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Abstract: An electrochemical initiated tandem reaction of anilines with 2-formyl benzonitrile has
been developed. Thus, unprecedented 3-N-aryl substituted isoindolinones have been conveniently
achieved by constant current electrolysis in a divided cell using catalytic amount of electricity and
supporting electrolyte and a Pt-cathode as working electrode. The origin of the electrochemical acti-
vation as well as the mechanism of the subsequent chemical cascade reactions have been investigated
by DFT calculations.
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1. Introduction

Among nitrogen-containing heterocycles [1], the class of isoindolinones has received
considerable interest for decades due to their potential as bioactive ingredients in medicinal
chemistry. By way of example, in 2005 an in silico screening of a first generation of
isoindolinones highlighted their potential as inhibitors of the MDM2-p53 interaction [2].
Yet, subsequent studies have also shown that introducing other functional groups into
the isoindolinone scaffold can significantly improve their pharmacological activity [3–5].
Therefore, structural modifications of the isoindolinone motif continue to be the subject of
intense investigation for synthetic chemists who face the double challenge of creating new
libraries of increasing structural complexity and, at the same time, proposing a sustainable
synthesis (Figure 1).
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Among nitrogen-containing heterocycles [1], the class of isoindolinones has received 

considerable interest for decades due to their potential as bioactive ingredients in 
medicinal chemistry. By way of example, in 2005 an in silico screening of a first generation 
of isoindolinones highlighted their potential as inhibitors of the MDM2-p53 interaction 
[2]. Yet, subsequent studies have also shown that introducing other functional groups into 
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Therefore, structural modifications of the isoindolinone motif continue to be the subject 
of intense investigation for synthetic chemists who face the double challenge of creating 
new libraries of increasing structural complexity and, at the same time, proposing a 
sustainable synthesis (Figure 1). 
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Figure 1. Representative isoindolinones tested for biological activity.

To this regard, we have been exploring for a decade tandem and sequential reactions
of 2-formyl benzonitriles succeeding in developing convenient methodologies to access
various isoindolinone-containing structures which include the ones with N and S moieties
at the exocyclic position [6,7]. Our approaches complement several others that use strategies

Molecules 2022, 27, 8199. https://doi.org/10.3390/molecules27238199 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27238199
https://doi.org/10.3390/molecules27238199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4953-7541
https://orcid.org/0000-0002-2298-5467
https://orcid.org/0000-0001-9053-648X
https://orcid.org/0000-0003-2959-0158
https://orcid.org/0000-0002-6613-7363
https://doi.org/10.3390/molecules27238199
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27238199?type=check_update&version=1


Molecules 2022, 27, 8199 2 of 13

and synthons designed according to the distinctiveness of the extra functionalities and
features of the desired products.

Besides purely chemical approaches, over the past decades, we [8–10] and others [11–14]
also demonstrated the effectiveness of electrocatalysis to promote the synthesis of function-
alized isoindolinones: these methods, framed in the picture of electro-organic chemistry
renaissance [15–18], offer several benefits from a synthetic point of view, especially in terms
of eco-friendly and waste minimization (Scheme 1).
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Based on our previous reports on this topic, we herein report an electrochemical
induced tandem reaction of functionalized anilines with 2-formylbenzonitrile to install
N-aryl substituents in the third position of the isoindolinone nucleus (Scheme 1).

Furthermore, to provide some more quantitative mechanistic insights, we herein
explored the potential energy surface of the whole process by means of quantum-chemical
calculations in the framework of density functional theory (DFT).

2. Results and Discussion
2.1. Optimization of Reaction Conditions

According to the Mayr’s scale, despite their low basicity, anilines still exhibit good
nucleophilicity parameters toward reference electrophiles [19,20]; however, with respect to
the carbonyl addition, aniline hemiaminals are rarely detected in organic solvent due to
their marked tendency to release H2O yielding imines and, concurrently, because of the
low global Keq of this reaction. Consistently, aniline itself proved to serve as nucleophilic
catalyst in transimination reaction for oxime and hydrazone synthesis, via aniline Schiff
base [21,22]. Indeed, imines derived from anilines are often the focus of various studies of
dynamic covalent chemistry [23].

Said the above, to the extent that hamiaminals A–H are intended as crucial intermedi-
ates for the cascade reaction leading to isoindolinones 3 (via cyclization/rearrangement),
anilines are quite challenging substrates with respect to alkyl or aliphatic amines in general.

With the aim to attempt an electro-catalyzed process with aromatic amines as nucle-
ophiles, we initiated our investigation by performing the reaction of the model compounds
aniline (2a), 2-bromoaniline (2b) or 2-iodoaniline (2c) with the 2-formylbenzonitrile under
a variety of electrochemical setup and conditions.

Standard conditions of Table 1 ensured a good 91% yield in the corresponding product
3 using 2a as nucleophile, while 80% and 57% yield were respectively obtained using
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the more challenging 2-halogenated anilines 2b and 2c which are known to be prone to
cathodic dehalogenation [24].

Table 1. Optimization of the reaction conditions (a).

Molecules 2022, 27, x FOR PEER REVIEW 3 of 13 
 

 

using the more challenging 2-halogenated anilines 2b and 2c which are known to be prone 
to cathodic dehalogenation [24]. 

Modifications of the standard reaction conditions such as current quantity/intensity 
(Table 1, entries 4, 9, 13), concentrations of the reagents (Table 1, entries 4, and 12), solvents 
(Table 1, entries 5, 6, and 7) etc., as well as variations of the electrochemical setup (divided 
vs. undivided cells, porosity of the glass separating septum, electrode materials), resulted 
in diminished yield for all the three products (see also supplementary conditions for 
further optimization details). 

The data reported in Table 1 also show that starting material 1 might undergo 
extensive decomposition, even applying a current quantity as low as 0.06 F/mol of 1 (Table 
1, entry 9). In fact, while under optimized conditions 3 is always observed as the most 
abundant product with 2a, 2b, and 2c, aldehyde 1 could not be recovered, regardless of 
whether the applied conditions were effective to yield isolable products. Conversely, a 
significant recovery of unreacted 2a–c anilines was ascertained in almost all the cases 
(except Table 1, entry 6). Yet, no better yields have been achieved using anilines 2 as 
limiting reagents (Table 1, entry 10). 

Table 1. Optimization of the reaction conditions (a). 

 

Entry Variations from 
Standard Conditions 

1 2 3 4 
%Conv (b) %Conv (c) %Yield (d) %Yield (d) 

1 none >98 2a 80 3a 91 4a - 
2 Undivided cell >98 2a 25 3a traces 4a 25 
3 No electricity (e) 57 (f) 2a 48 3a - 4a 57 (f) 

4 I = 8 mA, CH3CN: 0.6 mL >98 2a 61 3a 68 4a - 

5 
CH3CH2CN instead of 
CH3CN >98 2a 51 3a 22 4a 28 

6 DMF instead of CH3CN >98 2a 74 3a 37 4a - 
7 MeOH instead of CH3CN >98 2a <2 3a - 4a traces 
8 none >98 2b 70 3b 80 4b - 
9 Q = 0.06 F/mol >98 2b 61 3b 47 4b - 

10 Ratio 1:2b = 1.2:1 >98 2b 67 3b 61 4b - 
11 none >98 2c 62 3c 57 4c - 
12 CH3CN: 0.8 mL >98 2c 44 3c 31 4c - 
13 Q = 0.35 F/mol >98 2c >98 3c 38 4c - 
14 Electrolysis at 0 °C >98 2c 72 3c 38 4c - 

(a) After the electrolysis (standard conditions highlighted in the scheme above), the anolyte was 
removed and the reaction prolonged under stirring for 6 h at r.t. (b) Conversions have been 
determined by 1HNMR analysis of the crude mixture. (c) Conversions have been determined based 
on recovered 2a–c (isolated). (d) Isolated Yield. (e) Solvent: CD3CN. (f) Conversion of 1 and yield of 4a 
were established by 1HNMR analysis after 6 h. 

2.2. Electrochemically Induced Synthesis of 3-N-Aryl Substituted Isoindolinones 
Having optimized the reaction conditions, we evaluated scope and limitation of the 

electrochemical method by testing the series of compounds reported in Table 2. 
As shown, a variety of substituent on the aniline molecule, such as alkyl (Me), alkoxy 

(OMe, OEt), halogens (Br, Cl, F), and/or functional groups such as alkynyl, cyano, amide, 

Entry Variations from
Standard Conditions

1 2 3 4
%Conv (b) %Conv (c) %Yield (d) %Yield (d)

1 none >98 2a 80 3a 91 4a -
2 Undivided cell >98 2a 25 3a traces 4a 25
3 No electricity (e) 57 (f) 2a 48 3a - 4a 57 (f)

4 I = 8 mA, CH3CN: 0.6 mL >98 2a 61 3a 68 4a -

5 CH3CH2CN instead of
CH3CN >98 2a 51 3a 22 4a 28

6 DMF instead of CH3CN >98 2a 74 3a 37 4a -
7 MeOH instead of CH3CN >98 2a <2 3a - 4a traces
8 none >98 2b 70 3b 80 4b -
9 Q = 0.06 F/mol >98 2b 61 3b 47 4b -

10 Ratio 1:2b = 1.2:1 >98 2b 67 3b 61 4b -
11 none >98 2c 62 3c 57 4c -
12 CH3CN: 0.8 mL >98 2c 44 3c 31 4c -
13 Q = 0.35 F/mol >98 2c >98 3c 38 4c -
14 Electrolysis at 0 ◦C >98 2c 72 3c 38 4c -

(a) After the electrolysis (standard conditions highlighted in the scheme above), the anolyte was removed and
the reaction prolonged under stirring for 6 h at r.t. (b) Conversions have been determined by 1HNMR analysis of
the crude mixture. (c) Conversions have been determined based on recovered 2a–c (isolated). (d) Isolated Yield.
(e) Solvent: CD3CN. (f) Conversion of 1 and yield of 4a were established by 1HNMR analysis after 6 h.

Modifications of the standard reaction conditions such as current quantity/intensity
(Table 1, entries 4, 9, 13), concentrations of the reagents (Table 1, entries 4, and 12), solvents
(Table 1, entries 5, 6, and 7) etc., as well as variations of the electrochemical setup (divided
vs. undivided cells, porosity of the glass separating septum, electrode materials), resulted
in diminished yield for all the three products (see also supplementary conditions for further
optimization details).

The data reported in Table 1 also show that starting material 1 might undergo extensive
decomposition, even applying a current quantity as low as 0.06 F/mol of 1 (Table 1, entry
9). In fact, while under optimized conditions 3 is always observed as the most abundant
product with 2a, 2b, and 2c, aldehyde 1 could not be recovered, regardless of whether
the applied conditions were effective to yield isolable products. Conversely, a significant
recovery of unreacted 2a–c anilines was ascertained in almost all the cases (except Table 1,
entry 6). Yet, no better yields have been achieved using anilines 2 as limiting reagents
(Table 1, entry 10).

2.2. Electrochemically Induced Synthesis of 3-N-Aryl Substituted Isoindolinones

Having optimized the reaction conditions, we evaluated scope and limitation of the
electrochemical method by testing the series of compounds reported in Table 2.
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Table 2. Synthesis of 3-N-aryl substituted isoindolinones (a,b).
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partially decomposed under the standard electrochemical conditions. Likewise, the 
attempt to use 5-bromo-2-formylbenzonitrile (1′) instead of 1 as a reagent with aniline 2a 
was unsuccessful. Indeed, extensive decomposition of 1′ occurred under standard 
electrochemical conditions, while only partial conversion to the corresponding imine 4′a 
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2.3. Quantum-Chemical Calculations and Plausible Mechanism 
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prerequisite to achieve the desired product 3. 
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As shown, a variety of substituent on the aniline molecule, such as alkyl (Me), alkoxy
(OMe, OEt), halogens (Br, Cl, F), and/or functional groups such as alkynyl, cyano, amide,
keto, formyl etc., were examined to altogether assess the influence of changes in electron
density of the benzene ring, functional group tolerance, and steric hindrance effect.

Noteworthy, with respect to heterogeneous basic catalysis (3a and 3u, Table 2, data in
parentheses), the electrochemical method emerges as superior, both in terms of efficiency
and reaction times.

Though 2i and 2t furnished the corresponding products 3i and 3t with barely ac-
ceptable yields and no starting materials recovery, we were pleased to find that the elec-
trochemical conditions were compatible with almost all the other anilines, including the
ones having ortho- and para-alkynyl (2t–v) and ortho-benzoyl (2h) moieties. Moreover,
2-aminopyridine 2p also demonstrated a good reactivity under electrochemical conditions,
leading to the corresponding hybrid pyridine-isoindolinone 3p with a 62% yield. It is worth
noting that, with respect to the aryl amine, the selectivity is generally high (>85% based on
recovered starting material), despite the moderate yields occasionally observed. Moreover,
we want to remark the successful attainment of derivatives having sensible functionalities
on the aniline moieties such as 3f (o-CN), 3g (o-CO2NH2), and 3i (o-COMe), useful for
further diversification of the molecular structures. Conversely, p-aminobenzaldehyde 2o
failed to yield any product, probably because of the low tolerance of the electrochemical am-
bient vs. the formyl group. Indeed, both 1 and 2o partially decomposed under the standard
electrochemical conditions. Likewise, the attempt to use 5-bromo-2-formylbenzonitrile (1′)
instead of 1 as a reagent with aniline 2a was unsuccessful. Indeed, extensive decomposition
of 1′ occurred under standard electrochemical conditions, while only partial conversion to
the corresponding imine 4′a was observed using heterogeneous basic catalysis (conditions
reported in Table 2, note c).

2.3. Quantum-Chemical Calculations and Plausible Mechanism

To gain an understanding of the electro-induced reaction pathway, we first performed
some control experiments on the reaction model 2a + 1 under various conditions (Scheme 2).
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1H-NMR on the crude mixtures clearly indicated that the presence of both the reagents
(o-cyanobenzaldehyde and aniline) during the electricity supplying is a strict prerequisite
to achieve the desired product 3.

Thus, we opened our quantum-chemical investigations by analyzing the uncatalyzed
nucleophilic addition of the aniline 2a to the aldehyde 1 in acetonitrile (Figure 2).
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Not surprisingly, the uncatalyzed nucleophilic attack of 2a to 1 to produce the hemiami-
nal A–H is predicted as a disfavored process both kinetically and thermodynamically, with
the zwitterion B present in very low concentration in pre-equilibrium with the reagents.

Consequently, to locate the origin of the electro-activation leading to 3a both the initial
chemical species in the catholyte (i.e., 1, 2a, and the solvent CH3CN) and the fleeting
intermediate B occurring during the uncatalyzed route to the imine 4a have been taken
into account as potentially affected by the applied potential.

In Scheme 3 we report the energetic of the electro-reductive processes of all the species
possibly involved in the reaction, conventionally referring the thermodynamics of the
reactions as formally initiated by [CH3CN]− since, under constant current conditions, it is
the species present in excess.

The ∆G◦ values clearly suggest that 2-formylbenzonitrile 1 has the highest oxidizing
power. However, any process initiated by 1(sol)

− (e.g., Equations (5) and (7)), is thermo-
dynamically strongly disfavored. Zwitterionic intermediate B is likewise easily reduced
(Equation (4)). However, this channel also reveals as totally ineffective due to the strongly
thermodynamic driving force leading to B(sol)

− dissociation (reverse of Equation (7)).
Therefore, the data suggest that the electrochemical process acting as the reaction trigger
is the formation of ¯CH2CN(sol) which follows the hydrogen evolution reaction (HER)
(Equation (1)) [25]. The electrogenerated strong base ¯CH2CN(sol) might undergo to acid-
base reaction with either the aniline 2a (to form the strong nucleophilic aryl amide anion)
(Equation (8)) and, concurrently, with the zwitterion B (Equation (9)).
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Scheme 3. Standard free energy (kJ/mol) at 298 K of the plausible channels initiated by the Pt–
electroreduction.

In Figure 3a is depicted the whole catalytic process which includes the electrochemical
initiated cycle and the sequence of cascade reactions leading to the final product 3a.
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Figure 3. (a) Proposed reaction pathways at 298 K in acetonitrile based on DFT calculations. (b) Al-
ternative route. ∆G◦ and ∆G# values are given in kJ/mol.

As shown, after the electrochemically initiated process and the formation of the crucial
anionic intermediate A, the sequence of unimolecular H- and HO- transfers leads to D
which evolves without barrier to F, the conjugated base of the final product. After a
thermodynamically strongly guided (∆G◦ = −50 kJ/mol) acid–base reaction of F with
CH3CN, 3a is formed and the base ¯CH2CN, able to re-initializing the catalytic cycle,
restored. It is also equally reasonable that the acid–base reaction of electrogenerated base
¯CH2CN and zwitterion B contributes to the formation of the intermediate A.

Conversely, we want finally to remark that DFT calculations ruled out the possible
alternative pathway involving A closure and rearrangement of the intermediate G. As
shown in Figure 3b, the rearrangement step would imply higher activation energy.
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3. Materials and Methods
3.1. General Information

Electrochemical reactions were conducted using Hewlett Packard DC Power Supply
Mod. E3612A in constant current mode, in a U-divided glass cell separated through a
porous G-3 glass plug. Platinum spirals (apparent area 1 cm2) were used as anode and
cathode (distance between the electrodes 1 cm). Before using, Pt electrodes were treated
with a Piranha solution (sulfuric acid/hydrogen peroxide 3:1) for 1 min, washed with
double-distilled water and sonicated three times for 5 min with double-distilled water,
acetone, and isopropanol. The reactions were monitored by thin layer chromatography
(TLC) using Merck Silica Gel 60 F254 plates and were visualized by fluorescence quenching
at 254 nm. Column chromatographic purification of products was carried out using
silica gel 60 (70–230 mesh, Merck). The NMR spectra were recorded on Bruker Avance
400 spectrometers (400 MHz, 1H; 101 MHz, 13C). Spectra were referenced to residual CHCl3
(7.26 ppm, 1H; 77.00 ppm, 13C), MeOD (3.31 ppm, 1H; 49 ppm, 13C) or DMSO (2.50 ppm, 1H;
39.5 ppm, 13C) when indicated. Yields are given for isolated products showing one spot on
a TLC plate and seldom impurities detectable in the NMR spectrum. High-resolution mass
spectra (HRMS) were acquired using a Bruker SolariX XR Fourier transform ion cyclotron
resonance mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany) equipped with
a 7 T refrigerated actively shielded superconducting magnet. The samples were ionized in
positive ion mode using an electrospray (ESI) ionization source or the MALDI ion source.

3.2. Materials

All chemicals and solvents were obtained from commercial sources and were used
without further purification. Pt electrodes (wires, wire, diam. 0.5 mm, 99.99% trace metals
basis) were purchased from Sigma-Aldrich.

3.3. Procedure for Electrosynthesis of Compounds 3

A solution of 1 (0.2 mmol), 2 (0.24 mmol), and tetraethylammonium tetrafluoroborate
(Et4NBF4) (0.08 mmol) in MeCN (0.4 mL) is added in the cathodic compartment of a U-
divided cell equipped with platinum spirals (apparent area 1 cm2) as cathode (WE, working
electrode) and anode (CE, counter electrode). Catholyte was constituted by a solution of
Et4NBF4 (0.1 mmol) in MeCN (0.5 mL). Electrolysis was conducted under galvanostatic
conditions (4 mA, 0.12 electrons/molecule of 1) at r.t. At the end of the electrolysis, TLC
analysis showed disappearance of 1 and the reaction was in any case prolonged at r.t.
under magnetic stirring for 6 h. The mixture was then concentrated in vacuum and directly
purified by silica gel chromatography (Hexane: Ethyl Acetate from 4:1 to 3:2) to afford the
desired products 3a–3v.

3-(phenylamino) isoindolin-1-one (3a) [26]: Prepared following general procedure using
1 (0.2 mmol, 26 mg) and aniline 2a (0.24 mmol, 22 mg). The crude was purified directly by
flash chromatography to give a white solid 3a (41 mg, 91%). 1H-NMR (400 MHz, CDCl3)
δ = 7.87 (d, J = 7.5 Hz, 1H, Ar), 7.62 (d, J = 4.1 Hz, 2H, Ar), 7.60–7.52 (m, 1H, Ar), 7.28
(d, J = 7.9 Hz, 2H, Ar), 6.89 (t, J = 7.4 Hz, 1H, Ar), 6.79 (d, J = 8.0 Hz, 2H, Ar), 6.60 (s, 1H,
CONH), 6.19 (d, J = 10.7 Hz, 1H, CH), 4.11 (d, J = 10.7 Hz, 1H, NH). 13C-NMR (101 MHz,
DMSO) δ = 168.8; 146.8; 145.7; 132.6; 131.8; 129.0; 128.8; 123.7; 122.5; 117.3; 113.5; 64.7.
HR-MS (MALDI) m/z calcd for C14H13N2O [M + H+] 225.1022, found 225.1009, m/z calcd
for C14H12N2ONa [M + Na+] 247.0841, found 247.0827.

3-((2-bromophenyl) amino) isoindolin-1-one (3b): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 2-bromoaniline 2b (0.24 mmol, 41 mg). The crude was
purified directly by flash chromatography to give a yellow solid 3b (48 mg, 80%). 1H-NMR
(400 MHz, CDCl3) δ = 7.88 (d, J = 7.3 Hz, 1H, Ar); 7.67–7.53 (m, 3H, Ar); 7.49 (d, J = 8.0 Hz,
1H, Ar); 7.30–7.16 (m, 1H, Ar); 6.94 (s, 1H, CONH); 6.89 (d, J = 8.1 Hz, 1H, Ar), 6.73 (t,
J = 7.7 Hz, 1H, Ar); 6.17 (d, J = 9.7 Hz, 1H, CH); 4.85 (d, J = 9.7 Hz, 1H, NH). 13C-NMR
(101 MHz, CDCl3) δ = 169.6; 144.2; 142.6; 133.3; 132.8; 132.0; 129.9; 128.8; 124.0; 123.4; 120.5;
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112.7; 111.2; 65.4. HR-MS (MALDI) m/z calcd for C14H12BrN2O [M + H+] 303.0127, found
303.0110.

3-((2-iodophenyl) amino) isoindolin-1-one (3c): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 2-iodoaniline 2c (0.24 mmol, 52 mg). The crude was purified
directly by flash chromatography to give a yellow solid 3c (40 mg, 57%). 1H-NMR (400 MHz,
CDCl3) δ = 7.89 (dd, J = 7.4, 1.2 Hz, 1H, Ar); 7.74 (dd, J = 7.9, 1.5 Hz, 1H, Ar); 7.68–7.55 (m,
3H, Ar); 7.29 (d, J = 7.7 Hz, 1H, Ar); 6.83 (d, J = 8.1 Hz, 1H, Ar); 6.74 (s, 1H, CONH); 6.61
(t, J = 7.6 Hz, 1H, Ar); 6.17 (d, J = 9.6 Hz, 1H, CH); 4.69 (d, J = 9.6 Hz, 1H, NH). 13C-NMR
(101 MHz, CDCl3) δ = 169.5; 145.0; 144.2; 139.9; 132.8; 131.9; 130.0; 129.8; 124.0; 123.4; 121.3;
112.1; 87.0; 65.8. HR-MS (MALDI) m/z calcd for C14H12IN2O [M + H+] 350.9988, found
350.9966.

3-((2-chlorophenyl) amino) isoindolin-1-one (3d): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 2-chloroaniline 2d (0.24 mmol, 30 mg). Th crude was
purified directly by flash chromatography to give a yellow solid 3c (31 mg, 61%). 1H-NMR
(400 MHz, CDCl3) δ = 7.86 (dt, J = 7.5, 1.1 Hz, 1H, Ar); 7.66–7.51 (m, 3H, Ar); 7.49 (s, 1H,
CONH); 7.33–7.22 (m, 1H, Ar); 7.23–7.13 (m, 1H, Ar); 6.92 (dd, J = 8.3, 1.4 Hz, 1H, Ar);
6.77 (td, J = 7.7, 1.4 Hz, 1H, Ar); 6.16 (d, J = 9.7 Hz, 1H, CH); 4.85 (d, J = 9.7 Hz, 1H, NH).
13C-NMR (101 MHz, CDCl3) δ = 169.6; 144.3; 141.6; 132.8; 132.0; 130.0; 129.9; 128.1; 124.0;
123.4; 120.7; 120.0; 112.6; 65.2. HR-MS (MALDI) m/z calcd for C14H12ClN2O [M + H+]
259.0632, found 259.0617.

3-((2-methoxyphenyl) amino) isoindolin-1-one (3e): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 2-methoxyaniline 2e (0.24 mmol, 29 mg). The crude was
purified directly by flash chromatography to give a yellow solid 3e (39 mg, 78%). 1H-NMR
(400 MHz, CDCl3) δ = 7.87 (d, J = 7.4 Hz, 1H, Ar); 7.68–7.49 (m, 3H, Ar); 6.98–6.79 (m, 4H,
Ar); 6.72 (s, 1H, CONH); 6.19 (d, J = 8.0 Hz, 1H, CH); 4.74 (d, J = 8.0 Hz, 1H, NH); 3.80 (s, 3H,
OCH3). 13C-NMR (101 MHz, CDCl3) δ = 169.5; 147.7; 144.8; 135.2; 132.5; 132.0; 129.7; 123.9;
123.6; 121.4; 119.4; 111.4; 110.5; 65.4; 55.5. HR-MS (MALDI) m/z calcd for C15H15N2O2 [M
+ H+] 255.1128, found 255.1112.

2-((3-oxoisoindolin-1-yl) amino) benzonitrile (3f): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 2-cyanoaniline 2f (0.24 mmol, 28 mg). The crude was
purified directly by flash chromatography to give a yellow solid 3f (29 mg, 59%). 1H-NMR
(400 MHz, CDCl3) δ = 7.88 (d, J = 7.3 Hz, 1H, Ar); 7.69–7.55 (m, 3H, Ar); 7.47 (m, 2H, Ar);
7.11 (s, 1H, CONH); 6.94–6.83 (m, 2H, Ar); 6.21 (d, J = 9.2 Hz, 1H, CH); 5.07 (d, J = 9.2 Hz,
1H, NH). 13C-NMR (101 MHz, CDCl3) δ = 169.7; 147.8; 143.5; 134.6; 133.4; 133.0; 131.8; 130.2;
124.2; 123.4; 119.3; 117.1; 112.0; 98.4; 64.8. HR-MS (MALDI) m/z calcd for C15H12N3O [M +
H+] 250.0974, found 250.0962.

2-((3-oxoisoindolin-1-yl) amino) benzamide (3g): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 2-aminobenzamide 2g (0.24 mmol, 32 mg). The crude was
purified directly by flash chromatography to give a white solid 3g (42 mg, 79%). 1H-NMR
(400 MHz, MeOD) δ = 7.79 (d, J = 7.5 Hz, 1H, Ar); 7.71–7.61 (m, 2H, Ar); 7.57 (t, J = 7.5 Hz,
1H, Ar); 7.45 (d, J = 7.6 Hz, 1H, Ar); 7.19 (t, J = 7.7 Hz, 1H, Ar); 6.76 (d, J = 8.3 Hz, 1H, Ar);
6.72 (s, 1H, CH); 6.57 (t, J = 7.6 Hz, 1H, Ar). 13C NMR (101 MHz, DMSO) δ 169.4; 168.9;
150.1; 145.4; 132.6; 132.2; 131.9; 128.9; 128.5; 123.5; 122.5; 116.4; 114.4; 113.4; 60.4. HR-MS
(MALDI) m/z calcd for C15H14N3O2 [M + H+] 268.1080, found 268.1145

3-((2-benzoylphenyl) amino) isoindolin-1-one (3h): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 2-aminobenzophenone 2h (0.24 mmol, 47 mg). The crude
was purified directly by flash chromatography to give a yellow solid 3h (49 mg, 75%).
1H-NMR (400 MHz, CDCl3) δ = 8.81 (d, J = 8.4 Hz, 1H, NH); 7.88 (d, J = 7.4 Hz, 1H, Ar);
7.68–7.38 (m, 10H, Ar); 7.07 (s, 1H, CONH); 6.99 (d, J = 8.4 Hz, 1H, Ar); 6.75 (t, J = 7.6
Hz, 1H, Ar); 6.26 (d, J = 8.4 Hz, 1H, CH). 13C-NMR (101 MHz, CDCl3) δ = 199.4; 169.7;
149.2; 144.3; 139.7; 135.7; 135.1; 132.8; 131.9; 131.5; 129.9; 129.3; 128.2; 124.0; 123.4; 119.5;
116.6; 112.0; 64.3. HR-MS (MALDI) m/z calcd for C21H17N2O2 [M + H+] 329.1284, found
329.1264.
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3-((2-acetylphenyl) amino) isoindolin-1-one (3i): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 2-aminoacetophenone 2i (0.24 mmol, 32 mg). The crude was
purified directly by flash chromatography to give a yellow solid 3i (24 mg, 45%). 1H-NMR
(400 MHz, CDCl3) δ = 9.35 (d, J = 8.4 Hz, 1H, NH); 7.88 (d, J = 7.3 Hz, 1H, Ar); 7.84 (dd,
J = 8.1, 1.5 Hz, 1H, Ar); 7.66–7.54 (m, 3H, Ar); 7.47–7.40 (m, 1H, Ar); 6.89 (d, J = 8.4 Hz, 1H,
Ar); 6.84–6.77 (m, 1H, Ar); 6.72 (s, 1H, CONH); 6.22 (d, J = 8.4 Hz, 1H, CH); 2.59 (s, 3H,
CH3). 13C-NMR (101 MHz, CDCl3) δ = 201.3; 169.6; 148.7; 144.4; 135.3; 133.1; 132.8; 129.8,
124.0; 123.3; 119.4; 116.9; 111.9; 64.1; 28.1. HR-MS (MALDI) m/z calcd for C16H15N2O2 [M
+ H+] 267.1128, found 267.1111.

3-((4-chlorophenyl) amino) isoindolin-1-one (3j): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 4-chloroaniline 2j (0.24 mmol, 30 mg). The crude was
purified directly by flash chromatography to give a white solid 3i (40 mg, 79%). 1H-NMR
(400 MHz, MeOD) δ = 7.79 (d, J = 7.5 Hz, 1H, Ar); 7.70–7.60 (m, 2H, Ar); 7.57 (t, J = 7.3 Hz,
1H, Ar); 7.13 (d, J = 8.4 Hz, 2H, Ar); 6.77 (d, J = 8.4 Hz, 2H, Ar); 6.19 (s, 1H, CH). 13C-NMR
(101 MHz, MeOD) δ = 172.5; 146.9; 146.8; 133.7; 133.4; 130.5; 130.0; 124.9; 124.2; 124.2; 116.5;
67.3. HR-MS (MALDI) m/z calcd for C14H12ClN2O [M + H+] 259.0632, found 259.0618.

3-((4-fluorophenyl) amino) isoindolin-1-one (3k): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 4-fluoroaniline 2k (0.24 mmol, 26 mg). The crude was
purified directly by flash chromatography to give a yellow solid 3k (34 mg, 71%). 1H-NMR
(400 MHz, MeOD) δ = 7.78 (d, J = 7.5 Hz, 1H, Ar); 7.65 (d, J = 6.4 Hz, 2H, Ar); 7.56 (t,
J = 7.0 Hz, 1H, Ar); 6.90 (t, J = 8.6 Hz, 2H, Ar); 6.84–6.73 (m, 2H, Ar); 6.16 (s, 1H, CH).
13C-NMR (101 MHz, MeOD) δ = 178.4; 165.9; 163.6; 155.1; 152.9; 142.1; 141.4; 138.6; 133.3;
132.1; 124.9; 124.7; 124.3; 74.9. HR-MS (MALDI) m/z calcd for C14H12FN2O [M + H+]
243.0928, found 243.0913.

3-(p-tolylamino) isoindolin-1-one (3l): Prepared following general procedure A using 1
(0.2 mmol, 26 mg) and p-toluidine 2l (0.24 mmol, 26 mg). The crude was purified directly
by flash chromatography to give a white solid 3l (34 mg, 72%). 1H-NMR (400 MHz, CDCl3)
δ = 7.85 (d, J = 7.4 Hz, 1H, Ar); 7.65–7.51 (m, 3H, Ar); 7.07 (d, J = 7.8 Hz, 2H, Ar); 6.70 (d,
J = 7.8 Hz, 2H, Ar); 6.64 (s, 1H, CONH); 6.14 (d, J = 8.6 Hz, 1H, CH); 3.96 (d, J = 8.6 Hz, 1H,
NH); 2.28 (s, 3H, CH3). 13C-NMR (101 MHz, CDCl3) δ = 169.5; 144.7; 143.0; 132.5; 132.0;
130.3; 129.8; 129.6; 123.9; 123.5; 114.7; 66.3; 20.5. HR-MS (MALDI) m/z calcd for C15H15N2O
[M + H+] 239.1178, found 239.1166.

3-((4-methoxyphenyl) amino) isoindolin-1-one (3m): Prepared following general proce-
dure using 1 (0.2 mmol, 26 mg) and 4-methoxyaniline 2m (0.24 mmol, 29 mg). The crude
was purified directly by flash chromatography to give a brown solid 3m (39 mg, 78%).
1H-NMR (400 MHz, CDCl3) δ = 7.85 (d, J = 7.4 Hz, 1H, Ar); 7.65–7.49 (m, 3H, Ar); 6.84
(d, J = 8.7 Hz, 2H, Ar); 6.75 (d, J = 8.7 Hz, 2H, Ar); 6.67 (s, 1H, CONH); 6.06 (s, 1H, CH);
3.89–3.77 (m, 4H, OCH3 + NH). 13C-NMR (101 MHz, CDCl3) δ = 169.5; 154.1; 144.7; 139.0;
132.5; 131.9; 129.7; 123.9; 123.6; 116.6; 115.3; 67.2; 55.7. HR-MS (MALDI) m/z calcd for
C15H15N2O2 [M + H+] 255.1128, found 255.1119.

3-((4-ethoxyphenyl) amino) isoindolin-1-one (3n): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 4-ethoxyaniline 2n (0.24 mmol, 33 mg). The crude was
purified directly by flash chromatography to give a yellow solid 3n (37 mg, 70%). 1H-NMR
(400 MHz, CDCl3) δ = 7.85 (d, J = 7.4 Hz, 1H, Ar); 7.64–7.48 (m, 3H, Ar); 6.86–6.81 (m, 2H,
Ar); 6.77–6.71 (m, 2H, Ar); 6.65 (s, 1H, CONH); 6.07 (s, 1H, CH); 3.99 (q, J = 7.0 Hz, 2H,
CH2); 3.81 (s, 1H, NH); 1.40 (t, J = 7.0 Hz, 3H, CH3). 13C-NMR (101 MHz, CDCl3) δ = 169.5;
153.4; 144.7; 138.9; 132.5; 131.9; 129.7; 123.9; 123.6; 116.6; 116.1; 67.2; 64.0. HR-MS (MALDI)
m/z calcd for C16H17N2O2 [M + H+] 269.1284, found 269.1271.

3-(pyridin-2-ylamino) isoindolin-1-one (3p): Prepared following general procedure using
1 (0.2 mmol, 26 mg) and 2-aminopyridine 2p (0.24 mmol, 22 mg). The crude was purified di-
rectly by flash chromatography to give a yellow solid 3p (28 mg, 62%). 1H-NMR (400 MHz,
CDCl3) δ = 8.23–8.12 (m, 1H, Ar); 7.83 (d, J = 7.5 Hz, 1H, Ar); 7.60 (d, J = 4.1 Hz, 2H, Ar);
7.57–7.42 (m, 2H, Ar); 7.06 (s, 1H, CONH); 6.79–6.70 (m, 1H, Ar); 6.57 (d, J = 8.8 Hz, 1H,
CH); 6.51 (d, J = 8.3 Hz, 1H, Ar); 4.93 (d, J = 8.8 Hz, 1H, NH). 13C-NMR (101 MHz, CDCl3)
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δ = 169.2; 157.1; 148.1; 144.7; 137.8; 132.5; 132.4; 129.7; 124.4; 123.9; 123.2; 115.1; 109.8; 63.4.
HR-MS (MALDI) m/z calcd for C13H12N3O [M + H+] 226.0974, found 226.0971.

3-((2-bromo-4-methylphenyl) amino) isoindolin-1-one (3q): Prepared following general
procedure using 1 (0.2 mmol, 26 mg) and 2-bromo-4-methylaniline 2q (0.24 mmol, 44 mg).
The crude was purified directly by flash chromatography to give a yellow solid 3q (42 mg,
67%). 1H-NMR (400 MHz, CDCl3) δ = 7.87 (d, J = 7.4 Hz, 1H, Ar); 7.61 (m, 2H, Ar); 7.57 (d,
J = 7.4 Hz, 1H, Ar); 7.31 (s, 1H, Ar); 7.03 (d, J = 8.2 Hz, 1H, Ar); 6.94 (s, 1H, CONH); 6.79 (d,
J = 8.2 Hz, 1H, Ar); 6.12 (d, J = 9.8 Hz, 1H, CH); 4.68 (d, J = 9.8 Hz, 1H, NH); 2.25 (s, 3H,
CH3). 13C-NMR (101 MHz, CDCl3) δ = 169.6; 144.4; 140.2; 133.5; 132.7; 131.9; 130.4; 129.9;
129.3; 123.9; 123.4; 113.0; 111.3; 65.8; 20.1. HR-MS (MALDI) m/z calcd for C15H14N2OBr [M
+ H+] 317.0284, found 317.0265.

3-((2,4-dimethylphenyl) amino) isoindolin-1-one (3r): Prepared following general pro-
cedure using 1 (0.2 mmol, 26 mg) and 2,4-dimethylaniline 2r (0.24 mmol, 29 mg). The
crude was purified directly by flash chromatography to give a yellow solid 3r (32 mg, 64%).
1H-NMR (400 MHz, CDCl3) δ = 7.87 (d, J = 7.4, 1H, Ar), 7.68–7.58 (m, 2H, Ar), 7.56 (m, 1H,
Ar), 7.05–6.90 (m, 2H, Ar), 6.82 (m, 2H, Ar + CONH), 6.16 (s, 1H, CH), 3.86 (s, 1H, NH), 2.27
(s, 3H, CH3), 2.11 (s, 3H, CH3). 13C-NMR (101 MHz, CDCl3) δ = 169.6; 145.1; 141.2; 132.7;
132.0; 129.9; 129.3; 127.8; 124.3; 124.0; 123.6; 112.1; 112.0; 66.2; 20.5; 17.6. HR-MS (MALDI)
m/z calcd for C16H17N2O [M + H+] 253.1335, found 253.1325.

3-((2,5-dimethoxyphenyl) amino) isoindolin-1-one (3s): Prepared following general pro-
cedure using 1 (0.2 mmol, 26 mg) and 2,5-dimethoxyaniline 2s (0.24 mmol, 36 mg). The
crude was purified directly by flash chromatography to give a white solid 3s (34 mg, 61%).
1H-NMR (400 MHz, CDCl3) δ = 7.86 (d, J = 7.4 Hz, 1H, Ar); 7.67–7.48 (m, 3H, Ar); 6.80 (s,
1H, CONH); 6.73 (d, J = 8.8 Hz, 1H, Ar); 6.46 (d, J = 2.8 Hz, 1H, Ar); 6.31 (dd, J = 8.8, 2.8 Hz,
1H, Ar); 6.14 (d, J = 10.2 Hz, 1H, CH); 4.77 (d, J = 10.2 Hz, 1H, NH); 3.75 (d, J = 1.3 Hz, 6H,
OCH3). 13C-NMR (101 MHz, CDCl3) δ = 169.5; 154.7; 144.7; 142.1; 136.2; 132.5; 132.1; 129.7;
123.9; 123.5; 111.1; 101.9; 99.6; 65.2; 56.0; 55.7. HR-MS (MALDI) m/z calcd for C16H17N2O3
[M + H+] 285.1233, found 285.1216.

3-((2-ethynylphenyl) amino) isoindolin-1-one (3t): Prepared following general procedure
using 1 (0.2 mmol, 26 mg) and 2-((trimethylsilyl)ethynyl)aniline 2t (0.24 mmol, 45 mg). The
crude was purified directly by flash chromatography to give a yellow solid 3t (26 mg, 53%).
1H-NMR (400 MHz, CDCl3) δ = 7.89 (d, J = 7.3 Hz, 1H, Ar); 7.68–7.60 (m, 2H, Ar); 7.60–7.54
(m, 1H, Ar); 7.41 (dd, J = 7.7, 1.6 Hz, 1H, Ar); 7.28 (d, J = 1.6 Hz, 1H, Ar); 6.88–6.77 (m, 2H,
Ar); 6.72 (s, 1H, CONH); 6.22 (d, J = 9.6 Hz, 1H, CH); 5.11 (d, J = 9.6 Hz, 1H, NH); 3.33 (s,
1H, CH). 13C-NMR (101 MHz, CDCl3) δ = 169.5, 146.9; 144.4; 133.4; 132.8; 131.9; 130.5; 129.9;
124.0; 123.4; 118.9; 110.8; 108.5; 83.7; 79.8; 65.1. HR-MS (MALDI) m/z calcd for C16H13N2O
[M + H+] 249.1022, found 249.1008.

3-((2-(phenylethynyl) phenyl) amino) isoindolin-1-one (3u): Prepared following general
procedure using 1 (0.2 mmol, 26 mg) and 2-(phenylethynyl) aniline 2u (0.24 mmol, 46 mg).
The crude was purified directly by flash chromatography to give a yellow solid 3u (44 mg,
69%). 1H-NMR (400 MHz, CDCl3) δ = 7.89 (d, J = 7.4 Hz, 1H, Ar); 7.68–7.63 (m, 2H, Ar);
7.62–7.54 (m, 1H, Ar); 7.45 (d, J = 7.6 Hz, 1H, Ar); 7.40–7.35 (m, 2H, Ar); 7.32–7.26 (m, 4H,
Ar); 6.88–6.80 (m, 3H, Ar + CONH); 6.23 (d, J = 9.5 Hz, 1H, CH); 5.13 (d, J = 9.5 Hz, 1H,
NH). 13C-NMR (101 MHz, CDCl3) δ = 169.6; 146.1; 144.6; 132.9; 132.8; 132.0; 131.5; 130.1;
129.9; 128.5; 128.4; 128.4; 124.0; 123.3; 122.8; 119.1; 111.1; 109.8; 95.8; 85.1; 65.4. HR-MS
(MALDI) m/z calcd for C22H17N2O [M + H+] 325.1335, found 325.1318.

3-((4-(phenylethynyl) phenyl) amino) isoindolin-1-one (3v): Prepared following general
procedure using 1 (0.2 mmol, 26 mg) and 4-(phenylethynyl) aniline 2v (0.24 mmol, 46 mg).
The crude was purified directly by flash chromatography to give a yellow solid 3v (45 mg,
70%). 1H-NMR (400 MHz, DMSO) δ = 9.06 (s, 1H, CONH); 7.70 (d, J = 7.4 Hz, 1H, Ar);
7.68–7.60 (m, 1H, Ar); 7.61–7.52 (m, 2H, Ar); 7.48 (d, J = 7.4 Hz, 2H, Ar); 7.38 (q, J = 8.2, 7.3
Hz, 3H, Ar); 7.31 (d, J = 8.2 Hz, 2H, Ar); 6.85 (d, J = 9.3 Hz, 1H, CH); 6.81 (d, J = 8.3 Hz,
2H, Ar); 6.24 (d, J = 9.3 Hz, 1H, NH). 13C NMR (101 MHz, DMSO) δ = 169.3; 147.9; 145.8;
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133.0; 132.9; 132.5; 131.4; 129.7; 129.1; 128.4; 124.3; 123.7; 123.1; 113.9; 110.7; 91.2; 87.6; 64.7.
HR-MS (MALDI) m/z calcd for C22H17N2O [M + H+] 325.1335, found 325.1314.

3.4. Computational Details

All the calculations were performed with the Gaussian 09 [27] program in the frame-
work of the density functional theory (DFT) using the functional wB97XD functional using
a version of Grimme’s D2 dispersion model [28] in conjunction with different basis sets: ge-
ometry optimizations were carried out with the 6–31G*. Energies were then refined through
single point calculations adding a diffusion function with the 6–31 + G* basis set. All the
structures were optimized in the gas phase and characterized through the calculation of the
mass-weighted Hessian matrix, as minima (all positive eigenvalues of the Hessian matrix)
or transition structures (1 negative eigenvalue of the Hessian matrix). The gas-phase Gibbs
molar free energy (GX,gas) was then calculated, using the previous geometries and harmonic
frequencies, for each species in the gas phase at 25 ◦C at the concentration of 1M using
the standard statistical-mechanical relations. Finally, the solvation, i.e., excess, molar free
energy (GX,solv) was calculated within the mean-field approximation in acetonitrile using
the polarizable conductor calculation model [29]. Within this approximations the molar
free energy (GX) for each species in solution corresponds to the usual equation

G◦X = G◦X,gas + GX,solv + RT ln [X]

where [X] = 1.0 M for all the species in solution and [X] = DX:MWX (where D is the density
of the species X) for the solvent, i.e., acetonitrile. For H2 the standard state corresponding
to 1.0 bar of pressure was used. All the cartesian coordinates of the optimized geometries
are collected in the Supplementary Information.

4. Conclusions

In summary, performing constant current electrolysis with catalytic amount of elec-
tricity, we accessed unprecedented molecular architectures that encompass isoindolinone
nucleus and functionalized anilines, two substructures playing relevant roles in the pro-
duction of pharmaceuticals.

Mild conditions, catalytic loading of supporting electrolyte [30], short electroly-
sis/reaction time, as well as acceptable functional group tolerance are the major strong
points of this synthetic approach.

Finally, the mechanistic insight offered by DFT computations, allowed us to provide a
consistent picture of the effectiveness of the electrochemical activation to the generation of
the highly nucleophilic aryl amide anion species that follows the HER of the solvent on
Pt cathode.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1, Figure S1: The setup of electrochemical reaction; Table S1: Optimization
studies; Figures S2–S10: 3a structure determination (2D-NMR Spectra). 1H, 13C NMR spectra of the
products; DFT Data.
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