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Abstract: It has been reported that polysaccharides in wine can interact with tannins and other
wine components and modify the sensory properties of the wine. Unfortunately, the contribution
of polysaccharides to wine quality is poorly understood, mainly due to their complicated structure
and varied composition. In addition, the composition and molecular structure of polysaccharides
in different wines can vary greatly. In this study, the polysaccharides were isolated from pinot noir
wine, then separated into high-molecular-weight (PNWP-H) and low-molecular-weight (PNWP-L)
fractions using membrane-based ultrafiltration. Each polysaccharide fraction was further studied
using size exclusion chromatography, UV–Vis, FT-IR, matrix-assisted laser desorption/ionization–
high-resolution mass spectrometry, and gas chromatography-mass spectrometry (GC-MS). The results
showed that PNWP-L and PNWP-H had different chemical properties and compositions. The FT-IR
analysis showed that PNWPs were acidic polysaccharides with α- and β-type glycosidic linkages.
PNWP-L and PNWP-H had different α- and β-type glycosidic linkage structures. FT-IR showed
stronger antisymmetric and symmetric stretching vibrations of carboxylate anions of uronic acids
in PNWP-L, suggesting more uronic acid in PNWP-L. The size exclusion chromatography results
showed that over 72% of the PNWP-H fraction had molecular sizes from 25 kDa to 670 kDa. Only
a small percentage of smaller molecular polysaccharides was found in the PNWP-H fraction. In
comparison, all of the polysaccharides in the PNWP-L fraction were below 25 KDa, with a majority
distributed approximately 6 kDa (95.1%). GC-MS sugar composition analysis showed that PNWP-L
was mainly composed of galacturonic acid, rhamnose, galactose, and arabinose, while PNWP-H
was mainly composed of mannose, arabinose, and galactose. The molecular size distribution and
sugar composition analysis suggested that the PNWP-L primarily consisted of rhamnogalacturonans
and polysaccharides rich in arabinose and galactose (PRAG). In comparison, PNWP-H were mostly
mannoproteins and polysaccharides rich in arabinose and galactose (PRAG). Further research is
needed to understand the impacts of these fractions on wine organoleptic properties.

Keywords: wine polysaccharides; Pinot noir; sugar composition; size-exclusion chromatography;
FT-IR; GC-MS

1. Introduction

Many consumers much appreciate wine due to its organoleptic properties [1]. In
addition to alcohol and tannins, polysaccharides comprise wine’s major class of macro-
molecules. The concentration of polysaccharides in wine varies greatly and can be as
high as 2 g/L [2]. Wine polysaccharides originate from grape berries and yeast cells, so
grape varieties and fermentation can affect their contents and compositions in the wine.
The primary polysaccharides in wine are polysaccharides rich in arabinose and galactose
(PRAG), rhamnogalacturonans (RG-I and RG-II), and mannoproteins (MP). PRAG com-
prises arabinogalactan proteins (AGP), arabinans, and arabinogalactans [2]. Although wine
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polysaccharides do not have a taste quality, they can interact with other wine components
to affect the physical and organoleptic qualities of the wine [3,4]. For example, it has been
reported that wine polysaccharides can stabilize wine colloids [5], improve wine foam
and color stability [6,7], and inhibit tartaric crystal formation during wine storage [8]. In
addition, wine polysaccharides can influence the aggregation of exogenous salivary protein–
tannin complexes, affecting wine mouthfeel attributes and modulating wine astringency [9].
It has also been reported that wine polysaccharides can affect aroma perception [10–12].
The interactions are closely related to the structure and content of the polysaccharides [3].

Viticulture and enology practices can affect wine polysaccharide composition and
characteristic profiles. It has been reported that grape maturity could influence the contents
of PRAG, mannoproteins, and rhamnogalacturonans II in the wine [13,14]. Apolinar-
Valiente et al. demonstrated that grape cultivars could affect the quantity and composition
of the polysaccharides in wine [15]. Martínez Lapuente et al. found that longer pomace
maceration time and high-power ultrasound treatment on crushed grapes significantly
increased the content of PRAG and rhamnogalacturonans but not mannoprotein [16]. In
other studies, it was observed that enzymatic treatments during the grape maceration
stage led to a higher content of grape-derived pectic polysaccharides in the wine but not
yeast-derived mannoproteins [17]. However, the pectic enzyme treatment modified the
composition and structure of the polysaccharides, resulting in the loss of the terminal
arabinose residues in PRAG [18]. The flash-release treatment of grapes, a wine-making
practice consisting of rapidly heating the grapes and then applying a high vacuum to
pull some volatiles, was also reported to enhance the extraction of PRAG and type II
rhamnogalacturonan from the grapes [18].

The mannoproteins are derived from yeast during fermentation, whereas the arabino-
galactan proteins and rhamnogalacturonans-II are derived from grapes. The distribution of
the yeast-derived polysaccharides and grape-derived polysaccharides is dynamic during
the maceration, fermentation, and aging processes. The grape-derived arabinogalactan
proteins are the predominant polysaccharides in young wines, whereas the yeast-derived
mannoproteins are the primary type in aged wines. Furthermore, the high molecular
weight of mannoproteins and arabinogalactan proteins can precipitate during maturation,
further complicating polysaccharide composition [19]. All aspects of the wine-making
process affect the polysaccharides in the wine, so the “terroir effect” plays an important
role in the polysaccharides composition [20].

Although significant progress has been made in recent years on wine polysaccharides,
the chemical structures, composition, and properties of polysaccharides in different wines
are largely unexplored. Wine polysaccharide characterization is a challenging field that
needs to be explored to better understand the organoleptic functions of the wines. Hence,
the scope of this study is to isolate polysaccharides from pinot noir wine and fractionate
them based on molecular size using ultrafiltration, analyze their composition by measuring
α- and ß-/furanosides and pyranosides derivative of each fractionation, and characterize
each fraction using size-exclusion chromatography, UV–Vis, FT-IR, and matrix-assisted
laser desorption/ionization–high-resolution mass spectrometry.

2. Results and Discussion
2.1. Pinot Noir Wine Polysaccharides Isolation and Fractionation

The polysaccharides (PNWPs) from pinot noir wine were concentrated using a mem-
brane ultrafiltration technique. A 2 kDa membrane was successful in retaining the polysac-
charides. A 100 kDa membrane could further fractionate the polysaccharides into low
molecular weight (PNWP-L) and high molecular weight (PNWP-H) fractions. Next, ethanol
was added to carefully precipitate the polysaccharides while leaving other impurities in
the solution. The polysaccharides were first washed with 80% ethanol, followed by 100%
ethanol until the supernatant was colorless. The process yielded 0.8 g PNWPs from 500 mL
wines.
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2.2. Yield and Impurity Analysis of PNWPs

The yields and impurity analysis of PNWPs are shown in Table 1. The yield of the
PNWP-L and PNWP-H were 0.24 and 0.41 g/g PNWPs, respectively. The residual protein
and total phenolics were analyzed. The proteins of the PNWP-H were higher than PNWP-L,
which could be related to the presence of mannoprotein and arabinogalactan proteins in the
PNWP-H. The total phenolic content of the PNWP-H was slightly higher than the PNWP-L,
which could be related to the high molecular weight polyphenol aggregate in the PNWP-H
fraction.

Table 1. The yield and chemical component analysis of PNWPs.

Samples Yield (g/g) # Protein Content (%) Total Phenolic Content (%)

PNWP-L 0.24 0.3% ± 0.1% 1.7% ± 0.0%
PNWP-H 0.41 5.3% ± 0.4% 2.2% ± 0.0%

#—the fractions obtained from PNWPs.

2.3. Ultraviolet-Visible Spectroscopy Analysis of PNWPs

The UV-Vis spectra of PNWPs are shown in Figure 1. As illustrated in Figure 1, the
isolated polysaccharides had minimal UV–Vis absorption from 250 to 600 nm except when
the wavelength approached 200 nm. In addition, there was a small characteristic absorption
peak at 260–280 nm, indicating a small amount of proteins and phenolics in PNWPs [21].
The presence of protein may be related to mannoproteins and arabinogalactan proteins
(AGP) [22].
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2.4. Fourier-Transform Infrared Spectroscopy Analysis of PNWPs

FT-IR is an essential analytical technique for carbohydrate analysis, allowing for the
rapid and non-destructive evaluation of structural information of wine polysaccharides [23].
The characteristic absorptions of the two polysaccharides with different molecular weights
are identified in Figure 2. The broad peaks in the region of 3300–3500 cm−1 corresponded
to the stretching vibration of the O-H, and the small bands near 2931 cm−1 represented
the asymmetric vibration of C-H of polysaccharides [24]. The small peak at approximately
1748 cm−1 was derived from the C=O stretching vibration of the carbonyl group of the
esters [25]. Two intense bands at 1608 cm−1 and 1418 cm−1 were associated with the
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antisymmetric and symmetric stretching vibrations of carboxylate anions (COO-) of uronic
acids [23,26,27], and they were more pronounced for the PNWP-L, suggesting more uronic
acid in the PNWP-L. Interestingly, the PNWP-H had much stronger absorption from 800
cm−1 to 1200 cm−1 than the PNWP-L. This wavelength region was associated with the
stretching vibration of C-O-H (ring vibrations) and C-O-C (glycosidic bond), indicating
different types of pyranose/furanose rings [28,29].
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Moreover, the absorption at approximately 891 cm−1 could be attributed to the β-type
glycosidic linkages [30], and the peak at approximately 817 cm−1 was likely related to
α-type glycosidic linkages [31]. The FT-IR results showed that the PNWPs were acidic
polysaccharides with α- and β-type glycosidic linkages, and the PNWP-L and the PNWP-
H had different α- and β-type glycosidic linkage structures. The FT-IR spectra showed
many shoulders on the major absorption. Boulet et al. reported that the numbers of peak
shoulder of wine polysaccharides were as follows: AGP < MP < RG-II < RG-I. The number
of peak shoulders of the PNWP-L was much more than the PNWP-H in the FT-IR spectrum,
indicating that the PNWP-H contained more AGP and MP, while rhamnogalacturonans
were the main fractions in the PNWP-L [22]. The absorption peaks in this region are unique
and complex, but they are important to provide the fingerprint of molecules [32].

2.5. Molecular Weight Distribution of PNWPs

Polysaccharide molecular sizes directly affect their physical properties. The molecular
size of polysaccharides is typically measured by high-resolution size-exclusion chromatog-
raphy with a refractive index detector using a standard curve [33] or multi-angle laser
light scattering detectors [34]. The size-exclusion chromatograms of the PNWPs (a) and
standard curve of dextrans (b) are presented in Figure 3. The molecular size distributions
were calculated based on the peak area percentage (Table 2). The PNWP-H fraction had
a wide large molecular size distribution from 25 kDa to 670 kDa, accounting for 72.3%.
Only small percentages of smaller molecular size distributions were found in the PNWP-H
fraction. In comparison, all of the PNWP-L fractions were below 25 KDa, with a major-
ity of 6 kDa (95.1%). The results confirmed that the ultrafiltration technology used in
this research effectively fractionated wine polysaccharides into low and high molecular
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weight fractions. The distribution of wine polysaccharide fractions can be related to many
factors, such as grape variety, vintage, and wine-making techniques [3]. The molecular
size distribution analysis showed that PNWPs were polysaccharides with a wide range of
molecular sizes, consistent with the literature reports [16]. Jones-Moore et al. reported that
the molecular weight of mannoproteins, arabinogalactan proteins, rhamnogalacturonans-
II, and rhamnogalacturonans-I in wine was about 5–500 kDa, 50–260 kDa, 10 kDa, and
45–50 kDa, respectively [3]. Comparing the peak characteristics with that reported in
the literature, it is likely that the peaks in the range of 9.5–17 min in PNWP-H mainly
corresponded to the mannoproteins or mannans and the higher molecular weight of PRAG.
The peak in the 17–18 min region mainly corresponded to the medium molecular weight of
PRAG, mannoproteins or mannans, and rhamnogalacturonans. The peaks in the 18.5–20
min region mainly corresponded to rhamnogalacturonans, small fragments of PRAG, and
mannoproteins or mannans [16,20,35]. Among them, PRAG and rhamnogalacturonans
were derived from pinot noir grapes, while the mannoproteins and mannans were derived
from yeast.
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Table 2. The molecular weight distribution (as dextran equivalent) and peak area percentage of
PNWPs.

Samples Peak No. Peak MW (kDa) MW Distribution (kDa) Area Account (%)

PNWP-L 1 15.9 ± 0.0 12–25 4.9
2 6.2 ± 0.0 5–12 95.1

PNWP-H 1 66.5 ± 0.3 25–670 72.3
2 16.2 ± 0.0 12–25 22.1
3 6.2 ± 0.0 5–12 5.6

2.6. Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry
(MALDI-TOF) Analysis of PNWP-L

Multiple molecular weight determination methods were carried out in this study. In
addition to the traditional SEC, MALDI-TOF analysis was also investigated. Compared
to traditional SEC, MALDI-TOF analysis is a more advanced and accurate technique to
determine the molecular weight of biological macromolecules, including low molecular
weight polysaccharides. The MALDI-TOF spectrum of the PNWP-L is shown in Figure 4.
A cluster of peaks is shown in the mass spectrum with the range of 1.11–3.79 kDa. Among
them, the peak with a molecular weight of 3.33 kDa was the most prominent and was
considered the main molecular weight of the PNWP-L. The large MW of polysaccharides do
not ionize well for MALDI-TOF analysis. Selective enzyme hydrolysis followed by MALDI-
TOF analysis will help elucidate polysaccharide branching and composition. One of the
disadvantages of using MALDI-TOf-MS to characterize polysaccharides is the inefficiency
in ionizing this class of molecules, especially when compared with peptides and proteins
containing nitrogen atoms. Nevertheless, MALDI can provide accurate mass information
and help elucidate the molecule’s sequence when the fragmentation spectra are analyzed.
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2.7. Monosaccharide Composition Analysis of the PNWPs
2.7.1. The Methanolysis Parameter Optimization

Monosaccharide profiling is critical to understanding the structure of wine polysac-
charides. Typically, the wines are concentrated, and the small molecular weight com-
pounds in the samples are removed by dialysis [4,16,34,36–38]. Next, the polysaccharides
are precipitated using 80% ethanol and hydrolyzed with trifluoroacetic acid (TFA). The
monosaccharide composition can then be analyzed by high-performance liquid chromatog-
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raphy [39]. Sugar composition can also be measured using GC or GC-MS by analyzing their
trimethylsilyl-ester O-methyl glycosyl-derived (TMS) obtained after acidic methanolysis
and derivatization [16,40], or their alditol acetate derivatives obtained after trifluoroacetic
acid hydrolysis and derivatization [18]. GC and GC-MS techniques have better resolutions
than the HPLC technique and are preferred for complex polysaccharide composition analy-
sis. However, the methanolysis and derivatization conditions must be optimized for the
polysaccharides to ensure complete methanolysis but without thermal artifact formation.

Lactose was selected for the methanolysis optimization study. The effect of tem-
perature (75 ◦C, 80 ◦C, and 85 ◦C) and time (16 h, 18 h, and 20 h) on methanolysis
for lactose were studied. Representative chromatograms under different methanolysis
conditions are shown in Figure 5. In Figure 5A–C, the compounds with peak numbers
1–6 were α-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-galactofuranoside, α-methyl 2,3,4,6-
tetrakis-O-(trimethylsilyl)-galactopyranoside, ß-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-
galactofuranoside, ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, α-methyl
2,3,4,6-tetrakis-O-(trimethylsilyl)-glucopyranoside, and ß-methyl 2,3,4,6-tetrakis-O-
(trimethylsilyl)-glucopyranoside, respectively. The two distinct peaks (peak numbers 7–8)
shown at 40–45 min were lactose-TMSs when the methanolysis conditions were carried out
at lower temperatures or shorter times.

As illustrated in Figure 5A–C, the lactose peaks decreased as the temperature increased
from 75 ◦C to 85 ◦C. Therefore, the surface optimization experiment was conducted to
determine the best conditions. Figure 5D shows the relationship between the peak area
(%) of un-methanolyzed lactose and the methanolysis temperature and time. Based on the
surface optimization chart, the optimal methanolysis condition was determined to be 85 ◦C
for 18 h, and the conditions were used for subsequent composition analysis. The structures
of TMS derivatives of the sugar are shown in Figure 6.
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Figure 5. The methanolysis parameter optimization analysis of lactose. (A) 75 ◦C/18 h for
methanolysis condition, 1. α-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-galactofuranoside, 2. α-methyl
2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, 3. ß-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-
galactofuranoside, 4. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, 5. α-methyl
2,3,4,6-tetrakis-O-(trimethylsilyl)-glucopyranoside, and 6. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-
glucopyranoside, 7. α-octakis(trimethylsilyl)-lactose, 8. ß-octakis(trimethylsilyl)-lactose; (B) 80 ◦C/18
h for methanolysis condition; (C) 85 ◦C/18 h for methanolysis condition; (D) the surface plot of the
peak areas (%) of unmethanolyzed lactose and methanolysis conditions.
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2.7.2. Monosaccharide Composition of Pinot Noir Wine Polysaccharides

The GC-MS chromatograms of PNWPs clearly illustrated the compositional differences be-
tween the PNWP-H and PNWP-L (Figure 7). As shown in Table 3, the PNWP-L and the PNWP-
H exhibited significant differences in monosaccharide composition. Overall, the PNWP-L was
mainly composed of α-galactofuranosiduronic acid (31.8%), α-galactopyranosiduronic acid
(13.8%), α-mannopyranoside (9.9%), α-rhamnopyranoside (7.6%), ß-galactofuranosiduronic acid
(7.3%), α-glucopyranoside (5.7%) and ß-galactopyranosiduronic acid (4.5%). By comparison,
the PNWP-H was mainly composed of α-mannopyranoside (21.6%), α-galactopyranoside
(18.7%), α-arabinopyranoside (13.1%), α-arabinofuranoside (8.4%), ß-galactopyranoside
(6.9%), α-rhamnopyranoside (6.6%) and ß-arabinopyranoside (6.5%). Moreover, the contents of
α-galactofuranosiduronic acid, ß-galactofuranosiduronic acid, α-galactopyranosiduronic acid,
and ß-galactopyranosiduronic acid in the PNWP-L were much higher than the PNWP-H, which
was consistent with FT-IR results. On the other hand, the contents of α-arabinofuranoside,
ß-arabinopyranoside, α-arabinopyranoside, α-mannopyranoside, α-galactopyranoside,
and ß-galactopyranoside in the PNWP-H were much higher than the PNWP-L. In addition,
more uronic acid was detected in the PNWP-L compared to the PNWP-H. The above
comparisons had significant differences based on significance analysis.
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3. ß-methyl 2,3,4-tris-O-(trimethylsilyl)-arabinopyranoside, 4. α-methyl 2,3,4,6-tetrakis-O-
(trimethylsilyl)-rhamnopyranoside, 5. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-rhamnopyranoside,
6. ß-methyl 2,3,5-tris-O-(trimethylsilyl)-arabinofuranoside, 7. α-methyl 2,3,4,6-tetrakis-O-
(trimethylsilyl)-fucopyranoside, 8. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-fucopyranoside, 9.
α-methyl 2,3,4-tris-O-(trimethylsilyl)-xylopyranoside, 10. ß-methyl 2,3,4-tris-O-(trimethylsilyl)-
xylopyranoside, 11. α-methyl 2,3,5-tris-O-(trimethylsilyl)-galactofuranosiduronic acid, 12. α-
methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-mannopyranoside, 13. ß-methyl 2,3,5-tris-O-(trimethylsilyl)-
galactofuranosiduronic acid, 14. α-methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-galactofuranoside/α-
methyl 2,3,5,6-tetrakis-O-(trimethylsilyl)-glucofuranoside, 15. ß-methyl 2,3,5,6-tetrakis-O-
(trimethylsilyl)-glucofuranoside, 16. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-mannopyranoside,
17. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside, 18. ß-methyl 2,3,5,6-tetrakis-O-
(trimethylsilyl)-galactofuranoside, 19. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-galactopyranoside,
20. α-methyl 2,3,4-tris-O-(trimethylsilyl)-galactopyranosiduronic acid, 21. ß-methyl 2,3,4-tris-
O-(trimethylsilyl)-galactopyranosiduronic acid, 22. α-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-
glucopyranoside, 23. ß-methyl 2,3,4,6-tetrakis-O-(trimethylsilyl)-glucopyranoside/α-methyl
2,3,4-tris-O-(trimethylsilyl)-glucopyranosiduronic acid, 24. ß-methyl 2,3,4-tris-O-(trimethylsilyl)-
glucopyranosiduronic acid, 25. myo-Inositol (hexakis-O-TMS).

Table 3. The monosaccharide composition of PNWPs.

Peak No. Composition
Monosaccharide Composition Percentage (%)

p Value #
PNWP-L PNWP-H

1 α-Araf 1.3 ± 0.0 l 8.4 ± 0.1 d *
2 α-Arap 2.4 ± 0.1 i 13.1 ± 0.2 c *
3 ß-Arap 1.2 ± 0.0 l 6.5 ± 0.1 f *
4 α-Rhap 7.6 ± 0.2 d 6.6 ± 0.1 f *
5 ß-Rhap 0.6 ± 0.0 no 0.5 ± 0.0 l -
6 ß-Araf 0.5 ± 0.0 o 2.4 ± 0.1 h *
7 α-Fucp 0.2 ± 0.0 p 0.1 ± 0.0 n -
8 ß-Fucp -q 0.1 ± 0.0 n *
9 α-Xylp 1.0 ± 0.1 m 0.2 ± 0.0 mn *
10 ß-Xylp 0.5 ± 0.0 o 0.1 ± 0.0 n *
11 α-Galf A 31.8 ± 0.3 a 2.1 ± 0.3 i *
12 α-Manp 9.9 ± 0.2 c 21.6 ± 0.4 a *
13 ß-Galf A 7.3 ± 0.1 e 0.4 ± 0.1 lm *
14 α-Galf /α-Glcf 1.5 ± 0.0 k 5.8 ± 0.2 g *
15 ß-Glcf 0.7 ± 0.0 n 0.1 ± 0.0 n *
16 ß-Manp 0.9 ± 0.0 m 1.2 ± 0.0 k *
17 α-Galp 4.3 ± 0.1 h 18.7 ± 0.2 b *
18 ß-Galf 0.5 ± 0.0 o 1.6 ± 0.2 j *
19 ß-Galp 1.5 ± 0.0 k 6.9 ± 0.1 e *
20 α-GalpA 13.8 ± 0.2 b 1.1 ± 0.1 k *
21 ß-GalpA 4.5 ± 0.0 g 0.4 ± 0.0 lm *
22 α-Glcp 5.7 ± 0.0 f 1.0 ± 0.0 k *
23 ß-Glcp/α-GlcpA 1.9 ± 0.0 j 0.5 ± 0.0 l *
24 ß-GlcpA 0.3 ± 0.0 p 0.2 ± 0.0 mn -

Abbreviation notes: f —furanoside type; p—pyranoside type. Ara—arabinose, Rha—rhamnose, Fuc—fucose,
Xyl—xylose, GalA—galacturonic acid Man—mannose, Gal—galactose, Glc—glucose, GlcA—glucuronic acid.
Lowercase letters indicate significant differences (p < 0.05) between the different monosaccharides in PNWPs.
# p-value was performed by an independent sample t-test (p < 0.05), * means significant, - means not significant.

The Ara/Gal ratio was the feature of PRAG-related structures, and the value was
related to the pectin hairy regions, and a higher value indicated a more pectin-related
structure. The P-L had a total Ara content of 5.4%, and a total Gal content of approximately
7.0%. In comparison, the PNWP-H had a total Ara content of 30.4% and a total Gal content
of approximately 33.0%. The Ara/Gal ratio for the PNWP-H was bigger than that of the
PNWP-L, suggesting the PNWP-H had a more pectin-related structure. The Rha/GalA
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ratio was related to rhamnogalacturonan and homogalacturonans-related structures [41].
This ratio was about 1.8 for PNWH-H but only 0.1 for PNWH-L. Moreover, the (Ara +
Gal)/Rha ratio was associated with the relative portion of the neutral side chains to the
rhamnogalacturonans backbone [41]. The calculated (Ara + Gal)/Rha ratio of the PNWP-H
was bigger than that of the PNWP-L. A higher value suggested more branch chains in
the molecule. Vidal et al. reported that galacturonic acid and rhamnose were the main
compositions in rhamnogalacturonans isolated from red wine [42]. In contrast, galactose
and arabinose were the main components in arabinogalactan proteins, and mannose had the
highest level of mannoproteins [42]. Watrelot et al. found that the main monosaccharides
in pinot noir wines were galactose, mannose, and galacturonic acid, followed by glucose,
arabinose, and a minimal amount of rhamnose, glucuronic acid and xylose [37]. In contrast,
we found a relatively high percentage of arabinose in the PNWP-H fraction. Our result
does not contradict the literature. It is anticipated that polysaccharide composition will
depend on wine terroir, and different polysaccharide fractions will have different sugar
compositions.

A higher percentage of galacturonic acid, rhamnose, galactose, and arabinose was
found in the PNWP-L, suggesting the fraction mainly consisted of rhamnogalacturonans
and PRAG. While the PNWP-H mainly contained mannose, arabinose, and galactose,
suggesting it primarily consisted of mannoproteins and PRAG. The results demonstrated
the polysaccharide compositions in wine were diverse and were derived from both grapes
and wine. More research is needed to understand how the wine polysaccharide composition
is related to grape varieties, enology practices, and maturation.

The complete elucidation of the wine polysaccharide structure is beyond the scope of
this exploratory study. Detailed NMR experiments and branching analysis are underway
to obtain more structural information and molecular characteristics.

3. Materials and Methods
3.1. Materials and Reagents

Pinot noir wines produced at Oregon State University Research Winery were used
for wine polysaccharide isolation. All chemicals were of analytical grade unless otherwise
specified. Ethanol (200 proof, HPLC-UV grade) was purchased from Pharmco (Brookfield,
CT, USA). Acetyl chloride (≥99%), D-glucose (99%), D-galacturonic acid monohydrate
(97%), L-arabinose (99%), L-fucose (99%), and L-rhamnose (99%) were purchased from Alfa
Aesar (Tewksbury, MA, USA). Dextran standards, myo-inositol (≥99%), lactose (≥99%),
and D-galactose (≥99%) were purchased from Sigma-Aldrich (Saint Louis, MO, USA).
N-trimethylsilylimidazole (>98%) was bought from TCI Chemicals (Tokyo, Japan), am-
monium formate (99%) was obtained from BeanTown Chemical (Hudson, NH, USA),
and D-glucuronic acid (≥98%) was purchased from ICN Biomedicals (Irvine, CA, USA).
Methanol (extra dry, 99.8%), pyridine (extra dry,99.5%), D-mannose (≥99%), and D-xylose
(≥99%) were obtained from Acros Organics (Geel, Belgium).

3.2. PNWPs Extraction

PNWPs were extracted using a previously reported method with minor modifications
(Figure 8) [36,43,44]. Pinot noir wines were pre-filtered with a 2 µm glass fiber and 0.22 µm
mixed cellulose esters membranes (Millipore Sigma, Burlington, MA, USA) by vacuum
filtration. Subsequently, the filtered wine was subjected to ultrafiltration with a molecular
weight cut-off of 2 kDa (Vivaflow 200, Sartorius, Göttingen, Germany) to remove small
molecules such as residual sugars and organic acids. A volume of 500 mL of pinot noir wine
was ultrafiltrated until reaching 30 mL. Then a small amount of Milli-Q water was added to
continue the ultrafiltration process. The procedure was repeated a few more times to remove
all small molecules. After ultrafiltration, the supernatant was collected and centrifuged
at 8000 rpm for 20 min (Sorvall LYNX 4000 Centrifuge, Thermo Scientific, Waltham, MA,
USA). Four volumes of absolute alcohol were added to the solution to make the ethanol
concentration reach 80%, and the mixture was left at 4 ◦C overnight. The precipitates
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(above 2 kD) were harvested by centrifugation. The isolated polysaccharides were then
redissolved in Milli-Q water and centrifuged again. The obtained supernatant was used for
further fractionation with a molecular weight cut-off of 100 kDa ultrafiltration membrane.
Two fractions of wine polysaccharides were collected, the PNWP-L for low molecular
weight fraction from the filtrate, and the PNWP-H for high molecular weight fraction
from the retentant. Both the PNWP-H and the PNWP-L were purified by ultrafiltration
with a molecular weight cut-off of 2 kDa again. After precipitated with 80% ethanol,
the precipitates were washed with 80% ethanol, followed by absolute ethanol until the
supernatant was colorless. The samples were then centrifuged and filtered to recover the
precipitates. The precipitates were dried in a vacuum oven (Forma Scientific, Waltham,
MA, USA, with a high vacuum pump by Edwards, Crawley, UK) at 40 ◦C overnight. About
0.8 g polysaccharides with a molecular weight above 2 kD were obtained from 500 mL
of wine. The isolation process was repeated 12 times to harvest sufficient quantities of
polysaccharides for further study.
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3.3. Protein and Total Phenol Analysis

Protein content was measured by the Bradford method with bovine serum albumin as a
reference material [45]. The total phenolic content measurement was analyzed by the Folin–
Ciocalteu colorimetric method using gallic acid as a standard, with some modifications [46].

3.4. Ultraviolet-Visible Spectroscopy Analysis

PNWPs were dissolved in Milli-Q water to a suitable concentration (0.1 mg/mL) and
filled in a quartz cuvette. The ultraviolet spectrum of the PNWPs was scanned from 190
to 600 nm using a UV–visible spectrophotometer (UV-1800, Shimadzu, Japan). Water was
used as blank according to the method described previously with minor modifications [47].
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3.5. Fourier Transform Infrared Spectroscopy Analysis

The IR spectra of the PNWPs were obtained using an FT-IR spectrophotometer (Nicolet
iS10, Thermo Scientific, Waltham, MA, USA) coupled with an Attenuated Total Reflectance
sampling accessory (Smart iTR with diamond plate) with minor modifications [48]. The
FTIR-ATR spectrum was recorded with a resolution of 4 cm−1 and 16 scans per spectrum
in the 4000–600 cm−1 infrared region at room temperature. The background spectrum was
collected in the air before each sample was measured. The sampling stage was cleaned
with isopropanol after each measurement to avoid cross-contamination. The prominent
absorption peaks of obtained results were performed using OMNIC 32 software and plotted
as transmittance (%) vs. wave numbers (cm−1).

3.6. Molecular Weight Analysis

Molecular weight distribution was measured by high-performance size-exclusion
chromatography with some modifications [48,49]. A Superose™ 6 Increase 10/300 (10 mm
× 300 mm) GL column (Cytiva, Uppsala, Sweden) and an Agilent 1100 series HPLC system
equipped with a refractive index detector (Agilent Technologies, Inc., Santa Clara, CA, USA)
operated in positive polarity were used for separation and detection. The chromatographic
conditions were as follows: mobile phase, 50 mM ammonium formate; column temperature,
35 ◦C; flow rate, 1 mL/min; injection volume, 10 µL. Dextrans with various molecular
weights (5, 12, 25, 50, 80, 150, 270, 410, and 670 KDa) were used to create the calibration
equations according to the elution time plotted against the logarithm of molecular weight.

3.7. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry
(MALDI-TOF) Analysis

A small amount (1 mg) of the PNWP-L was mixed with 10 µL of 2,5-dihydroxybenzoic
acid (DHB) matrix (50 mg/mL of DHB in 50% methanol and 0.1% TFA). The spectrum was
recorded in an Ultraflex (Bruker Daltonics, Bremen, Germany) using negative and positive
ion modes. Raw data were processed using DataAnalysis V4.1 (Bruker Daltonics).

3.8. Monosaccharide Composition Analysis

The methanlysis and derivatization optimization and gas chromatography-mass spec-
trometry (GC-MS) were performed according to previous methods with some modifica-
tions [50–52]. Lactose was selected for the methanolysis parameters optimization. The
methanolysis temperature and time were investigated under anhydrous conditions for
residual lactose after the reaction. The methanolysis conditions were evaluated at 75 ◦C,
80 ◦C, and 85 ◦C for 16 h, 18 h, and 20 h using a surface optimization design. Subsequently,
the methanolysis, silylation, and GC-MS analysis were sequentially performed. The lowest
reaction temperature and time combination was selected for complete methanolysis and
minimum thermal artifact formation.

The monosaccharide composition of the PNWPs was determined by gas chromatography-
mass spectrometry (GC-MS) using the optimized methanolysis and derivatization parame-
ters. For the sugar composition analysis, about 0.7 mg of the PNWPs were dissolved in
0.5 mL 0.5 M dry HCl-methanol (acetyl chloride in dried methanol), and the methanolysis
was performed at 85 ◦C for 18 h. After cooling to room temperature, the solution was
mixed with 0.2 mL internal standard solution (0.1 mg/mL of myo-inositol in pyridine).
The mixed solution was evaporated to dryness under a nitrogen gas flow. Finally, the
residue was mixed with 0.1 mL N-trimethylsilylimidazole (TMSI) and incubated at 80 ◦C
for 30 min. The final solution was analyzed by GC-MS on an Agilent 6890N-5973 system
(Agilent Technologies, Inc., Santa Clara, CA, USA) equipped with an HP-5MS column
(30 m × 0.25 mm × 0.25 µm, Agilent Technologies). The GC-MS program conditions were
as follows: inlet temperature, 270 ◦C; hydrogen flow, 1.5 mL/min; split ratio: 10:1; the oven
program (130 ◦C for 2 min; with 2 ◦C/min to 200 ◦C; with 20 ◦C/min to 280 ◦C, hold for
7 min). MS transfer line and ion source temperatures were 280 and 230 ◦C, respectively.



Molecules 2022, 27, 8330 14 of 16

Electron ionization mass spectrometric data from m/z 50 to 350 were collected with an
ionization voltage of 70 eV.

The hybrid standard monosaccharides (glucose, xylose, mannose, arabinose, galactose,
rhamnose, fucose, glucuronic acid, and galacturonic acid) were derivatized and analyzed
under the same conditions described previously. Identification was achieved with the stan-
dard compounds and with the NIST library (Rev. D05.01). The calculation was processed
using ChemStation software (ver. E.02, Agilent Technologies Inc., Santa Clara, CA, USA).

3.9. Statistical Analysis

The results were exhibited as mean ± standard deviation (SD) in triplicate (n = 3).
Duncan’s test and an independent sample t-test were performed by SPSS statistics 20
software; p < 0.05 was considered significant.

4. Conclusions

In this study, two fractions of wine polysaccharides were isolated by ultrafiltration
technology. FT-IR results showed that the PNWPs were acidic polysaccharides with α- and
β-type glycosidic linkages. GC-MS analysis revealed the PNWP-L was mainly composed
of α-galactofuranosiduronic acid, α-galactopyranosiduronic acid, α-mannopyranoside, α-
rhamnopyranoside, ß-galactofuranosiduronic acid, α-glucopyranoside, and
ß-galactopyranosiduronic acid. In comparison, the PNWP-H was mainly composed of
α-mannopyranoside, α-galactopyranoside, α-arabinopyranoside, α-arabinofuranoside, ß-
galactopyranoside, α-rhamnopyranoside, and ß-arabinopyranoside. Moreover, relatively
more glucuronic acid in the PNWP-L was found. The compositional analysis and molecular
weight characterization showed that the low molecular weight polysaccharides in pinot
noir wine were mainly rhamnogalacturonans and polysaccharides rich in arabinose and
galactose (PRAG). In contrast, the high molecular weight polysaccharides in pinot noir
wine were mainly mannoproteins and polysaccharides rich in arabinose and galactose
(PRAG). This information provided the molecular basis to further study the effect of these
polysaccharides on the organoleptic attributes of pinot noir wine.
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