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Abstract: Ginsenoside Rh1 (G-Rh1), a possible bioactive substance isolated from the Korean Panax
ginseng Meyer, has a wide range of pharmacological effects. In this study, we have investigated
the anticancer efficacy of G-Rh1 via in silico and in vitro methodologies. This study mainly focuses
on the two metastatic regulators, Rho-associated protein kinase 1 (ROCK1) and RhoA, along with
other standard apoptosis regulators. The ROCK1 protein is a member of the active serine/threonine
kinase family that is crucial for many biological processes, including cell division, differentiation,
and death, as well as many cellular processes and muscle contraction. The abnormal activation of
ROCK1 kinase causes several disorders, whereas numerous studies have also shown that RhoA is
expressed highly in various cancers, including colon, lung, ovarian, gastric, and liver malignancies.
Hence, inhibiting both ROCK1 and RhoA will be promising in preventing metastasis. Therefore,
the molecular level interaction of G-Rh1 with the ROCK1 and RhoA active site residues from the
preliminary screening clearly shows its inhibitory potential. Molecular dynamics simulation and
principal component analysis give essential insights for comprehending the conformational changes
that result from G-Rh1 binding to ROCK1 and RhoA. Further, MTT assay was employed to examine
the potential cytotoxicity in vitro against human lung cancer cells (A549) and Raw 264.7 Murine
macrophage cells. Thus, G-Rh1 showed significant cytotoxicity against human lung adenocarcinoma
(A549) at 100 µg/mL. In addition, we observed an elevated level of reactive oxygen species (ROS)
generation, perhaps promoting cancer cell toxicity. Additionally, G-Rh1 suppressed the mRNA
expression of RhoA, ROCK1, MMP1, and MMP9 in cancer cell. Accordingly, G-Rh1 upregulated the
p53, Bax, Caspase 3, caspase 9 while Bcl2 is downregulated intrinsic pathway. The findings from
our study propose that the anticancer activity of G-Rh1 may be related to the induction of apoptosis
by the RhoA/ROCK1 signaling pathway. As a result, this study evaluated the functional drug-like
compound G-Rh1 from Panax ginseng in preventing and treating lung cancer adenocarcinoma via
regulating metastasis and apoptosis.

Keywords: ROCK1; ADMET; Insilco; autodock vina; anti-lung cancer

1. Introduction

According to Global Cancer Statistics 2020, cancer is a terrible life-threatening disease
globally, with a higher mortality rate of approximately 19.3 million new cancer cases and
almost 10·0 million deaths. Among various cancers, lung cancer remained the leading cause
of cancer-related death, with an estimated 1.8 million deaths and 2.20 million new cases per
year [1]. Non-small cell lung cancer (NSCLC) is primarily accountable for lung malignancy,
accounting for 85% of all lung cancers with lower therapeutic activity [2]. Today, various
conventional medications such as chemotherapies, radiation, and surgery are used in
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treating cancer. Although combining different therapy increases cancer patients’ chances
of prolonged survival, the ultimate result is still unsatisfactory because of adverse effects
with drug resistance [3–5]. Therefore, there is an urgent need to extend novel therapeutic
approaches to improve lung cancer patients’ survival with fewer or no side effects. In this
critical situation, natural products play a significant role in cancer prevention and treatment
because they have unique efficacy, safety, and economic impact on cancer [6,7].

The hallmarks of cancer comprise six biological capabilities acquired during the
multistep development of human tumors. They include sustaining proliferative signaling,
evading growth suppressors, resisting cell death, enabling replicative immortality, inducing
angiogenesis, and activating invasion and metastasis [8]. Metastasis is a multifactorial and
multicellular process involving actin structures’ dynamic formation and breakdown [9].
The ROCK protein has two isomers, ROCK1 and ROCK2, and both display 92% homology
in the catalytic kinase domain and 65% identity in their overall amino acid sequences [10,11].
The human chromosomes 18 (18q11.1) and 2 (2p24) contain the ROCK1 and ROCK2 genes,
respectively [12]. Additionally, the primary upstream regulator of ROCK is the Rho protein,
which belongs to the Ras superfamily and is a small-molecule GTP-binding protein with
low GTP enzyme activity. By interacting with GTP or GDP conformation, it can alternate
between high and low activity [13]. Additionally, numerous studies have shown that
abnormal activation of ROCK kinase leads to a variety of diseases such as cancer [9,14],
cardiovascular disorders [15], nervous system diseases [16], hypertension [17], Alzheimer’s
disease [18], myocardial ischemia [19], heart failure and kidney failure [20]. Consequently,
several potential ROCK inhibitors are currently in clinical trials, and only one compound,
fasudil (Figure 1B), has been approved as a ROCK inhibitor (https://clinicaltrials.gov/ct2
/show/NCT03792490 (accessed on 10 October 2022)) [21]. Fasudil has been marketed in
Japan since 1995 and is used for treating cerebral vasospasm and ischemia [22]. ROCK1
protein is considered an important drug target for several diseases, so it is critical to identify
additional potential ROCK1 inhibitors.
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Figure 1. The two-dimensional graphical representation of (A) ginsenoside Rh1 from Panax ginseng
and (B) fasudil, a known inhibitor of ROCK1.

A widely expressed, highly conserved serine/threonine kinase with a molecular
weight of approximately 160 kDa called ROCK (also known as ROCK1 and ROCK2) is
a crucial downstream effector controlled by the small GTPase RhoA [23]. Rho GTPases,
which are members of the Ras GTPase superfamily and share 25% homology with Ras,
were first identified in 1985 [21]. One of the essential Rho GTPase members is RhoA/B/C.
Hence, it is another significant protein family controlling cell migration is Rho GTPase,
which is essential for maintaining cell morphology, motility, and cell-cell and cell-matrix
adhesion RhoA is a small GTPase protein belonging to the Rho family and is connected to
regulating the actin cytoskeleton [22]. The control of cell motility in the actin cytoskeleton
creates the potential for regulating tumor cell metastasis [24]. Therefore, Rho GTPases bind
to many effector proteins and play central roles in regulating the actin and microtubule
cytoskeletons and gene transcription [25]. These proteins have been implicated in many
critical cancer-related processes in mammalian cells, such as proliferation, migration, and
survival. Moreover, RhoA/ROCK signaling plays a crucial role in various human diseases.

https://clinicaltrials.gov/ct2/show/NCT03792490
https://clinicaltrials.gov/ct2/show/NCT03792490
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It is now considered a potential target for the treatment of several diseases, including
lung cancer [26,27], breast cancer [28] gastric cancer [29], and colon cancer [30]. Therefore,
RhoA/ROCK1 could be an ideal candidate target in lung cancer treatment as it is found to
be highly expressed in cancer. Hence, inhibiting or suppressing these two targets will be a
promising strategy in preventing and managing cancer.

On the other hand, reactive oxygen species (ROS) are extracellular mediators that
support various signaling pathways, including cancer metastasis and proliferation [31].
Reactive oxygen species (ROS) overproduction is a hallmark of mitochondria in cancer
cells that aids in the progression of the disease by causing genomic instability, altering
gene expression, and actively participating in signaling pathways [32]. Mitochondrial
ROS regulates mitochondrial mechanisms involved in cancer homeostasis and develop-
ment [33]. Previous reports demonstrated that ROS could regulate cancer proliferation and
apoptosis by the signaling pathway of p53/bax/bcl2 [34–36]. Additionally, MMPs com-
prise a structurally and functionally related family of zinc metalloproteinases degrading
extracellular matrix and basement membrane barriers and thus are thought to play a key
role in angiogenesis, inflammatory processes, cancer development, cell proliferation, and
apoptosis [37]. A recent study revealed that in hepatocellular carcinoma, MMP-1 is a poor
prognostic biomarker for patients [38]. In addition, the impact of MMP-1 and MMP-9 levels,
and consequently the prevalence and development of breast cancer, on 1G/2G and CT
polymorphisms [39]. Therefore, the above-mentioned targets play crucial role in apoptosis,
hence regulating them will be favorable in the treatment of lung cancer.

Panax ginseng, commonly known as ginseng, is an attractive natural medicinal plant
used worldwide in East Asian countries, including Korea, China, and Japan [40]. The major
components of ginseng are ginsenosides, which contain an aglycone with a dammarane
skeleton [41]. Ginsenosides appear to be responsible for most of the activities of ginseng,
including the anti-inflammatory, anti-apoptosis, cardiovascular diseases, and other ef-
fects [42,43]. Additionally, Red ginseng contains ginsenoside Rh1, a metabolite of the
significant ginsenosides Re and Rg1, whereas Rh1 is created by intestinal microbiota after
oral use of ginseng [44,45]. Moreover, the mechanisms and anticancer effects of P. ginseng
and its metabolites (CK, G-Rh1, Rh2, Rh3, and F1) in various cancers (breast cancer, colon
cancer, prostate cancer, stomach cancer, and lung cancer) have been discussed in several
studies [46,47]. Among all the P. ginseng saponins, G-Rh1 is a potential bioactive compound
identified from roots, leaves, stems, fruits, and flower buds [20]. In addition, G-Rh1 induces
anticancer activities in several cancer cells, including Breast cancer [48], colorectal can-
cer cell [47], human hepatocellular carcinoma [49], astroglioma [50] and acute monocytic
leukemia cells [51].

The requirement to determine the molecular interactions between G-Rh1 and bio-
macromolecules is crucial in developing natural products as drugs. Computer-aided
drug design (CADD) effectively uses in silico methodologies such as molecular docking,
molecular dynamics, pharmacophore modeling, and chemoinformatics tools to improve
and refine therapeutic candidates derived from natural sources [52,53]. This study used
comprehensive simulations to assess the structural stability, conformational changes, and
protein movements of the ginsenoside Rh1-RhoA and Rh1-ROCK1 complexes. The G-
Rh1 chemical space interacted with the RhoA and ROCK1 binding active sites with a
suitable binding mode. This was incorporated into the molecular dynamics study and
principal component analysis. Although several studies have investigated the anticancer
effects of Rh1, the underlying mechanisms of Rh1 on lung cancer migration and invasion
remain unknown. Finally, in the present study, we investigated the regulation of lung
cancer invasion and migration by G-Rh1 with RhoA/Rock/p53/MMP-1/MMP-9 pathway
through in vitro evaluation following the in silico confirmation.
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2. Results and Discussion
2.1. Pharmacokinetic Properties of G-Rh1

The 2D structure of G-Rh1 from Panax ginseng was drawn, and energy was minimized
(Figure 1). The prepared ginsenoside Rh1 structure was used to generate the molecule’s
physiochemical and pharmacokinetic properties. We determined various calculated prop-
erties such as aqueous solubility (accepted range: 6.5 to −0.5), serum protein binding
(accepted range: 1.5 to −1.5), logP for octanol/water (accepted range: −0.2 to 6.5), hep-
atotoxicity (accepted range: nontoxic is 0 and toxic is 1), CYP2D6 inhibition probability
(accepted range: noninhibitor is 0 and inhibitor is 1), and human oral absorption in the
gastrointestinal tract (accepted range: poor is <25% and high is >80%). The detailed phar-
macokinetic (ADMET) results of G-Rh1 are shown in Table 1. The ADMET descriptors
for ginsenoside Rh1 are as follows: retrieved aqueous solubility (−4.829), serum protein
binding (0.1), logP for octanol/water (2.6), hepatotoxicity (0), CYP2D6 inhibition probabil-
ity (0.2), and human oral absorption in GI (49.4%). The predicted G-Rh1 values fall in the
accepted ranges of 95% of known drugs. These results clearly indicate that ginsenoside
Rh1 is an orally bio-active compound and can be used for targeting the disease.

Table 1. ADMET results of ginsenoside Rh1 with pharmacokinetic properties.

QP (%) LogS QplogKhsa CYP2D6
Inhibition

Hepato
Toxicity QPlogPo/w Reference

49.4 −4.829 0.1 0.2 0 2.6 [54]
QP (%): Percentage of human oral absorption in GI (acceptable range: <25% is poor and >80% is high). LogS:
Aqueous solubility (acceptable range: −6.5 to 0.5). QPlogKhsa: Serum protein binding (acceptable range: −1.5
to 1.5). CYP2D6 inhibition: 0 is non-inhibitor and 1 is inhibitor. Hepatotoxicity: 0 is non-toxic and 1 is toxic.
QPlogPo/w: Octanol/water partition coefficient (acceptable range −0.2 to 6.5).

The drug-likeness filtration study was performed for G-Rh1 based on Lipinski rules.
The drug-like molecules were predicted according to the following rules: MW (<500), LogP
(<5), hydrogen bond donor (HBD) (<5), and hydrogen bond acceptor (HBA) (<10). G-Rh1
shows a molecular weight of 638 kDa, but this is in the accepted range of 95% of known
drugs. HBD [7] and HBA [17] are Lipinski rule violations, but they were considered to
be the discovery of drug molecules from natural products [55]. Then, LogP of 2.6 also
conformed to drug-like properties, and the predicted descriptors of ginsenoside Rh1 are
shown in in Table 2.

Table 2. Drug-likeness prediction results of ginsenoside rh1 based on Lipinski rule of 5.

Properties Predicted Values

Molecular weight 638.8

Hydrogen bond donor 7

Hydrogen bond acceptor 14

LogP 2.625

PASS, which predicts the biological activity spectrum based on the chemical structure
formula, showed significant biological targets for G-Rh1. This program was applied to the
multilevel neighborhoods of atoms (MNA) descriptor and was used to calculate the targets
from the original chemical structure. These MNA descriptors can be used to predict the Pa
and Pi scores, which range from 0 to 1 from G-Rh1. The biological target active molecules
can be identified based on Pa values close to 1 and Pi close to 0 [56]. The results of G-Rh1
showed probable biological activity to the following targets: chemo preventive, caspase
3 stimulant, dementia treatment, vascular dementia treatment, antithrombotic, CYP3A
inducer, CYP3A4 inducer, apoptosis antagonist, hepatoprotection, and CYP2C9 inducer.
The predicted targets for G-Rh1 along with the Pa and Pi values are shown in Table 3.
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Table 3. Predicted biological activity of ginsenoside Rh1.

Predicted Biological Activity Pa a (%) Pi b (%)

Chemopreventive 0.99 0.001

Caspase 3 stimulant 0.99 0.001

Dementia treatment 0.98 0.000

Vascular dementia treatment 0.98 0.000

Antithrombotic 0.98 0.001

CYP3A inducer 0.97 0.001

CYP3A4 inducer 0.96 0.001

Apoptosis antagonist 0.96 0.001

Hepatoprotectant 0.94 0.002

CYP2C9 inducer 0.93 0.001
a Pa represents the probability of active. b Pi represents the probability of inactive.

2.2. Molecular Interaction Results of ROCK1 and RhoA with Ginsenoside Rh1

The molecular-level interaction of ROCK1 protein and RhoA with ginsenoside Rh1 was
analyzed using the molecular docking method. One gets the impression that docking was
especially designed for natural compounds. It is a method that predicts the most energetically
favorable orientation of a ligand (usually a small molecule but could also be a biopolymer) to
a receptor (usually a protein). In this study, the ROCK1 and RhoA crystal structure was used
to perform the docking simulation using the Autodock Vina program. The essential active
site residues were kept flexible, and fasudil and dexamethasone was used as a control. The
interaction results were confirmed by their hydrogen bond formation and binding energy to the
crucial active residues and ginsenoside Rh1. Analysis of docking results shows that ginsenoside
Rh1 interacts with ROCK1 via four hydrogen bonds (ALA86, ASP160, ASN203, ASP216) to
ROCK1 active site residues along with −8.9 kcal/mol binding affinities. Three hydrophobic
interactions with amino acid residues GLY85, ILE82, VAL162 has been formed. Interestingly
G-Rh1 shares two similar H-bond interaction as the control drugs used.

Analysis of docking results shows that ginsenoside Rh1 interacts with RhoA1 via four
hydrogen bonds (ARG5, ASP78, PRO180, GLN180) to RhoA active site residues along with
−7.1 kcal/mol binding affinities. Further, G-Rh1 forms four hydrophobic interactions with
the amino acid residues ASP78, LYS6, PRO75, PHE106. It also binds to the similar binding
pocket as dexamethasone and GDP. The detailed docking results along with the control
ligand are shown in Table 4. A graphical representation of ginsenoside Rh1 interacting
with the ROCK1 active site residues is shown in Figure 2A. A graphical representation of
ginsenoside Rh1 interacting with the ROCK1 active site residues is shown in Figure 2B.
Other reports have shown that these two strongest hydrogen bonds are implicated in
ROCK1 inhibition in numerous diseases and have been used for targeted development of
potential drug candidates [57,58].

Table 4. Interaction of ginsenoside Rh1 and control drugs with amino acid residue of ROCK1 & RhoA.

Protein Compound Binding Energy
(kcal/mol)

Hydrogen Bond
Interactions

Hydrophobic
Interactions

No. of
Hydrogen

Bonds

ROCK1

Ginsenoside Rh1 −8.9 ALA86, ASP160,
ASN203, ASP216 GLY85, ILE82, VAL162 3

Dexamethasone −8.4 ALA86, ASP216 GLY85, GLY218 2

Fausidil −8.3 ARG84, MET156 GLY83, VAL90, ALA103,
ALA215, LEU205 2
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Table 4. Cont.

Protein Compound Binding Energy
(kcal/mol)

Hydrogen Bond
Interactions

Hydrophobic
Interactions

No. of
Hydrogen

Bonds

RhoA

Ginsenoside Rh1 −7.1 ARG5, ASP78, PRO180,
GLN180

ASP78, LYS6, PRO75,
PHE106 4

Dexamethasone −7.0 ASP76, ASP78, ALA177 ALA181, THR77, PRO75,
PRO108 3

GDP −7.2
ALA15, CYS16, GLY17,

THR19, CYS20, ALA161,
LYS162

LYS18, LYS118 7

Fausidil −5.5 GLU32, TYR34, VAL33 PRO31, LYS27, PRO36 3

Ibuprofen −6.3 GLU40, VAL38 LYS27 2

Rhosin −7.1 GLU40, VAL38 PRO36, LYS27, TYR42 2
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2.3. Molecular Dynamics Simulation, MM-PBSA and PCA Analysis

The structural evolution was employed to the docked complex structures of ROCK1
(Figure S2), and RhoA (Figure S3) interaction using the molecular dynamics (MD) method.
In this study, three individual MD simulations were performed on the apo form of ROCK1
and RhoA along with the complexes of ROCK1-fasudilROCK1-dexamethasone, ROCK1-
ginsenoside Rh1, RhoA—ginsenoside Rh1, RhoA—dexamethasone, and RhoA—GDP
(Figure 3A,B). Analysis of MD results (Figure 4) show the root mean square deviation
(RMSD) against the backbone of each complex with an attained equilibration around 1.5
ns (ROCK1-fasudil), and 0.7 ns (ROCK1-ginsenoside Rh1 and RhoA—ginsenoside Rh1).
After obtaining the equilibration of each complex, stability was maintained throughout the
entire 50 ns simulation time. In addition, root mean square fluctuation (RMSF) analysis
of the ROCK1-ginsenoside Rh1 complex and RhoA—ginsenoside Rh1 were calculated
throughout the entire simulation against Cα atoms. For the analysis of trajectory files,
important active site residues of ROCK1 and RhoA with ginsenoside Rh1 were compared
with the ROCK1-fasudil complex and RhoA -fasudil complex a known inhibitor. Figure 5
displays the obtained RMSF values of each complex. The radius of gyration and H-bond
analysis also confirmed the docking result (Figures 6 and 7).
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Figure 7. Line plots of Ligand-protein H bonds for (A) ROCK1 and (B) RhoA with Ginsenosides Rh1
and control (Dexamethasone, Fausidil).

We also applied the DSSP algorithm [59] to examine the secondary structural changes
in ROCK1 protein and ROCK1-ginsenoside complex during the entire simulation. The
observed differences in secondary structural elements are shown in Figure S1. The binding
affinity scores were computed before and after dynamic snapshots (Table 5) for the ROCK1-
ginsenoside Rh1 complex structure. For the detailed analysis, different time scale snapshots
were used to determine the conformational changes upon ginsenoside Rh1 binding to the
ROCK1 protein. For this analysis, every 2 ns snapshot was collected from the entire 10 ns
trajectory and different time scales were analyzed using the VMD program (Figure S4). We
also used this 10 ns trajectory to perform PCA to examine protein motions with principal
components. The backbone atoms of each structure in the PCA spectrum indicate the level
of atomic fluctuations and behavior of protein motions based on the first two eigenvectors.
Both ROCK1 protein and ROCK1-ginsenoside Rh1 complex structures cover a small space
in that plane of 2D projection. The cloud represents the 10 ns trajectory projected with
the first two eigenvectors and is shown in Figure 8. From the MD results, the backbone
RMSD, residue level fluctuations of Cα atoms, secondary structure conformational changes,
and protein motions based on principal component values clearly show the molecular
mechanism of ROCK1 and RhoA upon binding to ginsenoside Rh1. Finally, we performed
the MM-PBSA analysis to calculate the thermodynamics parameters of the complex, such
as binding free/van der Waals/electrostatic/polar solvation energies (∆Ebinding; Evdw;
Eelec; ∆Epolar respectively) at the molecular level. Table 5 displays the calculation result,
indicating that each complex’s BFE value is greater than the control complex value.
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Table 5. Calculated binding free energy (MM-PBSA).

Complex ROCK1-Ginsenoside Rh1 Complex ROCK1-Dexamethasone Complex ROCK1-Fausidil Complex

∆VDWAALS (kcal/mol) −39.8 −29.79 −34.47

∆EEL (kcal/mol) −20.78 −18.77 −18.09

∆EPB (kcal/mol) 34.6 36.09 38.88

∆ENPOLAR (kcal/mol) −24.80 −21.56 −23.91

∆EDISPER (kcal/mol) 42.9 42.97 43.63

∆GGAS (kcal/mol) −50.6 −48.57 −52.6

∆GSOLV (kcal/mol) 61.8 57.51 59.6

∆TOTAL (kcal/mol) −30.80 −20.95 −27.04
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2.4. Cytotoxicity Effect of Ginsenosides Rh1

Natural bioactive chemicals are potential sources for developing drugs to treat various
diseases. In particular, several ginsenosides have been shown to have pharmacological
effects, including anticancer properties [51,55,60]. Among them, Rh1 has been shown to
suppress a variety of cancer cell lines, including breast cancer cells, lung cancer A549 cells,
and cervical cancer HeLa cells [61]. Our findings observed the cytotoxicity level of the G-
Rh1 on murine macrophage (RAW 264.7) cells, and A549 lung cancer cells were medicated
at several concentrations (0, 12.5, 25, 50, 100 µg/mL) for 24 h. In the cytotoxicity experiment,
we used MTT solution for measuring the cell toxic level. The cytotoxicity in cancer-free
RAW 264.7 cells was evaluated, and samples were determined to be safe. It was observed
that the cell viability of RAW 264.7 cells showed low toxicity with G-Rh1 at 100 µg/mL
after 24 h (Figure 9A).

However, 100 µg/mL of G-Rh1 significantly inhibited around 40% cell proliferation in
the A549 cells compared with the positive control such as commercial cisplatin, which is
used as an anticancer drug (Figure 9B). In contrast, it was observed that G-Rh1 decreased
A549 cell viability in a dose-dependent manner. Meanwhile, at 100 µM, Rh1 decreased
approximately 30% of the cell viability of A549 cells [62] and approximately 25% of the cell
viability of HeLa cells [63]. These findings demonstrate that Rh1 promotes the apoptotic
pathway in A549 lung cancer cells, which has anti-cancer properties.
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2.5. In Vitro ROS Induced by G-Rh1

In cancer cells, reactive oxygen species (ROS) play a key role in generating cytotoxicity.
In a variety of human cancer cell lines, higher accumulation of ROS level has been shown
to cause apoptosis, autophagy, and cell cycle arrest [64,65]. G-Rh1 are important reputed
materials for anticancer activity due to reactive oxygen species (ROS) generation [48]. Herein,
Intracellular ROS level was determined by the DCFH-DA reagent with cisplatin, G- Rh1 on
A549 cells. The G-Rh1 treatment of A549 malignant cells revealed a dose-dependent increased
in intracellular ROS generation at higher concentrations (100 µg/mL) in compared to the
positive control drug cisplatin (Figure 10). Several studies introduced that mitochondria
produce reactive oxygen species (ROS) during apoptosis, and a reduction in mitochondria
membrane potential results in increased ROS production and apoptosis [66,67]. In addition,
the accumulating ROS can cause p53 to be expressed, which has significant impact on
the beginning of apoptosis via transactivating pro-apoptotic proteins (Bax) or interacting
with anti-apoptotic mitochondrial proteins (Bcl-2) [68,69]. The inhibition of cell growth and
creation of ROS by G-Rh1 extracts in A549 lung cancer cells suggest that ROS production
causes apoptosis via the mitochondrial route.
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2.6. G-Rh1 Induced Apoptosis by Regulating Apoptotic Gene Expression

To further explore the mechanism involved in the ginsenoside Rh1-mediated anti-lung can-
cer effect, several essential anti-lung cancer genes were evaluated by RT-PCR using the primers
listed in (Section 3.10), including RhoA, Rock1, MMP1, MMP9, Bax, Bcl2, p53, Caspase 3, Caspase
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9. Additionally, RhoA and ROCK 1/2 are critical regulators of focal adhesion, actomyosin
contraction, proliferation, apoptosis, and cell motility [70,71]. The role of the Rho/ROCK1
signaling pathway in the molecular migration and invasion process has been studied [72,73].
The ROCK pathway is frequently elevated in NSCLC and is related to a more aggressive pheno-
type. A previous study revealed that in NSCLC, the Nrf2/Keap1 pathway affects cell motility
by dysregulating the RhoA/ROCK1 signaling pathway [9]. The treatment with baicalein on
A549 delayed the ability to form vasculogenic mimicry and decreased tumorigenicity. These
findings were accompanied by downregulated RhoA/ROCK proteins and compromised F-actin
cytoskeleton in vivo and in vitro studies [74]. Moreover, the results showed that Rho A and
ROCK1 are significantly downregulated on A549 treatment dose-dependent manner by the
G-Rh1 at 100 µg/mL (Figure 11).
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Figure 11. Effects of G-Rh1 on mRNA expression levels of apoptosis-related genes in A549 cells.
Here, A549 cells were treated with G-Rh1 at 50 and 100 µg/mL for 24 hr. Subsequently, total RNAs
were extracted, and the mRNA expression levels were determined by RT-PCR analysis with different
apoptotic genes including (A) ROCK, (B) RhoA, (C) MMP-1, (D) MMP- 9, (E) p53, (F) Bax, (G) Bcl2,
(H) Caspase 9, (I) Caspase 3 and compared with those of GAPDH. In A549 cells, RhoA, ROCK1,
MMP1, and MMP9 mRNA expression was decreased by G-Rh1. While downregulating Bcl2, G-Rh1
increased p53, Bax, Caspase 3, and Caspase 9. The data shown are representative of the mean values
of three independent experiments ±SD. *** p < 0.001 as compared to the non-treated control.
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Matrix metalloproteinases (MMPs), including MMP-1 and MMP-9, are a class of zinc-
dependent metalloenzymes that control several physiological functions, including the
proliferation and metastasis of tumor cells [75,76]. Therefore, we investigated the mRNA
expression level of the MMP-1 and MMP- 9 for anti-cancer activity on A549 cells. Previous
research has discovered that G-Rh1 suppresses MMP-1 expression by inhibiting AP-1 and
MAPK signaling pathways in human hepatocellular carcinoma cells [49]. Additionally, the
decrease in MMP-9 mRNA level caused by DNAzyme inhibited cell migration, prolifera-
tion, and invasion in A549 cells [77]. Therefore, in the current study, MMP1 and MMP9
expression levels were examined and shown to be lower after Rh1 treatment on A549 cells.

The generation of ROS by mitochondria is necessary for redox signaling, whereas
p53 is a redox-active transcription factor that suppresses cancers. As a result, ROS causes
apoptosis in cancer cells via activating p53 [78,79]. p53 regulates the expression of sev-
eral pro- and anti-apoptotic genes, including Bax and bcl2. Bcl2 is one of the apoptosis
mechanisms, that is triggered by stressful situations, including cytokine deficiency or DNA
damage [80]. This process may be happened by the activation of mitochondrial-mediated
apoptosis, which is indicated by the inhibition of bcl2, an increase in Bax, permitting the
release of cytochrome C into the cytoplasm, and ultimately the upregulation of caspase
9/3 gene [81,82]. Additionally, The RT-PCR (Figure 9) showed upregulation of p53 and
bax, caspase 3, caspase 9 and downregulation of bcl2 gene expression in a dose-dependent
manner by G-Rh1 compared to commercial drug cisplatin. Additionally, The RT-PCR
(Figure 11) showed upregulation of p53 and bax, caspase 3, caspase 9 and downregulation
of bcl2 gene expression in a dose-dependent manner by G-Rh1 compared to commercial
drug cisplatin. Therefore, this study revealed that G-Rh1 has ability to inhibit the apoptosis
gene expression in Lung cancer cells. However, Quantitative analysis and further research
into molecular mechanisms are required to understand the biological pathways fully.

3. Materials and Methods
3.1. Chemical

G-Rh1 samples were collected from the lab of Hanbang bio, Suwon, Korea. The
Korean Cell Line Bank provided the lung cancer cell line (A549) and Raw 264.7 murine
macrophage cells used in this investigation (KCLB, South Korea). Fetal bovine serum (FBS)
and penicillin-streptomycin solution were purchased from Gen DEPOT (Barker, TX, USA).
Gibco (Waltham, MA, USA) supplied high glucose, pyruvate Dulbecco’s Modified Eagle’s
Medium (DMEM). (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT)
the solution from Life Technologies, Suwon, Korea.

3.2. Computational Experiments
Protein and Ligand Preparation

The most active compound from the Panax ginseng medicinal plant, ginsenoside Rh1,
was selected for this study. The ginsenoside Rh1 compound structure was collected from
our own in-house database (Figure 1A). The two-dimensional structure (2D) of ginsenoside
Rh1 was drawn using ChemSketch, http://www.acdlabs.com (accessed on 2 August
2022) (Advanced Chemistry Development, Inc. Toronto, ON, Canada). The drawn 2D
structure file was in mol format, which was then converted into a three-dimensional (3D)
structure as .pdb format by importing it into Discovery Studio 3.5 visualizer (DS 3.5)
(DS, http://www.accelrys.com (accessed on 3 August 2022); Accelrys, Inc. San Diego,
CA, USA). The known ROCK1 inhibitor, fasudil (M77), was used as a control ligand for
docking simulation and was retrieved from the ROCK1(PDB ID: 5WNE) crystal complex
structure. The known RhoA inhibitors, GDP (control from the PDB complex of RhoA (PDB
ID: 4D0N), fasudil, Ibuprofen [83], and Roshin [84] were used as control. Furthermore,
these molecules were optimized using the Conjugate Gradients method [54] followed by
Steepest Descent [85] in 200 steps using the PyRx program [86]. The minimization step was
carried out using Universal Force Field (UFF) [87].

http://www.acdlabs.com
http://www.accelrys.com


Molecules 2022, 27, 8311 14 of 22

3.3. Pharmacokinetic Properties Prediction
ADMET and Drug Likeness Prediction

Based on the chemical structure, predicting the pharmacokinetic properties of a
molecule is an essential task in drug design. Descriptors such as physiochemical and
pharmacokinetic properties were calculated using the Qikprop version 3.0 module encoded
by the Schrödinger program (http://www.schrodinger.com (accessed on 5 June 2022)).
These properties, called ADMET (absorption, distribution, metabolism, excretion, and
toxicity), are essential for identifying active saponins. Ginsenoside Rh1 was imported
and neutralized using Maestro GUI wizard before calculating physiochemical and phar-
macokinetic property prediction because we want to predict the properties of interest at
neutral pH and not when the molecule is at an ionized state. This step is essential be-
cause neutralized ginsenoside Rh1 can generate pharmacokinetic properties. Furthermore,
Qikprop provides a range for comparing a particular molecule’s properties with those of
95% of the known drugs. The hepatotoxicity and CYP2D6 inhibition scores were calculated
using the ADMET module available from the DS 3.5 program. The following ADMET
descriptors were computed for ginsenoside Rh1: aqueous solubility, serum protein binding,
logP for octanol/water, hepatotoxicity, CYP2D6 inhibition probability, and human oral
absorption in GI (%). Further, drug-likeness screening was carried out by Lipinski’s rule
of five [88]. This filtration is mainly used for eliminating non-drug-like molecules and
selecting drug-like molecules based on Lipinski’s rules: molecular weight (MW), LogP, the
number of hydrogen bond donors (HBD), and the number of hydrogen bond acceptors
(HBA). These properties can be determined drug-likeness property of ginsenoside Rh1.

3.4. In Silico Biological Activity, Target and Active Site Prediction

Another computational program called Prediction of Activity Spectra for Substances
(PASS) (http://www.pharmaexpert.ru/passonline/ (accessed on 3 April 2022)) was used
to predict the biological activity spectrum based on the chemical structure formula [89].
This computational technique was used to predict what type of biological activities of
ginsenoside Rh1 are present in the biological system. In addition, this method produces
a list of biological activity along with the probability of active (Pa) and probability of
inactive (Pi) values. The accuracy of biological activity was carefully measured based on
the predicted probability scores; when Pa is close to 1 and Pi close to zero, the molecule has
a higher probability of biological activity. In addition, ginsenoside Rh1 has been validated
using the SWISS target prediction tool (Figure S5), which aims to predict the most probable
protein targets of small molecules [90].

We have applied the DoGSiteScorer online tool to predict binding pockets within
native ROCK1 and RhoA (Table S1 and Figure S6). DoGSiteScorer is a grid-based method
that uses a Difference of Gaussian filter to detect potential binding pockets solely based
on the 3D structure of the protein and splits them into subpackets. Global properties
are calculated, describing the size, shape, and chemical features of the predicted (sub)
pockets. Per default, a simple draggability score is provided for each (sub) pocket based on
a linear combination of the three descriptors describing volume, surface, hydrophobicity,
and enclosure. The binding pockets are ranked according to their size, surface area, and
draggability score [91].

3.5. Molecular Docking

The ROCK1 protein [PDB ID: 5WNE] and RhoA protein [PDB ID: 4D0N] 3D structure
was retrieved from the Protein Data Bank (PDB) [92,93] along with the co-crystalized ligand
of fasudil and GDP. To perform the docking studies, the ROCK and RhoA structure was
prepared by Autodock tool graphical interface (GUI) [94]. A known inhibitor fasudil and
GDP along with the water molecules were removed from the original structure and made
as a free receptor [58]. Further, Kollman charges and polar hydrogens were added to the
receptors. The fasudil and GDP binding sites are the most likely active sites. Further,

http://www.schrodinger.com
http://www.pharmaexpert.ru/passonline/
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fasudil is involved in two hydrogen bond interactions with the M156 and D160 residues
and other studies have shown that these residues play a role in ROCK1 inhibition [95].

The energy-minimized ginsenoside Rh1 with ROCK1 and RhoA protein structures
were used to perform docking simulations by the Autodock Vina program [89]. The fasudil
and GDP compound was used as a control for this study. The detailed docking procedures
were followed according to our previous study [96,97]. The potential binding interaction
was identified based on binding affinity scores and hydrogen bond interactions between
ROCK1 and RhoA with ginsenoside Rh1. The results of each complex were saved from the
graphical interface of Autodock tools and imported to DS.3.5 visualizer to analyze their
interactions at the molecular level.

3.6. Molecular Dynamics Simulations

To check the stability of ginsenoside Rh1 along with ROCK1 and RhoA protein, it was
subjected to a molecular dynamics (MD) study using the Gromacs 4.6 (GROningen MAchine
for Chemical Simulations) program [98]. The ROCK1 protein (apo form), ROCK1-fasudil
(known inhibitor), ROCK1-dexamethasone (control drug), ROCK1-ginsenoside rh1, RhoA
protein (unbound), RhoA-GDP (inhibitor), RhoA-dexamethasone (control drug), and RhoA-
ginsenoside rh1 complex structures were used to perform MD simulations. The ROCK1
and RhoA protein topology files were created using the gromacs utility (pdb2gmx), and
ginsenoside Rh1 topology files were created using the Dundee PRODRG2 server [99]. For all
simulations, we used the single-point-charge (SPC) [55] water model and the Gromacs [100]
force field. The detailed MD simulation procedure was followed according to our previous
study [96,101]. Each system (ROCK1, ROCK1-fasudil, ROCK1-dexamethasone, ROCK1-
ginsenoside rh1, RhoA protein, RhoA-GDP, RhoA-dexamethasone, and RhoA- ginsenoside
rh1) was neutralized by adding the appropriate ions (Na+ or Cl-) and canonical (NVT)
ensemble, and isothermal-isobaric (NPT) ensemble equilibration steps were performed.
Further, 50 nano-second (ns) production was carried out individually for all systems. To
analyze the MD simulation of ROCK1-ginsenoside Rh1, the results were saved every 2
pico seconds (ps). In addition, the root means square deviation (RMSD), root mean square
fluctuation (RMSF), H-Bonds, and secondary structures were computed using gromacs
utilities such as g_rms, g_rmsf, and g_hbond. The docking and molecular dynamics
simulations were performed using an Intel® 2.93 GhZ Xenon® CPU 5670 CentOS server.
Lastly, we have employed the gmx_MMPBSA [102] package for free energy calculations
based on the single trajectory of GROMACS with an appropriate force field. This tool
allows free energy calculations using MM/PBSA or GBSA (Molecular Mechanics/Poisson-
Boltzmann or Generalized Born Surface Area) methods with an implicit solvent model.

3.7. Principal Component Analysis

To determine the ROCK1 protein structure change upon ligand binding, we used
gromacs utilities. A PCA method called essential dynamics (ED) was followed according to
this protocol [103]. The protein coordinates of ROCK1 and its complexes (ROCK1-fasudil
and ROCK1-ginsenoside Rh1) were used as a starting point to calculate the PCA using
g covar gromacs utilities. This program computes the corresponding protein motions of
eigenvectors, eigenvalues, and projection values. In addition, these principal components
were determined based on the mass-weighted covariance matrix of the backbone atoms
of each structure. Finally, the g_anaeig gromacs utilities were used to analyze the protein
motions based on the 2D projection values for the first two principal components. All
dynamics graphics were plotted using Microsoft Excel and the XMGRACE [104] program.

3.8. Cell Culture

Human lung cancer (A549) was grown in a medium containing 89 percent RPMI
1640, 10% FBS, and 1% penicillin-streptomycin. RAW 264.7 murine macrophage cells were
generally purified in DMEM with 10% FBS and 1% penicillin-streptomycin. Two cell lines
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were allowed to adhere and grow for 24 h before being treated with different samples in a
37 ◦C humidified incubator with a 5% CO2 environment.

3.9. In Vitro Cytotoxicity of Ginsenosides Rh1

Using an MTT solution, the cytotoxicity of G-Rh1 was investigated in A549 and RAW
264.7 cell lines. The cytotoxicity of cisplatin (10 µg/mL) was evaluated on just A549 cells,
and the findings were compared to G-Rh1 after 24 h. The cell viability assay was carried
out as previously stated [105]. In a 96-well plate, cancer cells and normal cells were first
plated at a selective density of 1 × 104 cells/well. After that, cells were treated with a
variety of concentrations (0, 12.5, 25, 50, 100 µg/mL) and left to incubate for 24 h. After
24 h, cells were treated for 3–4 h at 37 ◦C with 20 µL of 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-
diphenyl tetrazolium bromide solution (MTT; 5 mg/mL, in PBS; Life Technologies, Eu-
gene, OR, USA). Furthermore, the addition of MTT reagents results in the formation of
purple-colored formazan in live cells. For dissolving the insoluble formazan agents, 100 µL
of DMSO was added to each well. The data were acquired using a 570 nm ELISA reader
(BioTek Instruments, Inc., Winooski, VT, USA).

3.10. Reactive Oxygen Species (ROS) Assay

In human lung cancer (A549), 2′,7′dichlorodihydrofluorescein diacetate (DCFH-DA)
was used to measure the strength of reactive oxygen species (ROS). To allow attachment in
96-well cell culture plates, we seeded the cells at a density of 1 × 104 per well and left them
in the incubator overnight for 100 percent growth confluency. A549 cells were then treated
for 24 h with various concentrations of cisplatin (10 µg/mL), (0, 12.5, 25, 50, 100 µg/mL).
After 24 h of treatment, the cells were stained with 100 µL of DCFH-DA (10 µM) solution in
each well and incubated for 30 min in the dark. The cells were then washed twice with PBS
((100 µL/well), and the old medium was discarded. At an excitation wavelength of 485 nm
and an emission wavelength of 528 nm, a multi-model plate reader (spectrofluorometer)
was utilized to determine the fluorescence intensity of ROS production. DCFH-DA reagent
was used to measure the increase in ROS.

3.11. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA from A549 cells was obtained using QIAzol lysis reagent (QIAGEN, Ger-
mantown, MD, USA), and the reverse transcription process was carried out using 1µg of
RNA in 20 µL of amfiRivert reverse transcription reagents (GenDepot, Barker, TX, USA),
as directed by the manufacturer. The obtained cDNA was amplified with the following
primers: RhoA, forward: 5′-CAG CAA GGA CCA GTT CCC AGA-3′ and Reverse: 5′-TGC
CAT ATC TCT GCC TTC TTC AGG-3′, ROCK1, forward: 5′-AGG AAG GCG GAC ATA
TTA GTC CCT-3′ and reverse: 5′-AGA CGA TAGTTGGGTCCCGGC-3′, MMP-1, forward:
5′-ATT CTA CTG ATA TCG GGG CTT TGA -3′ and reverse: 5′-ATG TCC TTG GGG TAT
CCG TGT AG-3′, MMP-9, forward: 5′-CGT CGT GAT CCC CAC TTA CT-3′ and MMP-1,
forward: 5′-ATT CTA CTG ATA TCG GGG CTT TGA -3′ and reverse: 5′-AGA GTA CTG
CTT GCC CAG GA -3′, BAX, forward 5′-GGT TGC CCT CTT CTA CTT T-3′ and reverse
5′-AGC CAC CCT GGT CTT G-3′; bcl2, forward 5′-GAA GGG CAG CCG TTA GGAAA-3′

and reverse 5′-GCG CCC AAT ACG ACC AAA TC-3′; p53, forward 5′-TCT TGGGCC
TGT GTT ATC TCC-3′ and reverse 5′-CGC CCA TGC AGG AAC TGT TA-3′, CASPASE 3,
forward 5′-GAA GGA ACA CGC CAG GAA AC-3′ and reverse 5′-GCA AAG TGA AAT
GTA GCA CCA A-3′; CASPASE 9, forward 5′-GCC CGA GTT TGA GAG GAA AA -3′

and reverse 5′-CAC AGC CAG ACC AGG AC -3′; and GAPDH, forward 5′-CAA GGT
CAT CCA TGA CAA CTT TG-3′ and reverse 5′-GTC CAC CAC CCT GTT GCT GTA G-3′.
The reaction was repeated 35 times for 30 s at 95 ◦C, 30 s at 60 ◦C, and 50 s at 72 ◦C. The
amplified RTPCR results were examined on 1% agarose gels, stained with Safe Pinky DNA
Gel Staining (GenDepot, Barker, TX, USA), and captured under UV light.
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4. Conclusions

In this study, the well-known compound G-Rh1 from Panax ginseng Meyer was validated
for its potential to inhibit RhoA and ROCK1 (metastasis) and to regulate RhoA/rock/p53/MMP-
1/MMP-9 (apoptosis). Molecular docking, biological activity prediction, molecular dynamics
modeling, MM-PBSA, principal component analysis, and ADMET prediction were employed
to determine the biological activity of G-Rh1. Further, in vitro validations were conducted to
observe the anti-lung cancer activity of G-Rh1 on human lung cancer cells (A549). As a result,
the pharmacokinetic findings reveal that G-Rh1 has the potential to be a drug-like molecule.
Additionally, when G-Rh1 interacts with the residues in the ROCK1 active site, strong hydrogen
bonds and hydrophobic interactions are formed that distinctly outline the inhibitory effect of
RhoA and ROCK1. In vitro cytotoxicity and ROS studies disclose that G-Rh1 was not toxic to
non-cancerous RAW 264.7 cells at concentrations up to 100 µg/mL. In contrast, G-Rh1 showed
more toxicity on cancerous cells at up to 100 µg/mL. Furthermore, G-Rh1 induced higher ROS
levels in human lung carcinoma cells at higher concentrations. Moreover, G-Rh1 reduced the
RhoA and ROCK1 gene expression in the A549 lung cancer cells. On the other hand, G-Rh1
regulated the gene expression of apoptosis regulators such as p53, Bax, Bcl2 Caspase 3, Caspase
9. According to the current findings, ROCK1 and RhoA downregulation inhibited NSCLC
A549 cell motility, proliferation, and survival. Hence, the proposed G-Rh1 compound should be
subjected to further experimental validation and may be used as a lead molecule for ROCK1
and RhoA inhibition and apoptosis regulation in treating and managing lung cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238311/s1, Figure S1: The secondary structural
elements of (A) ROCK1 protein, (B) ROCK1-fasudil, and (C) ROCK1-ginsenosde Rh1 during the
10 ns simulation. The color encoded is based on the DSSP program in gromacs utilities; Figure S2:
Docking interactions of control drug inhibitors ((A) Dexamethasone, (B) Fausidil with ROCK1);
Figure S3: Docking interactions of control drug inhibitors ((A) Dexamethasone, (B) GDP, (C) Fausidil,
(D) Ibuprofen, (E) Rhosin) with RhoA); Figure S4: The different conformation snapshots of (A)
ROCK1 protein, and (B) ROCK1-ginsenosde Rh1 through a 10 ns simulation; Figure S5: Validation of
target prediction for G-Rh1 using SWISS target prediction; Figure S6: (A) Predicted active site for
ROCK1 (B) Predicted active site for RhoA. Table S1. Active site prediction for ROCK1 and RhoA
using DoGSiteScorer.
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