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Abstract: Phenylpropanoids and flavonoids are specialized metabolites frequently reported as in-
volved in plant defense to biotic or abiotic stresses. Their biosynthetic accumulation may be constitu-
tive and/or induced in response to external stimuli. They may participate in plant signaling driving
plant defense responses, act as a physical or chemical barrier to prevent invasion, or as a direct toxic
weapon against microbial or insect targets. Their protective action is described as the combinatory
effect of their localization during the host’s interaction with aggressors, their sustained availability,
and the predominance of specific compounds or synergy with others. Their biosynthesis and regula-
tion are partly deciphered; however, a lot of gaps in knowledge remain to be filled. Their mode of
action on microorganisms and insects probably arises from an interference with important cellular
machineries and structures, yet this is not fully understood for all type of pests and pathogens. We
present here an overview of advances in the state of the art for both phenylpropanoids and flavonoids
with the objective of paving the way for plant breeders looking for natural sources of resistance to
improve plant varieties. Examples are provided for all types of microorganisms and insects that are
targeted in crop protection. For this purpose, fields of phytopathology, phytochemistry, and human
health were explored.

Keywords: specialized metabolites; plant defense; resistance mechanisms; biotic stress

1. Introduction

Plant secondary metabolites are involved in various biological functions and play
a role in plant interactions with their environment, particularly under biotic and abiotic
stresses. While some of these metabolites play a fundamental role in the attraction of
pollinators and in chemical ecology, others are involved in coping with stressful stimuli, as
reviewed in [1–6]. They were not considered essential for plant growth and development
when they were first discovered and were qualified as “secondary”. Nevertheless, nuances
in the definition of secondary metabolites have emerged over the past two decades. Because
of their pivotal role in the plasticity and response of plants to various environmental stimuli,
some authors rather refer to them as “specialized” metabolites, while “central” is used
for primary metabolites [7–9]. Moreover, the advent of high-throughput sequencing has
allowed the publication of the genomes of several species and highlighted that the genes
involved in the biosynthesis pathways of these metabolites occupy a significant place in a
large array of genomes [10]. As we fully adhere to the concept of high importance of these
metabolites, the term “specialized metabolites” will be used throughout this paper.

Metabolomics and functional genomics technologies have accelerated the large-scale
exploration of plant specialized metabolites and the key enzymes involved in their biosyn-
thesis [11,12]. The objective of the present review was to compile data about phenyl-
propanoids and flavonoids because of their wide range of biological activities and par-
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ticularly their significant involvement in numerous mechanisms of plant adaptation to
the environment.

The phenylpropanoid pathway (PPP) results in the accumulation of many families of
compounds, such as phenylpropanoids, flavonoids, lignins, monolignols, phenolic acids,
stilbenes and coumarins [13]. The flavonoid family includes subfamilies of molecules
classified according to their structure, e.g., flavones, isoflavones, anthocyanidins, flavonols,
flavanols, flavanones, aurones or chalcones. Each subfamily comprises a large diversity
of molecules as a result of various conjugation processes through C- or O-methylation,
sulfation, or glycosylation [14–16].

In stress-free conditions, flavonoids play a role in the development of plant reproduc-
tive organs and seeds, such as pollen tube germination and growth or seed maturation,
dormancy and longevity [17,18]. They are also involved in plant attractiveness to polli-
nators through the color or scent they confer to flowers [19]. Finally, they also play a role
in plant–microorganism communication for the establishment of symbiosis, such as in
legume–rhizobium interactions during nodulation [18,19].

In adverse abiotic conditions, they can mediate defense responses. For instance, under
water stress, plants have to deal with concomitant oxidative stress caused by reactive
oxygen species (ROS) to prevent cellular damage. For this purpose, high antioxidant
activity could be necessary to limit lipid peroxidation of cell membranes [20,21]. This
may be obtained through the upregulation of genes involved in the phenolic flavonoid
biosynthesis described in Figure 1. For example, in Chrysanthemum morifolium L. cultivars
exposed to water stress, genes encoding enzymes phenylalanine ammonia-lyase (PAL),
chalcone isomerase (CHI) and flavanone 3-hydroxylase (F3H) were upregulated, leading
to an increased production of antioxidant flavonoids [22]. Biosynthesis of caffeic acid
derivatives and flavonoid glycosides was also strongly enhanced during salt and UV
stresses [23]. The mutation of several genes coding for a Myeloblastosis (MYB) transcription
factor, a chalcone synthase (CHS) and a few chalcone isomerases was reported to alter the
freezing tolerance of Arabidopsis thaliana (L.) Heynh. [24]. Under excess of solar radiation,
flavonoids strongly accumulate in leaves and glandular trichomes of Phillyrea latifolia L. [25]
leading authors to suggest their protective role in the integrated mechanisms of acclimation
of P. latifolia to excessive light.

Finally, in a context of biotic stresses, plant defense may be mediated by the action of
flavonoids and phenylpropanoid compounds acting indirectly as signaling molecules, or
directly through the toxic effect of phytoanticipins (constitutively accumulated active com-
pounds in plant tissues) and phytoalexins (newly synthesized active compounds following
pathogen detection) [26–28]. Their accumulation or the importance of the expression of
genes involved in their biosynthesis has indeed been demonstrated in regards of resis-
tance to biotic stresses [29–32]. This has been described in the literature from two points
of view. On the one hand, research focusing on basal defense addressed the different
types of constitutive defense mechanisms, from physical to chemical barriers. Cell wall
reinforcement involving phenylpropanoid derivatives is one of them [30,32–35]. As an
example, the abundance of phenylpropanoids in maize (Zea mays L.) grain pericarps was
thought to limit disease symptoms in genotypes resistant to Fusarium graminearum and
Fusarium verticillioides, as well as against maize weevil (Sitophilus zeamais (Motsch.) [35–37].
On the other hand, research focusing on induced resistance investigated the potential
toxicity of these metabolites that may suppress or limit the pathogenicity of invaders.
Although the study of this direct effect played by bioactive compounds against pathogens
has been promoted by a rising interest in deciphering the molecular dialogue between the
host and the pathogen, these mechanisms are still poorly described in plant science. In
contrast, the biological activity of plant-derived compounds—especially flavonoids—on
human pathogenic microorganisms has been notably investigated in the field of drug
development [38,39]. Moreover, potential intracellular targets of some flavones have been
discovered when searching for natural anti-inflammatory compounds [40].
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In order to help breeding for plants resistant to pests and diseases or plants receptive
to biopesticides, this review covers the state of the art on the molecular and mechanistic
diversity of phenylpropanoid or flavonoid derivatives potentially involved in plant resis-
tance to biotic stresses. This is presented according to the nature of the targeted pathogen,
including the highlights of the findings in human health research.
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Figure 1. Main steps of the phenylpropanoid and flavonoid pathways. Enzymes mentioned in
this paper are shown in green and yellow for central phenylpropanoid pathways and flavonoid
biosynthesis, respectively. Complete arrows refer to one step in the biosynthetic pathway, whereas
dashed arrows represent undetailed pathways leading to one molecule or molecule subfamilies.
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2. Protection against Microbes
2.1. Bacterial Targets

A wide range of studies have explored the involvement of the PPP in mediating
a response to phytopathogenic bacteria. For example in the tobacco (Nicotiana tabacum
L.)–Pseudomonas syringae pathosystem, an infection-induced increase was shown for the
flavonoids and other phenylpropanoid derivative content, especially regarding coumaric
acid content [32]. Similarly, flavonoid glycosides and hydroxycinnamic acid production
significantly increased in orange leaves (Citrus sinensis L.) infected by Candidatus liberibacter
asiaticus [29]. In potato (Solanum tuberosum L.) tubers, rutin (quercetin-3-O-rutinoside)
(Table 1) and nicotiflorin (kaempferol-3-O-rutinoside) were shown to be related with
resistance to Pectobacterium atrosepticum, a necrotrophic bacterial pathogen [41]. Finally,
resistance to Erwinia carotovora subsp. carotovora of transgenic potato tubers accumulating
a high content of pelargonidin-3-O-rutinoside-5-O-glucopyranoside and peonidin-3-O-
rutinoside-5-O-glucopyranoside both acylated with p-coumaric acid, was double that of
untransformed plants with lower amounts of these anthocyanins (Table 1) [42].

In a context of plant protection, in order to develop biological alternatives to synthetic
phytoprotectants, the biological actions of phenylpropanoids have been largely investigated
through in vitro tests. However, according to [43], an efficient protection may probably
not arise from any significant toxicity towards the microorganism, but rather from defense
elicitation of the host. Therefore, to reach an efficient pest management, we suggest
exploring both the direct or indirect modes of action of these compounds. As a consequence,
there is a need to delve into the question of their biosynthesis and targets.

By studying the postinoculation transcriptomic shift, some genes encoding enzymes
at a crucial step in the PPP were found to rapidly respond, whereas others were induced
much later in the onset of the response to infection [31,32]. In soybean (Glycine max (L.)
Merr.) infected with Pseudomonas syringae, CHS, F3H and isoflavone synthase I (IFS I)
genes were among the earliest to be activated [31]. In tobacco infected with the same
bacterium, PAL, cinnamic acid 4-hydroxylase (C4H), 4-coumarate:CoA-ligase (4CL), some
ortho-methyltransferases (OMT) and ferulate-5-hydroxylase (F5H) genes were the most
expressed [32]. At this stage, although the discovery of these potential genes of interest may
pave the way for the development of new plant varieties resistant to bacteria, little is known
about the biological targets of the enzymes related to these genes. Plant-oriented literature
only reports that some PPP compounds can target vital functionalities of cellular processes
and jeopardize bacterial survival without details about the mechanisms implemented. For
example, fragarin isolated from strawberry (Fragaria ananassa (Weston) Duchesne ex Rozier)
leaves caused cell death by disrupting cell membrane integrity in Clavibacter michiganen-
sis [44,45]. Interesting data from research in medical microbiology may nonetheless provide
leads, as a number of authors have proposed an elaborated description of the mechanism of
action for phenylpropanoids to find natural antibiotics for human health [46,47]. Thus, the
antimicrobial action of flavonoid glycosides isolated from the aerial parts of Graptophyllum
grandulosum Turrill—chrysoeriol-7-O-β-D-xylopyranoside, luteolin-7-O-β-D-apiofuranosyl-
(1→2)-β-D-xylopyranoside, chrysoeriol-7-O-β-D-apiofuranosyl-(1→2)-β-D-xylopyranoside,
chrysoeriol-7-O-α-L-rhamnopyranosyl-(1→6)-β-D-(4”-hydrogenosulfate) glucopyranoside
and isorhamnetin-3-O-rutinoside (Table 1)—was reported to cause cell lysis in S. aureus due
to alteration of membrane permeability, with a minimum inhibitory concentration (MIC)
ranging from 4 to 8 µg.mL−1 [48]. This membrane fluidity alteration may arise from the up-
regulation of genes responsible for a rearrangement of the membrane fatty acid proportions,
as observed in S. aureus and E. coli exposed to a relatively low concentration of naringenin
(Table 1) (with a MIC of 1.84 mM and 3.64 mM respectively) [49]. The physicochemical
properties of this class of compounds are involved in their ability to cross the bacterial
wall and lipidic membranes to reach their intracellular targets [50]. A low capacity of cell
penetration could explain why the cytotoxicity of some molecules may go unnoticed in the
framework of in vitro tests on a whole-cell scale, in spite of an apparent effect observed on
isolated cellular components [51].
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The cell walls of Gram-positive and Gram-negative bacteria are structurally diver-
gent. The wall of Gram-positive bacteria comprises a cytoplasmic membrane underneath a
periplasmic space mainly composed of peptidoglycans, whereas Gram-negative bacteria
have an additional membrane on the outer side, coated by lipopolysaccharides, rendering
bacteria of this type rather less permeable to relatively more hydrophobic compounds.
Therefore, this could explain the discrepancy in the antibacterial activity of the same active
compound. This was observed with naringenin [49] whose growth inhibition was more
perceptible on a Gram-positive (S. aureus) than a Gram-negative bacterium (E. coli). Chloro-
genic acid (Table 1) can cause dismantling of the outer membrane in Shigella dysenteriae
(Gram-negative). It was hypothesized that its acidic carboxyl group may chelate stabiliz-
ing cations in the lipopolysaccharide layer, which further disrupts the outer membrane
structure [52]. Although it is clear that a certain level of lipophilicity of the compound is
required to interact with and pass through the cell membrane [53,54], manipulating other
properties—e.g., by adding sugar moieties—can improve the interaction with enzyme
active sites, compared to aglycones [15,40]. Therefore, studying the structure–activity
relationships of the specialized metabolites in regard to the physical barrier of the bacteria
is undoubtedly essential in searching of efficient antibacterial compounds.

Compounds with better penetrability exhibit stronger effects on key functionalities
in the intracellular milieu. First of all, the electron transport respiratory chain, and thus
cell survival, can be dramatically affected. This has been demonstrated in a case study on
Micrococcus luteus: for licochalcones A and C (Table 1), two retrochalcones isolated from
Chinese licorice (Glycyrrhiza inflata L.) roots compromised the enzymatic activity of the
NADH-cytochrome C reductase [51]. In addition, the antibacterial activity of the compound
of interest may consist in preventing cell proliferation, through a direct interference with
cell division processes. In E. coli, the polymerization of an important cytoskeletal protein
FtsZ—required for cytokinesis—was hindered by the action of chlorogenic acid, leading
to inhibition of cell division (Table 1) [55]. A molecular modeling study suggested that
chlorogenic acid made hydrogen bonds and hydrophobic interactions to various residues
of this protein, hence altering its conformation and disabling the GTPase activity preceding
polymerization [55].

These few discoveries illustrate the action of molecules from the PPP family at dif-
ferent subcellular levels, targeting essential functionalities and fundamental structural
components of the bacterial cell. The investigation could be transposed to plant-pathogenic
bacteria to support previous hypotheses on plant disease resistance through the biological
activity of phenylpropanoid derivatives.

2.2. Fungal Targets

Since the early 2010s, the accessibility of metabolomic tools has hugely favored the
identification of specialized PPP metabolites correlated with plant resistance to fungi and
oomycetes [56–60]. O-glycosylated flavonoids are the most frequently reported in such
host–pathogen interactions. The mechanistic studies published so far followed an overall
trend emphasizing a quantitative aspect and/or a spatiotemporal dimension of phenolic
derivative accumulation in plant tissues associated with resistance to fungi.

Quantitative aspects can be illustrated by a case study on carrot (Daucus carota L.)
leaves. Genotypes more resistant to Alternaria dauci contained significantly higher levels of
feruloylquinic acid, as well as 4′-O- and 7-O-glycosides of apigenin, luteolin (Table 1) and
chrysoeriol, compared to susceptible genotypes [57]. Such differences in PPP metabolites
between resistant and susceptible genotypes may be found in numerous other pathosystems
providing support for plant breeders. Nevertheless, with the same compounds, an opposite
correlation can be found between metabolite contents and disease resistance depending
on the pathogen. This was specifically observed in potato tubers enriched in rutin and
nicotiflorin that turned out to be resistant to Pectobacterium atrosepticum, as mentioned above,
but at the same time susceptible to Phytophthora infestans, a biotrophic fungal pathogen [41].
A systemic approach is therefore required to make sure that breeding for an increased
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content of a specific specialized metabolite involved in resistance to one pathogen will not
decrease resistance to another one.

Spatial aspects can be exemplified by maize—Fusarium graminearum and maize—
Fusarium verticillioides pathosystems, where a high content in ferulic acid in the grain
pericarp was linked to a lesser disease extent in resistant genotypes [36,37]. Such a specific
localization of the defense metabolite seems to be a very strategic way to prevent pathogen
invasion. For example, in cotton (Gossypium hirsutum L. and Gossypium barbadense L.),
catechin and gallocatechin (Table 1) were predominant near the Verticillium dahliae infection
site in the vessels, creating a toxic environment that confined the pathogen to the vessel
lumens [61]. This local accumulation contributed to prevent the systemic spread of the
vascular disease through the formation of tyloses. This mechanism was also observed in
grapevine (Vitis vinifera L.) defense against Phaeomoniella chlamydospora and Phaeoacremo-
nium species [62]. Similarly, the resistance of barley (Hordeum vulgare L.) to mildew (Blumeria
graminis) was attributed to the accumulation of light-absorbing compounds—suggested to
be phenylpropanoids—in the papilla of the coleoptiles [63].

Temporality can be illustrated by the resistance of the date palm tree (Phoenix dactylifera L.)
to fungal diseases caused by Fusarium oxysporum, likely driven by a quantitative differential in
5-O-caffeoyl-shikimic acid content, particularly at physiological stage 3 (ripening of dates) [64].
The phenotypic contrast between resistant and susceptible cultivars to a fungal disease is often
attributed to an early or constitutive availability of the compound of interest in the tissues
leading to an efficient defense response, e.g., preformed chlorogenic acid in tobacco plants
resistant to Cercospora nicotianae [65]. Similarly, studies on the barley (Gibberella zeae) pathosystem
led to the identification of 194 metabolites constitutively present in a resistant genotype and
significantly more accumulated than in a susceptible one [56]. Among them were kaempferol-3-
O-rhamnopyranoside, naringenin-7-O-glucopyranoside, kaempferol-3-O-rhamnopyranoside-7-
O-glucopyranoside, kaempferol-3-O-glucopyranoside-7-O-rhamnopyranoside, and kaempferol-
3-O-sophoroside-7-O-rhamnopyranoside. Such a constitutive accumulation of flavonoids in the
context of disease resistance in various plant–fungus pathosystems is now becoming a general
trend described in many studies [56,66–68]. In addition to an early or constitutive synthesis
of the defense compounds, their maintenance at a high concentration over time, i.e., as long
as the disease pressure is high, is equally important [67]. Therefore, plant resistance to fungal
diseases is not only more complex than a simple quantitative differential between resistant and
susceptible genotypes at the time of infection, but its durability also depends on the stability of
metabolite contents in the tissues over time. Thus, according to the development cycles of the
disease and those of the plant, an efficient metabolic ratio must be maintained.

A multidisciplinary approach combining reverse genetic tools with biochemical char-
acterization of the resulting proteins has led to a better understanding of the biosynthesis
of phenylpropanoid derivatives mediating fungal disease resistance. Firstly, due to the
upstream position of the PAL gene in the PPP, modifications would deprive the plant from
the biosynthesis of a lot of compounds driven by downstream genes in the pathway. A
tobacco PAL mutant (PAL-suppressed YE-6-16 transformant) exhibited a rapid expansion of
lesions after infection by Cercospora nicotianae, whereas PAL gene overexpression resulted in
reduced disease symptoms [65,69]. In Arabidopsis thaliana, inactivation of a gene encoding
a CHS led to a decreased anthocyanin content and lower resistance to Verticillium dahliae [70].
In contrast, overexpression of CHS-, CHI- and dihydroflavonol reductase (DFR-) encoding
genes in flax (Linum usitatissimum L.) was correlated with increased resistance to Fusarium
species through an increased flavonoid content [71]. Overexpression and mutation of an
R2R3 MYB transcription factor clearly impacted resistance to Dothiorella gregaria in poplar
(Populus tomentosa Carr.) through enhanced and decreased proanthocyanidin content, re-
spectively [72]. As supplementary evidence, chemical inhibition of a CHS enzyme and
downregulation of the corresponding CHS gene in cucumber (Cucumis sativus L.) resulted
in nearly complete suppression of induced resistance towards Podosphaera xanthii [73].

The antifungal activity exerted by phenylpropanoids, and flavonoids has been investi-
gated, corroborating the metabolomic and functional genomic-driven hypothesis on their
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link to disease resistance. Flavonoids extracted from the needles of Picea neoveitchii Mast.,
used at 1 mg·mL−1, exhibited very interesting antifungal activities: kaempferol-7-O-(2”-E-
p-coumaroyl)-α-L-arabinofuranoside exhibited strong activity against Fusarium oxysporum
with a relative inhibitory percentage of 108.1%, while 5,7,4′-trihydroxy-3,8,-dimethoxy-
6-C-methylflavone, 5,8,4′-trihydroxy-3,7-dimethoxy-6-C-methylflavone, 7-methoxy-6-C-
methylkaempferol and kaempferol-7-O-(2”-E-p-coumaroyl)-α-L-arabinofuranoside were
active against Rhizoctonia solani, with 49.5%, 53.3%, 95.3% and 49.5% relative inhibitory
percentages, respectively, (Table 1) [58]. These compounds were as active as carbendazim,
a synthetic chemical fungicide used against these two pathogens. Other flavonoids, such
as eriodictyol, homoeriodictyol, dihydroquercetin, and luteolin (Table 1) isolated from
Ficus sarmentosa, var. henryi (King) Corner, were effective against pathogenic fungi, e.g.,
Fusarium graminearum and Septoria zeicola. Among these flavonoids, luteolin showed the
strongest inhibitory activity, with half-maximal inhibitory concentration (IC50) values of
56.38 and 81.48 mg·L−1 to each fungus, respectively [74]. Finally, in an in vivo assay, cherry
tomatoes sprayed with laurel (Laurus nobilis L.) oil containing about 44% of eugenol and
30% of cinnamaldehyde (Table 1) were less infected by Alternaria alternata after 5 days
of storage at 25 ◦C than control without oil. More precisely, the proportion of decayed
tomatoes treated with 1 mg·mL−1 of laurel oil was reduced by 86.4% [75].

Despite all these investigations on biosynthesis and targets, little is known about the
mode of action involved in the described fungicidal activities. Some studies have assessed
the effect of phenylpropanoid derivatives on the integrity of plant fungal pathogens.
Among them is the study of essential oil from laurel leaves mentioned above: fungicidal
activity was evidenced with invaginations and folds in the cell wall of the fungus and
drastically reduced sporulation.

Medical research suggested another mechanism: a high concentration of a bioactive
caffeic acid derivative like chlorogenic acid in the extracellular environment was efficient
to disrupt the lipid membrane of Candida albicans, Trichosporon beigelii and Malassezia
furfur, leading to ion leakage and break of the intracellular equilibrium (Table 1) [76].
Apigenin (Table 1) isolated from the leaves of Aster yomena (Kitam.) Honda had the same
effect on C. albicans: it caused intracellular calcium and potassium leakage and led to
osmotic imbalance [77]. The capacity of some compounds to cross cell boundaries suggests
that they might reach and interfere with nuclear components. Despite the lack of clear
evidence of a nucleic acid–flavonoid interaction, apoptosis-associated DNA fragmentation
and chromatin condensation was observed in Candida glabrata following treatment with
4 µg·mL−1 of glabridin (Table 1), an isoflavan mainly found in Glycyrrhiza glabra L. roots [78].
These mechanisms may also occur in plant fungal pathogens and should be explored by
plant prebreeders.

2.3. Viral Targets

Plant exposure to viral agents activated salicylic acid (SA) biosynthesis and induced
the biosynthesis of other defense metabolites from the PPP to initiate systemic acquired
resistance (SAR). This was shown for the sugarcane mosaic virus that causes dwarf mosaic
disease on maize [79]. As it is hosted by a broad range of economically important plant
species, such as tobacco and tomato (Solanum lycopersicum L.), specific attention has been
paid to the tobacco mosaic virus (TMV) in the exploration of the antiviral activity of
candidate specialized metabolites [80]. A more precise study pointed out that while
5-O-caffeoylquinic acid and quercetin abounded at the TMV infection site in tobacco
leaves, kaempferol was predominant in a more remote part of the plant that exhibited SAR
(Table 1) [11].

Most of the publications pointed out the role of quercetin and kaempferol (Table 1)
in triggering the defense response of the host plant, rather than a direct action on viral
particles, e.g., in the Datura stramonium L.-TMV and Chenopodium amaranticolor H.J. Coste
and A.Reyn.—TMV pathosystems [81]. Other studies mention a correlation between the
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metabolite content and plant resistance to viruses, without further determining whether
they are potentially harmful or not to viral particles.

In medical research, one of the earliest works carried on murine leukemia viruses (MLVs)
and human immunodeficiency viruses (HIVs) revealed that 1 µg·mL−1 and 2µg·mL−1 of 5,6,7-
trihydroxyflavone (baicalein) inhibited the activity of their respective reverse transcriptases by
90% (Table 1) [82]. A similar trial on HIV showed the same trend, with approximately 90% of
reverse transcriptase inhibition at 200 µg·mL−1 of hinokiflavone and robustaflavone (Table 1)
isolated from Rhus succedanea L. [83]. This surely brings evidence that phenylpropanoid
derivatives could limit viral reproduction within the host, although the way they inhibit the
biological function of this strategic enzyme remains unclear. These observations need to be
transposed to the framework of plant pathology studies to determine the putative direct
effects of these compounds on plant viruses.

3. Protection against Insects

Among macroscopic pests of cultivated plants, insects are a concern, not only because
of their direct damaging effect mainly linked to the herbivorous activity of their larvae but
also because of indirect damage through their ability to transmit microbial pathogens to
the host plant.

3.1. Herbivore Targets

Efforts have been made to explore the natural defense mechanisms of plants against
herbivores. The defensive compounds are either produced constitutively or in response to
plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants
also release volatile organic compounds that attract the natural enemies of the herbivores, as
reviewed in [84]. Phenylpropanoids and flavonoids are mentioned among these defensive
compounds preventing plants from insect invasion. For example, chlorogenic acid and
feruloylquinic acid (Table 1) discriminate resistant and susceptible genotypes of chrysan-
themum (Dendranthema grandiflora (Ramat.) Kitam.) to thrips (Frankliniella occidentalis)
with higher amounts of both molecules in thrip-resistant genotypes [85]. Similarly high
contents of quercetin, chlorogenic acid and rutin (Table 1) in wild-cultivated crosses of
groundnut plants (Arachis hypogaea L. x Arachis kempff-mercadoi Krapov. and W.C. Greg.)
were linked to their resistance to Spodoptera litura (Fab.) [86]. In carrot leaves, the flavone
luteolin and the phenylpropanoid sinapic acid significantly differentiated thrip-resistant
cultivars from susceptible ones (Table 1) [87]. In some cases of plant resistance to in-
sects, the ratio of the specific metabolites was preponderant over their respective contents,
as in carrot, where resistance to the fly Psila rosae F. is positively correlated with high
luteolin-7-O-glucopyranoside/kaempferol-3-O-glucopyranoside and methyluteolin-7-O-
glucopyranoside/kaempferol-3-O-glucopyranoside ratios [88].

Modes of action were investigated either in artificial bioassays or in planta. Chloro-
genic acid was shown to significantly injure larval growth rate and larval survival capacity
of F. occidentalis thrips when fed artificial diets including 5% chlorogenic acid (Table 1) [85].
Quercetin mostly contained in leaf extracts of castor beans (Ricinus communis L.) caused
the death of adults and had remarkable ovicidal and oviposition-deterrent activity against
Callosobruchus chinensis L., a common species of beetle found in the bean weevil subfamily
and known to be a pest to many stored legumes (Table 1) [89]. Some compounds do not
have direct insecticidal activity, but their physical and chemical properties can improve the
solubility of other compounds and thus their penetration and efficacy. This sort of synergy
was illustrated with non-PPP metabolites in an in vitro analysis that revealed an up to
19-fold increase in penetration of camphor in a binary mixture with 1,8-cineole through
the larval integument of the cabbage looper (Trichoplusia ni) in comparison to camphor
alone, the most toxic ratio being 60:40 1,8-cineole:camphor (LD50 = 186.9µg/insect) [90,91].
Such a synergy could probably be searched within PPP metabolites. As mentioned before
for fungal targets, one metabolite may have opposite actions against different targets, e.g.,
chlorogenic acid is on the one hand auxiliary to control thrips but on the other hand is
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promoting oviposition on carrot leaves by the black swallowtail (Papilio polyxenes Fabr.) [92].
An integrative approach is therefore needed to ensure that the protection strategy against
one target does not increase severity of the disorders caused by another agent.

3.2. Vector Targets

Not only can insects cause direct damage to plants but they can also be vectors
transmitting economically threatening diseases, such as Pierce’s disease, caused by the
bacterium Xyllella fastidiosa [93], the grapevine yellow disease caused by phytoplasmas [94]
or other major crop viruses. Therefore, limiting an epidemic by preventing the contact
of the host with disease-carrying vectors is a major preoccupation in crop management.
In this regard, Su and collaborators [95] addressed this dimension by linking metabolic
changes in tomato leaves to vector behavior. They showed that whiteflies (Bemisia tabaci)
actively recognized plants previously attacked by conspecifics due to decreased terpenoid
and flavonoid contents. By treating tomato plants infested by B. tabaci with naringenin they
increased their content of rutin, kaempferol-rhamnopyranoside, quercetin-trisaccharide, 3-
O-methylmyricetin and anthocyanin up to the same level as those measured in noninfested
plants and showed that the preference of B. tabaci for oviposition on previously infested
plants was reversed (Table 1). As a consequence of reduced B. tabaci population, both the
pest and the vectored virus—e.g., the tomato yellow leaf curl virus (TYLCV)—damage can
be decreased. Moreover, whiteflies fed less on the phloem of flavonoid-rich tomato leaves,
and the spread of TYLCV was reduced [96]. The authors pointed out that their findings
rather suggest an impediment of the host–vector interaction than an antiviral activity of
flavonoids, as disease expression was only delayed. Similarly, flavonoid accumulation
was observed after infection of grapevine by the Flavescence dorée phytoplasma. This
flavonoid accumulation was thought to repel the insect vectors afterwards [97].

The genes of the PPP involved in plant resistance to insects, considered direct herbi-
vores or disease vectors, are poorly documented. Susceptibility of carrot roots to larval
damage caused by the fly Psila rosae correlated with semiquantitatively estimated accu-
mulation of PAL1 and PAL3 mRNAs in leaves [88]. The two genes responsible for their
biosynthesis were expressed at a higher level in resistant lines than in susceptible ones.
The PPP genes whose overexpression was correlated with the metabolic changes described
above in the tomato–B. tabaci experiment [95] were the genes coding for CHS, CHI, flavonol
synthase (FLS) and DFR.

In the field of drug discovery, phenylpropanoids and flavonoids are increasingly
explored to develop eco-friendly insecticides targeting the vectors of major human diseases,
such as mosquitoes [98–103]. At a time when resistance to conventional insecticides is
alarming, recent works aimed at improving insecticide efficiency by overcoming the resis-
tance mechanisms of insects. As a matter of fact, the activity of the CYP6AA3 and CYP6P7
cytochrome P450 monooxygenases of mosquito—known to detoxify insecticides such as
pyrethroids—was inhibited by four flavones (apigenin, 5-hydroxy-7,8-dimethoxyflavone,
5-hydroxy-7,8,2′,3′-tetramethoxyflavone, and 5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone)
from Andrographis paniculata Nees (Table 1) [104]. Other studies focused more on the in-
sect’s vital component and have investigated the neurotoxicity of plant phenylpropanoids
to the target insects. On this basis, the mortality of Aedes aegypti was attributed to the
inhibition of acetylcholinesterase activity by the phenylpropanoids asaricin, isoasarone and
trans-asarone from Piper sarmentosum Roxb. leaf extracts (Table 1) [105]. This strategy may
deserve to be explored for crop protection against insects.

4. Prospects

The health benefits conferred by some plant-derived foodstuffs and beverages have
greatly encouraged the exploration of the bioactive compounds involved and enhanced
the investigation of their production in plant tissues [106–108]. This has paved the way
for the understanding of the mechanisms of action of some phenylpropanoid derivatives
on human bacterial and fungal agents, but also on viruses [76,82,83,109]. On this basis,
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knowledge from medical research could be a pioneer in understanding how plant-derived
bioactive compounds negatively influence plant pathogen development (Figure 2).
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Figure 2. Potential intracellular targets of flavonoids and phenylpropanoids in microorganisms and
insects aggressing plants. Biosynthetic accumulation can be constitutive and/or induced in response to
external stimuli. The protective action of phenylpropanoids and flavonoids is described as the combinatory
effect of their localization during the host’s interaction with aggressors, their sustained availability, and
the promotion of specific compounds over others among the same subfamily or their putative synergy.
Their action on microorganisms and insects probably arises from interference with important cellular
machineries and structures, but this is not fully understood for all types of pests and pathogens.

An overview of the breakthroughs cited in this review clearly shows that some
molecules exhibit a universal action regardless of the nature of the pathogen (summa-
rized in Table 1). Chlorogenic acid, quercetin and other flavonoids are most frequently
mentioned [55,56,76,89,95]. This universality has been exploited in the development of
multidisease-resistant crops mediated by phenylpropanoids and flavonoids, e.g., myricetin
(a flavonol) from tomato, to a vast array of herbivore insects [110]. Further described in [43],
defense priming by rutin application on different host plants helped inducing SA-mediated
defense responses against various bacterial pathogens. Similarly, quercetin induced the
expression of defense-related genes in apple fruits [111]. Supporting these findings, the
recent characterization of a gene in the PPP of maize corroborated the place held by these
families of compounds: phenylpropanoids and flavonoids have become a promising and
sustainable source of multiresistance [112]. However, despite this apparent potential in
the expression of multiresistance, their action appeared to be more complex, as their ac-
cumulation in a given host can be perceived differently by various pathogens [41,92]. A
preliminary systemic investigation based on metabolite contents should be undertaken
prior to their selection for disease resistance. Efforts are still to be made in plant health
research to understand the mechanisms of action of this family of compounds to better use
them. Finally, it will be necessary to evaluate not only the content of metabolites of interest
but also their location in the plant organs. Indeed, at the tissue level, phenylpropanoids can
be found in grain pericarps and in various leaf tissues, such as glandular trichomes, cuticle,
epidermis and mesophyll [25,36,113,114]. Immunolocalization of PAL and CHS in Primula
kewensis W. Wats. suggested that flavonoid biosynthesis occurred in the head of glandular
cells [115]. The concentration in aglycones and their glycosides may vary, considering differ-
ent levels of the leaf tissue, suggesting the specificity of their function [116]. At the cellular
level, phenylpropanoid derivatives are stored in vacuoles, but can also be detected in the
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cell wall [117]. This accumulation inside or at the peripheral sites of the cell/tissue/organs
may signify the formation of physical or chemical barriers preventing pathogen or pest
invasion (direct effect) or an involvement in plant signaling to mediate defense responses
or plant-to-plant communication. Therefore, depending on the mechanisms of action, the
metabolite content required to be efficient for plant protection may be different.

Table 1. Overview of main active PPP compounds and their putative mechanisms of action. Molecules
are sorted in two families, phenylpropanoids and flavonoids, and are alphabetically presented within
the families. The table does not include all the compounds cited in the text, but only those that have
been documented either through genetic studies on segregating progenies, functional validation
of candidate genes explaining their biosynthesis, direct toxicity tests on the targets, or histological
observations of the effects of the compound on the target. Compounds for which the literature only
relates a correlation between resistance level and metabolite content are not described. Concentration
range is given for the compounds with biological activity reported in the corresponding references.
MIC, minimum inhibitory concentration; EC50, half-maximal effective concentration; IC50, half-
maximal inhibitory concentration; MC50, half larval mortality concentration.

Compound Host Targets Concentration Mechanisms Ref.
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dysenteriae MIC = 20 µg·mL−1

Bacterial outer
membrane

disintegration
[52]

Candida
albicans,
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larval growth
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Table 1. Cont.

Compound Host Targets Concentration Mechanisms Ref.
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