
Citation: Zheng, Y.; Li, J.; Wei, K.

Boron Trifluoride Etherate Promoted

Regioselective 3-Acylation of Indoles

with Anhydrides. Molecules 2022, 27,

8281. https://doi.org/10.3390/

molecules27238281

Academic Editor: Gilbert Kirsch

Received: 5 November 2022

Accepted: 23 November 2022

Published: 28 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Boron Trifluoride Etherate Promoted Regioselective 3-Acylation
of Indoles with Anhydrides
Yunyun Zheng, Jiuling Li * and Kai Wei *

Henan Engineering Research Center of Funiu Mountain’s Medical Resources Utilization and Molecular Medicine,
School of Medical Sciences, Pingdingshan University, Pingdingshan 467000, China
* Correspondence: orgchem90@163.com (J.L.); weikai1987@126.com (K.W.)

Abstract: An efficient, high-yielding and scalable procedure for the regioselective 3-acylation of
indoles with anhydrides promoted by boron trifluoride etherate under mild conditions was reported.
This novel protocol provided a simple way to prepare 3-(benzofuran-2-yl) indole in three steps.
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1. Introduction

The indole and its derivatives are versatile structural motifs in organic and medicinal
chemistry [1–9], which have been regarded as “privileged fragments” in biologically active
natural products and pharmaceutical compounds. Among them, 3-acylindole moiety has
not only been found to act as a proven pharmacophore element in bioactive molecules such
as Analogue, Bruceolline and so on [10–19] (Figure 1), but has also served as a versatile
intermediate in the synthesis of indole derivatives [20–30]. For examples, an analogue
of deoxytopsentin displayed potent low nanomolar inhibitory activity against MRSA
PK with concomitant significant selectivity for MRSA PK over human PK orthologues.
Computational studies suggest that these potent MRSA PK inhibitors occupy a region of
the small interface of the enzyme tetramer where amino acid sequence divergence from
common human PK orthologues may contribute to the observed selectivity [14]. Oxi8006
is one of the first indole-based, colchicine-site-binding inhibitors of tubulin assembly into
microtubules. OXi8006 is a potent inhibitor of tubulin polymerization (IC50 = 1.1 µM) and
competes with radiolabeled colchicine at the colchicine binding site of tubulin. OXi8006 was
shown to be cytotoxic against three evaluated human cancer cell lines, NCI-H460, DU-145
and SK-OV-3, with an average GI50 of 25.7 nM [18,19]. Consequently, developing a more
efficient and practical protocol for the synthesis of 3-acylindoles has gained considerable
attention [31–46].

Regioselective functionalization of indoles is one of the most important challenges
in the field of indole chemistry, especially in the acylation of free (N-H) indoles. Though
many strategies, such as the metal-catalyzed intramolecular oxidative coupling reaction
for the preparation of 3-acylindoles, have been developed in recent decades [31–37], the
requirement for expensive and complex ligands and mental catalysts in this novel protocol
make few of them suitable for lab or industrial preparation today. The Friedel–Crafts
reaction was still regarded as the most promising, practical and convenient protocol [38–42].
AlCl3 [38–40], SnCl4 [40], TiCl4 [40], ZrCl4 [41] dialkylaluminum chloride [43–46] were the
most commonly used reagents to promote acylation due to their easy availability and high
reactivity. However, these common Lewis acids suffered from some limitations. Some of
them required additional protection and deprotection steps to eliminate 1-acylation and
1,3-diacylation [41]. In the above developed methods, most of the reagents were poor-
moisture-tolerant and air-sensitive, and the presence of a metal ion resulted in a laborious
and frustrated workup. In addition, most of the metal ions are toxic and must be carefully
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removed from the products, especially for the drug and pharmaceutical industry. Addi-
tionally, environmental awareness has also made them not preferred in this transformation,
especially in the large-scale processes. The application of more environmentally benign
solid Lewis acids or Brønsted acidic ionic liquids such as modified zeolites or bisulfate
in this acylation process have also been reported [47,48], but only very limited substrates
have been used, and the preparation of the Brønsted acidic ionic liquid was more complex
than the commercial reagents. Accordingly, a metal-free, more environmentally benign
regioselective acylation procedure to prepare 3-acylindoles under mild reaction conditions
and simple workup is highly desirable.
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Herein, we report a high regioselective and scalable protocol (Scheme 1) for the 3-
acylatation of indoles with anhydrides in the presence of boron trifluoride etherate, a very
common and easy-to-handle Lewis acid that has been widely used in organic reactions [49].
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2. Results and Discussion

At the beginning of our studies, acylation of indole 1a with acetic anhydride 2a in
different solvents in the presence of BF3·Et2O was explored (Table 1, entries 1–6). We found
that the acylation reaction could occur in DCM, DCE, CHCl3, MeCN or 1,4-dioxane, and
that DCM gave the best results (Table 1, entry 1). Then, the amount of BF3·Et2O (Table 1,
entries 7–10) and anhydride (Table 1, entries 11–13) were investigated, which revealed that
when the ratio of indole, anhydride and BF3·Et2O was 1:1.2:1, the yield of 3-acylindole
3aa achieved 83% (Table 1, entry 12). Another important point is that in the absence of
BF3·Et2O (entry 7), no desired product was achieved. Further screening of the reaction
temperature showed that room temperature was the best choice (Table 1, entries 14–15).
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Table 1. Optimization of reaction conditions.
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With the optimal reaction conditions, the aliphatic, alicyclic and aryl anhydrides were
subjected to investigate the scope of anhydrides in the acylation reaction. The results
are summarized in Table 2. The aliphatic, alicyclic and aryl anhydrides could react with
indole 1a smoothly to furnish the desired products 3 in good-to-excellent yields (Table 2,
entries 1–6). However, no desired products were observed for 4-chloro and 4-nitro benzoic
anhydrides, perhaps due to the solubility of anhydrides in DCM (Table 2, entries 7–8).

Table 2. Scope of anhydrides.
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To test the scope of the present protocols, various substituents at different positions
of indole ring, including the 1- and 2-substitued indoles, were investigated. As shown in
Table 3, both electron-donating and electron-withdrawing substituents in indoles gave the
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corresponding 3-acylindoles in good-to-excellent yields (from 53% to 93%). The position of
the substituents and the electronic nature on the indole ring did not play important roles;
only the indoles with electron-withdrawing groups afforded a slightly better yield. The
1-methylindole (1b entry1–4) and 2-phenyl-1H-indole (1d entry9–12) needed a longer time
to finish the reaction. From Table 3, we can see the aliphatic anhydrides usually gave higher
yields than the aryl ones. Furthermore, the structure of the 3-acylation products 3ec was
further confirmed by X-ray diffraction analysis (see Supplementary Materials).

Table 3. Acylation of substituted indoles with anhydrides.
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6 Et H Me H 3cb 71
7 n-Pr H Me H 3cc 74
8 Ph H Me H 3cd 56
9 Me H Ph H 3da 62

10 Et H Ph H 3db 65
11 n-Pr H Ph H 3dc 70
12 Ph H Ph H 3dd 59
13 Me H H 5-Br 3ea 87
14 Et H H 5-Br 3eb 93
15 n-Pr H H 5-Br 3ec 84
16 Ph H H 5-Br 3ed 70
17 Me H H 5-CN 3fa 93
18 Et H H 5-CN 3fb 91
19 n-Pr H H 5-CN 3fc 88
20 Ph H H 5-CN 3fd 53
21 Me H H 5-CH3 3ga 88
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Reaction conditions a: 1 (0.5 mmol), anhydrides (0.6 mmol), BF3·Et2O (0.5 mmol), DCM (1.5 mL), rt, stirred 1.5~2 h.
(Entries 5~12) b, rt, stirred 12 h.

Compared with the aforementioned protocols promoted by the common Lewis acids
or dialkylaluminum chloride, the more moisture-tolerant, air-stable and easy-to-handle
BF3·Et2O provided an efficient entry to 3-acylindoles. It is also worth noting that when the
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acylation of indole 1a with acetic anhydride was carried out on more than a 10 g (0.1 mol,
11.7 g) scale, the 3-acylation reaction still provided 80% yield (Scheme 2), which would lead
these compounds to be applied more easily.
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3-Benzofuranyl indoles are one of the most important scaffolds in heterocycle chem-
istry [50–52]. The popular methods to synthesize these compounds are the transition-metal
catalyzed cross-coupling reaction, which suffered from limited substrates, requirement
of complex ligands, and trace amounts of metals in the products [50,51], and preparation
via the Sc(OTf)3-mediated Meinwald epoxide rearrangement of benzofuran-2-yl oxirane
with aryl-hydrazine [52]. During the studies of O-arylation and [3,3]-rearrangement with
diaryliodonium salts in our group [53,54], we surmised that 3-benzofuran-2-yl indole could
be synthesized easily from 3aa (Scheme 3). Firstly, 3aa was converted to the oxime 4, which
further underwent a C-O formation with diphenyliodonium triflate to give the O-phenyl-
oxime 5 which could undergo a [3,3]-rearrangement in acid condition [55] to accomplish
the 3-benzofuranyl indoles 6 with 67% yield.
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Scheme 3. Synthesis of 3-benzofuran-2-yl indole 6.

3. Experimental Section

Unless otherwise noted, all reactions were performed under air atmosphere, and
commercial materials and solvents were used directly without further purification. All
reagents were weighed and handled in air at room temperature. 1H-NMR and 13C-NMR
spectra were recorded on Bruker Avance 400 and 600 spectrometers. Chemical shifts are
reported in parts per million (δ) referenced to tetramethylsilane (0.0 ppm), chloroform
(7.26 ppm or 77.0 ppm) and DMSO (2.5 ppm or 39.5 ppm), respectively. Data for 1H-NMR
and 13C-NMR spectroscopy are reported as follows: chemical shift (δ ppm), multiplicity
(s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling
constant (Hz), integration. X-ray single crystal diffraction data were recorded on Bruker D8
QUEST and Bruker APEX DUO. High Resolution Mass spectra were taken on an AB QSTAR
Pulsar mass spectrometer or Aglient LC/MSD TOF mass spectrometer. Melting points
were measured on a Hanon MP 430 auto melting-point system and are uncorrected. Silica
gel (200–300 mesh) for column chromatography and silica GF254 for TLC were obtained
from Merck Chemicals Co. Ltd. (Shanghai, China). Petroleum ether with the boiling
range of 60–90 ◦C was used for column chromatography. All reactions were conducted in
dried glassware under a positive pressure of dry nitrogen or argon. Reagents and starting
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materials were accordingly transferred via syringe or cannula. Reaction temperatures
refer to the external oil bath temperature and are uncorrected. Conditional optimization
and copies of spectroscopic characterization of all new compounds are available in the
Supplementary Materials.

3.1. General Procedure for the Synthesis of Product (3aa–3jd)

A mixture of indole 1 (0.5 mmol), anhydride 2 (0.6 mmol), and BF3·Et2O (BF3 46.5%)
(0.5 mmol, 64 µL) in DCM was stirred at room temperature for the desired time. After the
reaction was completed, saturated sodium bicarbonate (10 mL) was added. The reaction
mixture was stirred for 5 min and then extracted with ethyl acetate (3 × 10 mL). The
organic layer was dried over anhydrous Na2SO4 and, after evaporation of the solvent
under reduced pressure, the residue was purified by column chromatography on silica gel
using petroleum ether/EtOAc (6:1 to 2:1) as the eluents to give product 3.

1-(1H-Indol-3-yl)ethanone (3aa). Pale yellow solid; 66 mg, 83% yield, m.p. 195–196 ◦C
(lit. 192–193 ◦C); [41] 1H NMR (500 MHz, DMSO-d6) δ = 11.94 (s, 1H), 8.31 (s, 1H), 8.21–8.14
(m, 1H), 7.50–7.42 (m, 1H), 7.23–7.15 (m, 2H), 2.45 (s, 3H); 13C NMR (125 MHz, DMSO-d6)
δ = 193.1, 137.1, 134.7, 125.7, 123.1, 122.1, 121.82, 117.3, 112.5, 27.7. HRMS (ESI): m/z [M+H]+

calcd for C10H10NO: 160.0757; found: 160.0761.
1-(1H-Indol-3-yl)propan-1-one (3ab). White solid; 79 mg, 91% yield, m.p. 161–162 ◦C (lit.

162–163 ◦C) [39]; 1H NMR (500 MHz, DMSO-d6) δ = 11.91 (s, 1H), 8.31 (d, J = 3.1 Hz, 1H),
8.20 (d, J = 7.2 Hz, 1H), 7.46 (d, J = 7.4 Hz, 1H), 7.23–7.13 (m, 2H), 2.88 (q, J = 7.4 Hz, 2H),
1.11 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 196.3, 137.1, 133.9, 125.9, 123.1,
122.0, 121.8, 116.5, 112.5, 32.3, 9.6. HRMS (ESI): m/z [M+H]+ calcd for C11H12NO: 174.0913;
found: 174.0915.

1-(1H-Indol-3-yl)butan-1-one (3ac). White solid; 80 mg, 85% yield, m.p. 176–177 ◦C
(lit. 181–182 ◦C) [56]; 1H NMR (500 MHz, DMSO-d6) δ = 11.91 (s, 1H), 8.33 (d, J = 3.1 Hz,
1H), 8.20 (d, J = 7.1 Hz, 1H), 7.51–7.43 (m, 1H), 7.22–7.15 (m, 2H), 2.82 (t, J = 7.3 Hz, 2H),
1.71–1.63 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 195.8, 137.1,
134.2, 125.9, 123.1, 122.0, 121.9, 117.0, 112.5, 41.2, 18.8, 14.4. HRMS (ESI): m/z [M+H]+ calcd
for C12H14NO: 188.1070; found: 188.1068.

Cyclohexyl(1H-indol-3-yl)methanone (3ad). White solid; 82 mg, 72% yield, m.p. 194–
195 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 11.92 (s, 1H), 8.36 (d, J = 3.1 Hz, 1H), 8.22 (d,
J = 7.2 Hz, 1H), 7.48–7.46 (m, 1H), 7.22–7.16 (m, 2H), 3.21–3.16 (m, 1H), 1.80–1.76 (m, 4H),
1.69 (d, J = 12.8 Hz, 1H), 1.50–1.37 (m, 4H), 1.25–1.16 (m, 1H); 13C NMR (125 MHz, DMSO-
d6) δ = 199.3, 137.3, 133.9, 126.2, 123.1, 122.0, 121.9, 115.6, 112.5, 46.6, 30.2, 26.2, 25.8. HRMS
(ESI): m/z [M+H]+ calcd for C15H18NO: 228.1383; found: 228.1385.

(1H-Indol-3-yl)(phenyl)methanone (3ae). Pale yellow solid; 84 mg, 76% yield, m.p. 223–
224 ◦C (lit. 243–245 ◦C) [41]; 1H NMR (500 MHz, DMSO-d6) δ = 12.10 (s, 1H), 8.26 (d,
J = 7.3 Hz, 1H), 7.95 (d, J = 3.1 Hz, 1H), 7.80–7.70 (m, 2H), 7.63–7.60 (m, 1H), 7.57–7.52
(m, 3H), 7.29–7.22 (m, 2H); 13C NMR (125 MHz, DMSO-d6) δ = 190.5, 140.9, 137.2, 136.3,
131.6, 128.9, 128.8, 126.7, 123.6, 122.4, 121.9, 115.5, 112.7. HRMS (ESI): m/z [M+H]+ calcd
for C15H12NO: 222.0913; found: 222.0911.

(1H-Indol-3-yl)(4-methoxyphenyl)methanone (3af). Pale yellow solid; 100 mg, 80% yield,
m.p. 205–206 ◦C (lit. 208 ◦C) [57]; 1H NMR (500 MHz, DMSO-d6) δ = 12.01 (s, 1H), 8.23
(d, J = 7.0 Hz, 1H), 7.95 (d, J = 3.1 Hz, 1H), 7.83–7.80 (m, 2H), 7.53–7.51 (m, 1H), 7.26–7.21
(m, 2H), 7.09–7.06 (m, 2H), 3.86 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 189.2, 162.2,
137.1, 135.3, 133.45, 131.1, 126.9, 123.4, 122.1, 121.9, 115.6, 114.1, 112.6, 55.9. HRMS (ESI):
m/z [M+H]+ calcd for C16H14NO2: 252.1019; found: 252.1018.

(1H-Indol-3-yl)(m-tolyl)methanone (3ag). Pale yellow solid; 83 mg, 71% yield, m.p. 234–
236 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 12.05 (s, 1H), 8.27 (d, J = 7.1 Hz, 1H), 7.93 (d,
J = 2.8 Hz, 1H), 7.62–7.57 (m, 2H), 7.54 (d, J = 7.4 Hz, 1H), 7.44–7.40 (m, 2H), 7.29–7.22 (m,
2H), 2.41 (s, 3H). 13C NMR (125 MHz, DMSO-d6) δ = 190.6, 141.1, 138.2, 137.2, 136.1, 132.1,
129.3, 128.7, 126.7, 126.1, 123.6, 122.3, 122.0, 115.6, 112.7, 21.5. HRMS (ESI): m/z [M+H]+

calcd for C16H14NO: 236.1070; found: 236.1071.
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1-(1-Methyl-1H-indol-3-yl)ethanone (3ba). White solid; 75 mg, 87% yield, m.p. 102–
103 ◦C (lit. 105–107 ◦C) [58]; 1H NMR (500 MHz, DMSO-d6) δ = 8.32 (s, 1H), 8.20 (d,
J = 7.7 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.30–7.26 (m, 1H), 7.25–7.21 (m, 1H), 3.86 (s, 3H),
2.43 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 192.5, 138.4, 138.4, 137.7, 126.2, 123.2, 122.4,
121.9, 116.1, 110.9, 33.5, 27.7. HRMS (ESI): m/z [M+H]+ calcd for C11H12NO: 174.0913;
found: 174.0919.

1-(1-Methyl-1H-indol-3-yl)propan-1-one (3bb). White solid; 77 mg, 82% yield, m.p. 72–
73 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 8.33 (s, 1H), 8.22 (d, J = 7.8 Hz, 1H), 7.53 (d,
J = 8.0 Hz, 1H), 7.30–7.25 (m, 1H), 7.25–7.21 (m, 1H), 3.86 (s, 3H), 2.84 (q, J = 7.4 Hz, 2H),
1.12 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 195.7, 137.7, 137.6, 126.3, 123.1,
122.4, 121.9, 115.3, 110.9, 33.5, 32.4, 9.6. HRMS (ESI): m/z [M+H]+ calcd for C12H14NO:
188.1070; found: 188.1073.

1-(1-Methyl-1H-indol-3-yl)butan-1-one (3bc). Brown oil; 71 mg, 71% yield; 1H NMR (500
MHz, DMSO-d6) δ = 8.30 (d, J = 2.4 Hz, 1H), 8.28–8.24 (m, 1H), 7.50 (d, J = 7.7 Hz, 1H),
7.29–7.20 (m, 2H), 3.84 (d, J = 2.6 Hz, 3H), 2.80–2.75 (m, 2H), 1.72–1.64 (m, 2H), 0.97–0.91
(m, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 195.5, 137.9, 137.7, 126.3, 123.2, 122.4, 122.0,
115.8, 110.9, 41.3, 33.5, 18.8, 14.3. HRMS (ESI): m/z [M+H]+ calcd for C13H16NO: 202.1226;
found: 202.1228.

(1-Methyl-1H-indol-3-yl)(phenyl)methanone (3bd). White solid; 62 mg, 53% yield, m.p.
110–111 ◦C (lit. 116–118 ◦C) [41]; 1H NMR (500 MHz, DMSO-d6) δ = 8.29 (d, J = 7.5 Hz, 1H),
8.02 (s, 1H), 7.80 (d, J = 1.0 Hz, 1H), 7.79–7.78 (m, 1H), 7.64–7.56 (m, 3H), 7.56–7.53 (m, 1H),
7.36–7.33 (m, 1H), 7.32–7.28 (m, 1H), 3.89 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 189.9,
141.0, 139.9, 137.8, 131.5, 128.9, 128.8, 127.1, 123.7, 122.8, 122.1, 114.3, 111.1, 33.6. HRMS
(ESI): m/z [M+H]+ calcd for C16H14NO: 236.1070; found: 236.1074.

1-(2-Methyl-1H-indol-3-yl)ethanone (3ca). White solid; 59 mg, 68% yield, m.p. 203–
204 ◦C (lit. 201–202 ◦C) [59]; 1H NMR (500 MHz, DMSO-d6) δ = 11.84 (s, 1H), 8.04–7.99 (m,
1H), 7.39–7.34 (m, 1H), 7.16–7.11 (m, 2H), 2.68 (s, 3H), 2.51 (s, 3H); 13C NMR (125 MHz,
DMSO-d6) δ = 193.4, 144.6, 135.1, 127.4, 122.2, 121.7, 121.0, 113.9, 111.6, 31.4, 15.4. HRMS
(ESI): m/z [M+H]+ calcd for C11H12NO: 174.0913; found: 174.0915.

1-(2-Methyl-1H-indol-3-yl)propan-1-one (3cb). Yellow solid; 66 mg, 71% yield, m.p.
140–141 ◦C (lit. 150 ◦C) [60]; 1H NMR (500 MHz, DMSO-d6) δ = 11.82 (s, 1H), 8.03–7.99
(m, 1H), 7.39–7.35 (m, 1H), 7.16–7.11 (m, 2H), 2.90 (q, J = 7.2 Hz, 2H), 2.68 (s, 3H), 1.11 (t,
J = 7.2 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 196.5, 144.3, 135.2, 127.2, 122.1, 121.7,
121.1, 113.4, 111.6, 35.4, 15.6, 8.8. HRMS (ESI): m/z [M+H]+ calcd for C12H14NO: 188.7070;
found: 188.1076.

1-(2-Methyl-1H-indol-3-yl)butan-1-one (3cc). White solid; 75 mg, 74% yield, m.p. 143–
144 ◦C (lit. 157–158 ◦C) [60]; 1H NMR (500 MHz, DMSO-d6) δ = 11.82 (s, 1H), 8.02–7.97
(m, 1H), 7.39–7.34 (m, 1H), 7.17–7.09 (m, 2H), 2.86 (t, J = 7.2 Hz, 2H), 2.68 (s, 3H), 1.67 (h,
J = 7.3 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 195.9, 144.3,
135.2, 127.1, 122.1, 121.7, 121.0, 113.6, 111.6, 44.3, 17.7, 15.6, 14.4. HRMS (ESI): m/z [M+H]+

calcd for C13H16NO: 202.1226; found: 202.1232.
(2-Methyl-1H-indol-3-yl)(phenyl)methanone (3cd). Pale yellow solid; 66,mg, 56% yield,

m.p. 180–181 ◦C (lit. 183–185 ◦C) [57]; 1H NMR (500 MHz, DMSO-d6) δ = 11.96 (s, 1H),
7.61–7.57 (m, 3H), 7.53–7.48 (m, 2H), 7.38 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H),
7.15–7.09 (m, 1H), 7.04–6.98 (m, 1H), 2.38 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 192.2,
145.0, 142.1, 135.4, 131.5, 128.8, 128.5, 127.7, 122.3, 121.4, 120.5, 112.9, 111.7, 14.7. HRMS
(ESI): m/z [M+H]+ calcd for C16H14NO: 236.1070; found: 236.1077.

1-(2-Phenyl-1H-indol-3-yl)ethanone (3da). White solid; 74 mg, 62% yield, m.p. 231–
232 ◦C (lit. 220–222 ◦C) [61]; 1H NMR (500 MHz, DMSO-d6) δ = 12.11 (s, 1H), 8.20 (d,
J = 7.5 Hz, 1H), 7.65 (d, J = 3.6 Hz, 2H), 7.56 (d, J = 3.6 Hz, 3H), 7.42 (d, J = 7.7 Hz, 1H),
7.25–7.18 (m, 2H), 2.07 (s, 3H); 13CNMR (125 MHz, DMSO-d6)δ = 194.0, 145.4, 135.9, 133.2,
130.5, 129.8, 128.9, 127.5, 123.3, 122.20, 122.0, 114.7, 112.0, 30.6. HRMS (ESI): m/z [M+H]+

calcd for C16H14NO: 236.1070; found: 236.1068.
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1-(2-Phenyl-1H-indol-3-yl)propan-1-one (3db). White solid; 80 mg, 65% yield, m.p.
192–193 ◦C (lit. 189 ◦C) [62]; 1H NMR (500 MHz, DMSO-d6) δ = 12.07 (s, 1H), 8.18 (d,
J = 7.2 Hz, 1H), 7.65–7.61 (m, 2H), 7.59–7.54 (m, 3H), 7.42 (dd, J = 7.1, 1.2 Hz, 1H), 7.25–7.17
(m, 2H), 2.42 (q, J = 7.3 Hz, 2H), 0.92 (t, J = 7.3 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ =
197.5, 144.6, 135.9, 133.4, 130.28, 129.7, 128.9, 127.5, 123.2, 122.1, 122.0, 114.2, 112.0, 34.8, 9.3.
HRMS (ESI): m/z [M+H]+ calcd for C17H16NO: 250.1226; found: 250.1232.

1-(2-Phenyl-1H-indol-3-yl)butan-1-one (3dc). White solid; 92 mg, 70% yield, m.p. 168–
169 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 12.08 (s, 1H), 8.18 (dd, J = 7.0, 1.4 Hz, 1H),
7.65–7.61 (m, 2H), 7.58–7.55 (m, 3H), 7.43 (dd, J = 7.0, 1.0 Hz, 1H), 7.21 (ddd, J = 9.1, 7.5,
1.3 Hz, 2H), 2.38 (t, J = 7.3 Hz, 2H), 1.48 (h, J = 7.4 Hz, 2H), 0.69 (t, J = 7.4 Hz, 3H); 13C NMR
(125 MHz, DMSO-d6) δ = 197.2, 144.7, 135.9, 133.4, 130.3, 129.7, 128.9, 127.5, 123.2, 122.1,
122.0, 114.6, 112.1, 43.6, 18.5, 14.1. HRMS (ESI): m/z [M+H]+ calcd for C18H18NO: 264.1383;
found: 264.1381.

Phenyl(2-phenyl-1H-indol-3-yl)methanone (3dd). White solid; 88 mg, 59% yield, m.p.
231–232 ◦C (lit. 223–224 ◦C) [63]; 1H NMR (500 MHz, DMSO-d6) δ = 12.22 (s, 1H), 7.75 (d,
J = 7.9 Hz, 1H), 7.54–7.50 (m, 3H), 7.40–7.37 (m, 2H), 7.37–7.34 (m, 1H), 7.27–7.23 (m, 4H),
7.23–7.19 (m, 2H), 7.18–7.14 (m, 1H); 13C NMR (125 MHz, DMSO-d6) δ = 192.6, 144.5, 140.3,
136.3, 132.0, 131.8, 130.0, 129.5, 128.9, 128.7, 128.5, 128.2, 123.3, 121.9, 121.0, 112.6, 112.3.
HRMS (ESI): m/z [M+H]+ calcd for C21H16NO: 298.1226; found: 298.1224.

1-(5-Bromo-1H-indol-3-yl)ethanone (3ea). White solid; 103 mg, 87% yield, m.p. 220–
221 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 12.13 (s, 1H), 8.38 (d, J = 3.1 Hz, 1H), 8.31 (d,
J = 2.0 Hz, 1H), 7.45 (d, J = 8.6 Hz, 1H), 7.34 (dd, J = 8.6, 2.0 Hz, 1H), 2.45 (s, 3H); 13C NMR
(125 MHz, DMSO-d6) δ = 193.2, 136.0, 135.9, 127.5, 125.8, 123.9, 116.7, 114.9, 114.7, 27.6.
HRMS (ESI): m/z [M+H]+ calcd for C10H9BrNO: 237.9862; found: 237.9860.

1-(5-Bromo-1H-indol-3-yl)propan-1-one (3eb). White solid; 117 mg, 93% yield, m.p. 230–
231 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 12.10 (s, 1H), 8.38 (d, J = 2.9 Hz, 1H), 8.33 (d,
J = 1.9 Hz, 1H), 7.45 (d, J = 8.6 Hz, 1H), 7.34 (dd, J = 8.6, 2.0 Hz, 1H), 2.88 (q, J = 7.4 Hz,
2H), 1.10 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 196.4, 135.8, 135.2, 127.7,
125.7, 123.9, 115.92, 114.9, 114.6, 32.3, 9.4. HRMS (ESI): m/z [M+H]+ calcd for C11H11BrNO:
22.0019; found: 252.0020.

1-(5-Bromo-1H-indol-3-yl)butan-1-one (3ec). White solid; 111 mg, 84% yield, m.p. 232–
233 ◦C (lit. 160–161 ◦C) [64]; 1H NMR (500 MHz, DMSO-d6) δ = 12.12 (s, 1H), 8.40 (d,
J = 3.1 Hz, 1H), 8.34 (d, J = 2.0 Hz, 1H), 7.44 (d, J = 8.5 Hz, 1H), 7.34 (dd, J = 8.6, 2.0 Hz, 1H),
2.82 (t, J = 7.3 Hz, 2H), 1.66 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H); 13CNMR (125 MHz, DMSO-d6)
δ = 195.9, 135.8, 135.4, 127.6, 125.7, 124.0, 116.4, 114.9, 114.6, 41.1, 18.7, 14.3. HRMS (ESI):
m/z [M+H]+ calcd for C12H13BrNO: 266.0715; found: 266.0720.

(5-Bromo-1H-indol-3-yl)(phenyl)methanone (3ed). White solid; 105 mg, 79% yield, m.p.
272–273 ◦C (lit. 265–267 ◦C) [41]; 1H NMR (500 MHz, DMSO-d6) δ = 12.26 (s, 1H), 8.41 (s,
1H), 8.03 (s, 1H), 7.81 (d, J = 7.2 Hz, 2H), 7.63 (t, J = 7.3 Hz, 1H), 7.56 (t, J = 7.4 Hz, 2H), 7.51
(d, J = 8.6 Hz, 1H), 7.41 (dd, J = 8.6, 1.4 Hz, 1H); 13C NMR (125 MHz, DMSO-d6) δ = 190.3,
140.5, 137.3, 136.0, 131.8, 129.0, 128.9, 128.5, 126.2, 124.1, 115.2, 114.9, 114.8. HRMS (ESI):
m/z [M+H]+ calcd for C15H11BrNO: 300.0019; found: 300.0021.

3-Acetyl-1H-indole-5-carbonitrile (3fa). White solid; 86 mg, 93% yield, m.p. 271–272 ◦C
(lit. 295–296 ◦C) [39]; 1H NMR (500 MHz, DMSO-d6) δ = 12.43 (s, 1H), 8.54 (s, 1H), 8.53 (d,
J = 0.9 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.60 (dd, J = 8.4, 1.6 Hz, 1H), 2.49 (s, 3H); 13C NMR
(125 MHz, DMSO-d6) δ = 193.3, 138.9, 136.9, 126.8, 126.1, 125.5, 120.6, 117.4, 114.0, 104.4,
27.7. HRMS (ESI): m/z [M+H]+ calcd for C11H9N2O: 185.0709; found: 185.0714.

3-Propionyl-1H-indole-5-carbonitrile (3fb). White solid; 90 mg, 91% yield, m.p. 259–
260 ◦C (lit. 252–254 ◦C) [39]; 1H NMR (500 MHz, DMSO-d6) δ = 12.41 (s, 1H), 8.55 (d,
J = 0.9 Hz, 1H), 8.54 (s, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.59 (dd, J = 8.4, 1.6 Hz, 1H), 2.92 (q,
J = 7.3 Hz, 2H), 1.12 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 196.5, 138.9,
136.2, 126.8, 126.0, 125.6, 120.7, 116.6, 114.0, 104.3, 32.4, 9.2. HRMS (ESI): m/z [M+H]+ calcd
for C12H11N2O: 199.0866; found: 199.0861.
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3-Butyryl-1H-indole-5-carbonitrile (3fc). White solid; 93 mg, 88% yield, m.p. 209–
210 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 12.42 (s, 1H), 8.56 (d, J = 2.0 Hz, 2H), 7.65 (d,
J = 8.4 Hz, 1H), 7.59 (dd, J = 8.4, 1.5 Hz, 1H), 2.86 (t, J = 7.3 Hz, 2H), 1.71–1.63(m, 2H), 0.94
(t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 196.1, 138.9, 136.5, 126.9, 126.1, 125.6,
120.7, 117.1, 114.1, 104.3, 41.2, 18.5, 14.3. HRMS (ESI): m/z [M+H]+ calcd for C13H13N2O:
213.1022; found: 213.1020.

3-Benzoyl-1H-indole-5-carbonitrile (3fd). White solid; 65 mg, 53% yield, m.p. 202–204
◦C; 1H NMR (500 MHz, DMSO-d6) δ = 12.56 (s, 1H), 8.63 (s, 1H), 8.20 (s, 1H), 7.84 (d,
J = 6.8 Hz, 2H), 7.74–7.69 (m, 1H), 7.67–7.62 (m, 2H), 7.59–7.54 (m, 2H). 13C NMR (125 MHz,
DMSO-d6) δ = 190.3, 140.2, 139.1, 138.4, 132.1, 129.0, 128.9, 126.0, 127.58, 126.6, 120.6, 115.6,
114.3, 104.6. HRMS (ESI): m/z [M+H]+ calcd for C16H11N2O: 247.0866; found: 247.0870.

1-(5-Methyl-1H-indol-3-yl)ethanone (3ga). Pale yellow solid; 76 mg, 88% yield, m.p.
190–191 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 11.82 (s, 1H), 8.25 (d, J = 3.1 Hz, 1H), 7.99
(s, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.03 (dd, J = 8.2, 1.4 Hz, 1H), 2.43 (s, 3H), 2.40 (s, 3H); 13C
NMR (125 MHz, DMSO-d6) δ = 193.0, 135.5, 134.8, 130.8, 126.0, 124.6, 121.5, 116.8, 112.2,
27.7, 21.8. HRMS (ESI): m/z [M+H]+ calcd for C11H12NO: 174.0913; found: 174.0920.

1-(5-Methyl-1H-indol-3-yl)propan-1-one (3gb). Pale yellow solid; 78 mg, 83% yield, m.p.
225–226 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 11.78 (s, 1H), 8.25 (d, J = 3.1 Hz, 1H), 8.00 (s,
1H), 7.34 (d, J = 8.3 Hz, 1H), 7.02 (dd, J = 8.3, 1.4 Hz, 1H), 2.85 (q, J = 7.4 Hz, 2H), 2.40 (s, 3H),
1.11 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 196.3, 135.4, 133.9, 130.8, 126.2,
124.6, 121.6, 116.1, 112.1, 32.3, 21.8, 9.7. HRMS (ESI): m/z [M+H]+ calcd for C12H14NO:
188.1070; found: 188.1076.

1-(5-Methyl-1H-indol-3-yl)butan-1-one (3gc). Yellow solid; 76 mg, 76% yield, m.p. 195–
196 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 11.79 (s, 1H), 8.26 (d, J = 3.1 Hz, 1H), 8.01 (s, 1H),
7.34 (d, J = 8.2 Hz, 1H), 7.02 (dd, J = 8.3, 1.2 Hz, 1H), 2.79 (t, J = 7.3 Hz, 2H), 2.40 (s, 3H),
1.70–1.62 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H); 13CNMR (125 MHz, DMSO-d6) δ = 195.8, 135.4,
134.1, 130.8, 126.2, 124.6, 121.1, 116.6, 112.1, 41.1, 21.8, 18.9, 14.3. HRMS (ESI): m/z [M+H]+

calcd for C13H16NO: 202.1226; found: 202.1225.
(5-Methyl-1H-indol-3-yl)(phenyl)methanone (3gd). White solid; 79 mg, 67% yield, m.p.

227–228 ◦C (lit. 228 ◦C) [56]; 1H NMR (500 MHz, DMSO-d6) δ = 11.97 (s, 1H), 8.09 (s, 1H),
7.87 (d, J = 1.6 Hz, 1H), 7.79–7.78 (m, 1H), 7.77–7.76 (m, 1H), 7.62–7.58 (m, 1H), 7.56–7.52 (m,
2H), 7.41 (d, J = 8.3 Hz, 1H), 7.10 (dd, J = 8.3, 1.5 Hz, 1H), 2.45 (s, 3H); 13C NMR (125 MHz,
DMSO-d6) δ = 190.4, 141.1, 136.2, 135.5, 131.4, 131.2, 128.8, 128.8, 127.0, 125.1, 121.7, 115.1,
112.3, 21.8. HRMS (ESI): m/z [M+H]+ calcd for C16H14NO: 236.1070; found: 236.1074.

1-(5-Methoxy-1H-indol-3-yl)ethanone (3ha). Pale yellow solid; 76 mg, 80% yield, m.p.
209–210 ◦C (lit. 170 ◦C) [65]; 1H NMR (500 MHz, DMSO-d6) δ = 11.81 (s, 1H), 8.25 (d,
J = 3.1 Hz, 1H), 7.68 (d, J = 2.5 Hz, 1H), 7.36 (d, J = 8.8 Hz, 1H), 6.84 (dd, J = 8.8, 2.6 Hz,
1H), 3.77 (s, 3H), 2.43 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ 193.0, 155.8, 135.0, 132.0,
126.5, 117.1, 113.2, 113.0, 103.5, 55.7, 27.6. HRMS (ESI): m/z [M+H]+ calcd for C11H12NO2:
190.0863; found: 190.0860.

1-(5-Methoxy-1H-indol-3-yl)propan-1-one (3hb). Yellow solid; 76 mg, 75% yield, m.p.
202–203 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 11.78 (s, 1H), 8.25 (d, J = 3.2 Hz, 1H), 7.71
(d, J = 2.5 Hz, 1H), 7.35 (d, J = 8.8 Hz, 1H), 6.83 (dd, J = 8.8, 2.5 Hz, 1H), 3.78 (s, 3H), 2.85
(q, J = 7.4 Hz, 2H), 1.11 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 196.3, 155.8,
134.1, 131.9, 126.7, 116.3, 113.2, 113.0, 103.6, 55.7, 32.2, 9.6. HRMS (ESI): m/z [M+H]+ calcd
for C12H14NO2: 204.1019; found: 204.1022.

1-(5-Methoxy-1H-indol-3-yl)butan-1-one (3hc). Yellow solid; 74 mg, 68% yield, m.p.
151–152 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 11.80 (s, 1H), 8.26 (d, J = 3.1 Hz, 1H), 7.72
(d, J = 2.6 Hz, 1H), 7.35 (d, J = 8.8 Hz, 1H), 6.83 (dd, J = 8.8, 2.6 Hz, 1H), 3.78 (s, 3H), 2.79 (t,
J = 7.3 Hz, 2H), 1.69–1.63 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6)
δ = 195.8, 155.8, 134.3, 131.9, 126.6, 116.8, 113.2, 113.1, 103.5, 55.7, 41.1, 18.8, 14.4. HRMS
(ESI): m/z [M+H]+ calcd for C13H16NO2: 218.1176; found: 218.1180.

(5-Methoxy-1H-indol-3-yl)(phenyl)methanone (3hd). Pale yellow solid; 80 mg, 64% yield,
m.p. 213–215 ◦C (lit. 169–170 ◦C) [66]; 1H NMR (500 MHz, DMSO-d6) δ = 11.97 (s, 1H),
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7.87 (d, J = 3.2 Hz, 1H), 7.79 (d, J = 2.5 Hz, 1H), 7.78 (d, J = 1.0 Hz, 1H), 7.77–7.62 (m, 1H),
7.62–7.58 (m, 1H), 7.57–7.52 (m, 2H), 7.42 (d, J = 8.8 Hz, 1H), 6.90 (dd, J = 8.8, 2.6 Hz, 1H),
3.81 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 190.4, 156.0, 141.1, 136.4, 132.0, 131.4, 128.9,
128.8, 127.5, 115.3, 113.5, 113.5, 103.7, 55.8. HRMS (ESI): m/z [M+H]+ calcd for C16H14NO2:
252.1019; found: 252.1020.

1-(6-Fluoro-1H-indol-3-yl)ethanone (3ia). Pale yellow solid; 81 mg, 92% yield, m.p. 227–
228 ◦C (lit. 236 ◦C) [67]; 1H NMR (500 MHz, DMSO-d6) δ = 11.98 (s, 1H), 8.33 (d, J = 3.0
Hz, 1H), 8.15 (dd, J = 8.7, 5.7 Hz, 1H), 7.26 (dd, J = 9.7, 2.4 Hz, 1H), 7.06–7.02 (m, 1H),
2.44 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 193.09, 159.68 (d, J = 235.0 Hz), 137.16 (d,
J = 12.5 Hz), 135.5, 122.9 (d, J = 10.0 Hz), 122.4, 117.2, 110.4 (d, J = 23.8 Hz), 98.8 (d,
J = 25.0 Hz), 27.6. HRMS (ESI): m/z [M+H]+ calcd for C10H9FNO: 178.0663; found: 178.0666.

1-(6-Fluoro-1H-indol-3-yl)propan-1-one (3ib). Pale yellow solid; 84 mg, 88% yield, m.p.
215–216 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 11.95 (s, 1H), 8.33 (d, J = 3.0 Hz, 1H), 8.17
(dd, J = 8.7, 5.7 Hz, 1H), 7.25 (dd, J = 9.7, 2.3 Hz, 1H), 7.07–7.01 (m, 1H), 2.87 (q, J = 7.4 Hz,
2H), 1.11 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 196.3, 159.7 (d, J = 235.0
Hz), 137.1 (d, J = 12.5 Hz), 134.6 (d, J = 1.3 Hz), 122.9 (d, J = 10.0 Hz), 122.6, 116.4, 110.3, (d,
J = 23.7 Hz), 98.7 (d, J = 25.0 Hz), 32.2, 9.5. HRMS (ESI): m/z [M+H]+ calcd for C11H11FNO:
192.0819; found: 192.0823.

1-(6-Fluoro-1H-indol-3-yl)butan-1-one (3ic). White solid; 83 mg, 81% yield, m.p. 190–
191 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 11.97 (s, 1H), 8.34 (s, 1H), 8.17 (dd, J = 8.7,
5.7 Hz, 1H), 7.25 (dd, J = 9.7, 2.3 Hz, 1H), 7.06–7.01 (m, 1H), 2.81 (t, J = 7.3 Hz, 2H), 1.71–
1.59 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 195.8, 159.7 (d,
J = 235.0 Hz), 137.2 (d, J = 12.5 Hz), 134.8 (d, J = 1.3 Hz), 123.0 (d, J = 10.0 Hz), 122.6, 116.9,
110.3 (d, J = 23.8 Hz), 98.7 (d, J = 26.3 Hz), 41.0, 18.7, 14.3. HRMS (ESI): m/z [M+H]+ calcd
for C12H13FNO: 206.0976; found: 206.0972.

(6-Fluoro-1H-indol-3-yl)(phenyl)methanone (3id). White solid; 80 mg, 67% yield, m.p.
268–269 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 12.12 (s, 1H), 8.25 (dd, J = 8.7, 5.7 Hz, 1H),
7.96 (d, J = 2.7 Hz, 1H), 7.83–7.77 (m, 2H), 7.64–7.60 (m, 1H), 7.55 (t, J = 7.4 Hz, 2H), 7.32
(dd, J = 9.6, 2.3 Hz, 1H), 7.14–7.09 (m, 1H); 13C NMR (125 MHz, DMSO-d6) δ = 190.3, 159.9
(d, J = 236.3 Hz), 140.7, 1373 (d, J = 12.5 Hz), 136.9, 131.6, 128.9 (d, J = 3.8 Hz), 123.1 (d,
J = 10.0 Hz), 123.1, 115.4, 110.7 (d, J = 23.8 Hz), 99.0 (d, J = 26.3 Hz). HRMS (ESI): m/z
[M+H]+ calcd for C15H11FNO: 240.0819; found: 240.0825.

1-(7-Bromo-1H-indol-3-yl)ethanone (3ja). White solid; 108 mg, 91% yield, m.p. 184–
185 ◦C (lit. 190–191 ◦C) [67]; 1H NMR (500 MHz, DMSO-d6) δ = 12.19 (s, 1H), 8.37 (s, 1H),
8.19 (dd, J = 7.9, 0.8 Hz, 1H), 7.45 (dd, J = 7.6, 0.8 Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H), 2.48 (s,
3H); 13C NMR (125 MHz, DMSO-d6) δ = 193.4, 135.6, 135.5, 127.4, 125.9, 123.6, 121.2, 118.1,
105.1, 27.9. HRMS (ESI): m/z [M+H]+ calcd for C10H9BrNO: 237.9862; found: 237.9868.

1-(7-Bromo-1H-indol-3-yl)propan-1-one (3jb). White solid; 112 mg, 89% yield, m.p. 148–
149 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 12.16 (s, 1H), 8.36 (d, J = 3.1 Hz, 1H), 8.21 (d,
J = 7.5 Hz, 1H), 7.44 (dd, J = 7.6, 0.9 Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H), 2.92 (q, J = 7.4 Hz,
2H), 1.11 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 196.6, 135.5, 134.8, 127.6,
125.8, 123.6, 121.3, 117.4, 105.1, 32.4, 9.3. HRMS (ESI): m/z [M+H]+ calcd for C11H11BrNO:
22.0019; found: 252.0016.

1-(7-Bromo-1H-indol-3-yl)butan-1-one (3jc). White solid; 117 mg, 88% yield, m.p. 158–
159 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 12.17 (s, 1H), 8.38 (s, 1H), 8.21 (d, J = 7.3 Hz, 1H),
7.44 (d, J = 7.6 Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H), 2.86 (t, J = 7.3 Hz, 2H), 1.70–1.62 (m, 2H),
0.94 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ = 196.2, 135.5, 135.0, 127.6, 125.9,
123.6, 121.3, 117.8, 105.1, 41.2, 18.6, 14.3. HRMS (ESI): m/z [M+H]+ calcd for C12H13BrNO:
266.0715; found: 266.0717.

(7-Bromo-1H-indol-3-yl)(phenyl)methanone (3jd). White solid; 123mg, 82% yield, m.p.
204–205 ◦C; 1H NMR (500 MHz, DMSO-d6) δ = 12.38 (s, 1H), 8.27 (d, J = 7.9 Hz, 1H), 7.90
(s, 1H), 7.82 (s, 1H), 7.81 (d, J = 1.4 Hz, 1H), 7.66–7.62 (m, 1H), 7.59–7.54 (m, 2H), 7.52 (d,
J = 7.6 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H); 13C NMR (125 MHz, DMSO-d6) δ = 190.5, 140.5,
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136.6, 135.6, 131.9, 129.0, 128.9, 128.4, 126.3, 123.9, 121.4, 116.4, 105.2. HRMS (ESI): m/z
[M+H]+ calcd for C15H11BrNO: 300.0019; found: 300.0018.

3.2. Up to Ten Scale Synthesis of Selected (3aa)

A total of 11.7 g (0.1 mol) of indole 1 was dissolved in 200 mL of DCM and 12.6 g
(12.0 mL, 0.12 mol) of acetic anhydride 2a was added. Then, 14.6 g (0.1 mol) of BF3

.Et2O was
added dropwise to the stirred mixture at room temperature. After finishing the addition,
the reaction mixture was stirred continuously at room temperature until completed. Then,
100 mL of saturated sodium bicarbonate was added and stirred at room temperature for
about 0.5 h. The organic layer was separated and the water phase was extracted with DCM
(2 × 100 mL). The organic layer was combined, washed with saturated sodium bicarbonate
(2 × 100 mL) and dried over Na2SO4. The solvent was removed and the residue was
purified by column chromatography on silica gel or recrystallized from MeOH/H2O (5:1)
to give 3aa 12.7 g in 80% yield.

3.3. Procedure for Synthesis of 4

A solution of synthesized 3aa (10.0 mmol, 1.59 g), NH2OH·HCl (20.0 mmol, 1.39 g)
and pyridine (30.0 mmol, 2.4 mL) in MeOH (30 mL) was stirred at room temperature for
about 18~24 h. The reaction mixture was evaporated to remove MeOH in vacuo, and to
the residue was then added to water (50 mL). After extraction with DCM (2 × 50 mL),
the combined organic layers were washed with brine, dried over Na2SO4, and filtered.
Volatiles were removed under vacuum to give the oxime 4 as a white solid without any
purification to the next step (1.2 g, 69% yield, m.p. 144–146 ◦C (lit. 147–148 ◦C)) [68].

3.4. Procedure for Synthesis of 5

A Schlenk tube was charged with 4 (0.5 mmol, 87 mg), and DCE (5 mL). t-BuOK
(0.75 mmol, 1.5 equiv) was added in one portion at room temperature under a nitrogen
atmosphere. The mixture was stirred at room temperature for 5 min. Then, Ph2IOTf
(0.75 mmol, 220 mg, 1.5 equiv) was added in one portion. The reaction was stirred at room
temperature for 4 h. At this time, the DCE was removed under reduced pressure, and
the crude product was purified by column chromatography on silica gel using petroleum
ether/ethyl acetate 1/6 to 1/3 to provide product 5.

(E)-1-(1H-indol-3-yl)ethanone O-phenyl oxime (5). Yellow oil; 106 mg, yield 85%; 1H
NMR (400 MHz, CDCl3) δ = 8.50–8.46 (m, 1H), 8.27 (s, 1H), 7.43 (d, J = 2.8 Hz, 1H), 7.42
(s, 2H), 7.41 (s, 2H), 7.37–7.34 (m, 1H), 7.32–7.28 (m, 2H), 7.10–7.04 (m, 1H), 2.47 (s, 3H);
13C NMR (100 MHz, CDCl3) δ = 159.9, 155.4, 137.5, 136.8, 130.3, 129.4, 127.5, 126.2, 124.5,
123.4, 121.7, 121.5, 114.7, 113.9, 111.2, 13.6; HRMS (ESI): m/z [M+H]+ calcd for C16H15N2O:
251.1179; found: 251.1171.

3.5. Procedure for Synthesis of 6

A Schlenk tube, open to air, was charged with 5 (0.5 mmol, 125 mg) and 1,4-dioxane
(5 mL). A total of 4 M HCl (0.75 mL, 6 equiv) and H2O (0.054 mL, 6 equiv) was added in one
portion at room temperature. The mixture was stirred at 80 ◦C. The reaction was monitored
by TLC until 5 was consumed completely (8−12 h). At this time, the solvent was removed
under reduced pressure, and the residue was washed with saturated sodium bicarbonate
(10 mL). Then, after extraction with DCM (3 × 10 mL), the combined organic layers were
dried over Na2SO4 and filtered. DCM was removed under reduced pressure, and the crude
product was purified by column chromatography on silica gel using petroleum ether/ethyl
acetate 1/10 to 1/8 to provide product 6.

3-(Benzofuran-2-yl)-1H-indole (6). White solid; 72 mg, 62% yield, m.p. 147–148 ◦C
(lit. 162–163 ◦C) [69]; 1H NMR (500 MHz, CDCl3) δ = 8.33 (s, 1H), 8.14–8.08 (m, 1H), 7.71
(s, 1H), 7.63 (dd, J = 5.9, 2.3 Hz, 1H), 7.56 (d, J = 6.9 Hz, 1H), 7.45–7.41 (m, 1H), 7.36–7.31
(m, 2H), 7.31–7.27 (m, 2H), 6.97 (s, 1H); 13C NMR (125 MHz, CDCl3) δ = 154.0, 153.0, 136.6,
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129.9, 124.6, 123.3, 123.15, 123.06, 122.8, 121.1, 120.34, 120.29, 111.7, 110.8, 108.7, 99.7; HRMS
(ESI): m/z [M+H]+ calcd for C16H12NO: 234.0913; found: 234.0916.

4. Conclusions

In conclusion, we have developed a mild and efficient synthetic method for the
BF3·Et2O-promoted acylation of free (N-H) indoles with anhydrides. This protocol afforded
a variety of 3-acylindoles in good-to-excellent yields with high regioselectivity and was
easily up to 10 g scale. 3-Benzofuran-2-yl indole can be synthesized in good yield in
three steps. This protocol accomplished the challenging acylation of free (N-H) indoles
successfully. Further studies on their synthetic applications are currently underway in our
laboratory.
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