and MeTe-modified
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nucleosides were incorporated into DNA oligos by solid-phase synthesis following a
standard protocol [141] and quantitative coupling yield was achieved. A few of Te-DNAs
have been oxidized to tellurides during the solid-phase synthesis which can be reduced
by treating with diborane after the deprotection step (Scheme 4). It was found that both
methyltelluride and phenyltelluride functionalities were stable with the treatment of mild
acid and base during the deprotection and purification. Interestingly, under heating (50 ◦C)
in the presence of B2H6 or I2, 2′-TePh DNA undergoes 2′,3′-elimination at the modification
site and generates the fragmented product. However, the 1′,2′-elimination was observed
for 2′-TeMe DNA and creates the abasic product (Scheme 4). The decrease in the melting
temperature was observed during the UV melting study which was probably caused by
the perturbation introduced by the bulky Te functionality (Figure 1).
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Figure 1. UV melting curves of DNA duplexes (5′-C(TeXU)TCTTGTCCG-3′ and 3′-
CGGACAAGAAG-5′; X = Me or Ph).

In 2011, 5-PhTe modified nucleoside was successfully synthesized by applying the
lithium–halogen exchange reaction [142] on a protected 5-iodo-2′-deoxyuridine and achieved
medium yield (64%) [143] (Scheme 5). The key steps of the reaction are the deprotonation
of the NH and the treatment with n-BuLi followed by the addition of Ph2Te2. An elevated
concentration of the reactant (0.15–0.18 M) is necessary to avoid the generation of a 6-PhTe
isomer, which is inseparable. The synthesis of the corresponding phosphoramidite followed
the standard protocol and applied to solid-phase synthesis. The results show that the PhTe
functionality is well compatible with the solid-phase synthesis condition, deprotection,
and purification. The UV-thermal denaturation studies show similar stability between
the Te-derivatized duplex and the corresponding native which suggested that the bulky
PhTe moiety is well accommodated and does not significantly change the duplex structure
(Figure 2).
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The Te-DNA crystal structure was also obtained by the same author by using 2′-Se
modification strategy [137–139,144]. The results reveal that Te-DNA has virtually identical
global and local structures as the corresponding native DNA (Figure 3). This result further
confirms that the Te-functionality does not cause significant perturbation. The Te-DNA
was quite stable under a high temperature (90 ◦C) but it was found to be sensitive to X-ray
irradiation. Partial cleavage of the Te–C bond was detected through MALDI-TOF-MS after
X-ray irradiation. Due to the metallic property of the tellurium atom, STM imaging studies
show stronger topographic and current peaks for the Te-modified DNA duplex compared
to the native one (Figure 4).
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Figure 3. The global and local structures of the Te-DNA duplex. (A) The Te-dsDNA structure (in
cyan; 1.50 Å resolution; PDB ID: 3FA1) is superimposed over the native one (in magenta; PDB ID:
1DNS). (B) The local structure of the TeT/A base pair (in cyan) is superimposed over the native T/A
base pair (in magenta).

Photodynamic therapy (PDT) is a promising medical treatment using visible light
irradiation in conjunction with a photosensitizer (PS), which is non-toxic in the dark, to
selectively treat the targeted issue [144,145]. A study [146] investigated the photophysical
properties of 2-/4-position Te-substituted thymidine, indicating its potential application as
a UVA chemotherapeutic agent. The lowest triplet states were found to lie above the energy
required to produce cytotoxic excited oxygen molecule and the absorption energies are short
enough to penetrate the issue, via density functional theory (DFT) and time-dependent
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density functional theory (TDDFT) calculation. Further study [147] of the Te-subsituted
deoxyguanosine revealed its ability to act as photosensitizer in cancer therapy.
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The Te-modified DNA and RNA are a promising strategy for investigating the struc-

ture and function of nucleic acid. However, studies in this area are still quite limited and 
only a few papers on the subject have been published in the last 10 years. The 2′- and 5-
position tellurium modified nucleoside has been successfully synthesized, and both are 
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Figure 4. The STM images of the Te-modified DNA duplex (5′-ATGG(TeT)-GCTC-3′ and 5′-
(GAGCACCAT)6-3’) and its counterpart native duplex on HOPG. The arrows indicate the edges or
current peaks of the measured molecules. (A) Topographic image of Te-duplex; (B) Current image of
Te-duplex; (C) Topographic image of the native duplex; (D) Current image of the native duplex.

3. Conclusions

The Te-modified DNA and RNA are a promising strategy for investigating the struc-
ture and function of nucleic acid. However, studies in this area are still quite limited and
only a few papers on the subject have been published in the last 10 years. The 2′- and
5-position tellurium modified nucleoside has been successfully synthesized, and both are
compatible with solid-phase synthesis, deprotection, and purification. The particular redox
properties and selective elimination of the 2′-Te modified DNA oligo could be useful in
studying DNA fragmentation and nucleobase damage. The location of the Te functionality
modification and the size of the protecting group directly affect the melting temperature of
the duplex, which could be used as a useful strategy for detecting DNA and RNA polymer-
ization and catalysis. Furthermore, due to the metallic property of the tellurium atom, the
Te-modified DNA duplex becomes visible under STM, which suggests a promising strategy
for the direct imaging of DNA without structural perturbation. This will further help us
conduct mechanism and function studies or even produce novel nano-electronic materials.
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