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Abstract: Steroidal saponins are a group of compounds with complex structures and biological activi-
ties. They have anti-inflammatory, antimicrobial, fungicidal, and antitumor properties. Yamogenin
is one of the spirostane saponins and occurs in Trigonella foenum-graecum, Asparagus officinalis, and
Dioscorea collettii. It is a stereoisomer of diosgenin—a well-known compound whose activity and
mechanisms of action in cancer cells are determined. However, the antitumor effect of yamogenin is
still little known, and the mechanism of action has not been determined. In this study, we evaluated
the effect of yamogenin on human ovarian cancer SKOV-3 cells in vitro by determining the cellular
factors that trigger cell death. The viability of the cells was assessed with a Real-Time xCELLigence
system and the cell cycle arrest with flow cytometry. The activity of initiator and executioner cas-
pases (-8, -9, and -3/7) was estimated with luminometry and flow cytometry, respectively. The
mitochondrial membrane depolarization, the level of oxidative stress, and DNA damage in the
yamogenin-treated cells were also evaluated by flow cytometry. Genes expression analysis at the
mRNA level was conducted with Real-Time PCR. Bid activation and chromatin condensation were
estimated with fluorescent microscopy. The obtained results indicate that yamogenin has cytotoxic
activity in SKOV-3 cells with an IC50 value of 23.90 ± 1.48 µg/mL and strongly inhibits the cell
cycle in the sub-G1 phase. The compound also triggers cell death with a significant decrease in
mitochondrial membrane potential, an increase in the level of oxidative stress (over two times higher
in comparison to the control), and activation of caspase-8, -9, -3/7, as well as Bid. The results of genes
expression indicate that the Tumor Necrosis Factor (TNF) Receptor Superfamily Members (TNF,
TNFRSF10, TNFRSF10B, TNFRSF1B, and TNFRSF25), Fas Associated via Death Domain (FADD),
and Death Effector Domain Containing 2 (DEDD2) were significantly upregulated and their relative
expression was at least two times higher than in the control. Our work shows that yamogenin induces
apoptosis in ovarian cancer cells, and both the extrinsic and mitochondrial—intrinsic pathways are
involved in this process.

Keywords: steroidal saponins; SKOV-3 line; in vitro; caspases; mitochondrial potential; tumor
necrosis factor superfamily members; intrinsic and extrinsic apoptotic pathway

1. Introduction

Steroidal saponins are widely distributed in plant species. They are high-molecular-
weight compounds that consist of aglycone and sugar moiety. They can have a 5-ring
furostane or a 6-ring spirostane skeleton connected with D-glucose, D-galactose, L-rhamnose,
D-xylose, L-arabinose, or D-glucuronic acid [1]. The distribution of these metabolites is
mainly in Monocotyledones plants, among which Liliaceae, Agavaceae, and Dioscoreaceae
are the main source of these steroids [2]. The compounds have many pharmacological
and biological properties. One of these is antimicrobial, anti-inflammatory, antitumor,
fungicidal, insecticidal, antifeedant, and molluscicidal activity [2–10]. Furthermore, many
of them are precursors used by the pharmaceutical industry in the synthesis of steroid
hormones—progesterone and cortisone derivatives [2]. Generally, saponins are a struc-
turally diverse group, and they are characterized by unique biological and physicochemical
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properties—hemolytic, foaming, and detergent abilities [11]. The compounds form com-
plexes with cell membrane cholesterol, creating pores and changes in carbohydrate portions
on the cell surface [1].

Recently, steroidal saponins have been extensively studied due to their significant
cytotoxic activities on cancer cells. Among them are aglycones and their derivatives, such
as diosgenin, dioscin, gracillin, sarsasapogenin, pennogenin, yamogenin, aginoside, as-
paragoside, prosapogenin, icogenin, gitonin, and polyphyllin D [1]. These compounds
were isolated from plant species and tested on different kinds of cancer cells—murine
lymphocytic leukemia P-388 cell line, human epidermoid carcinoma KB, murine lym-
phoma L-1210, human acute promyelocytic leukemia HL-60, human lung carcinoma A549,
human cervical cancer HeLa, human hepatocellular carcinoma HepG2 cells, and many
other [2,12–18]. Up to now, the cytotoxic activity of diosgenin and its glycoside dioscin is
very well known, and their mechanisms of action have been determined in many cancer
cells [19–22]. Diosgenin stereoisomer is yamogenin ((25S)-spirost-5-en-3beta-ol), which is
also called neodiosgenin (Figure 1) and occurs in Trigonella foenum-graecum [23], Solanum vi-
olaceum [24], Dioscorea collettii [25], and Asparagus officinalis [26]. Lu et al. tested yamogenin
glycoside on a few cancer cell lines—human breast cancer MCF-7, lung carcinoma A549,
hepatocellular carcinoma HepG2, and gastric adenocarcinoma MGC-803, and obtained
IC50 (inhibitory concentration) values were between 20 and 30 µg/mL [27]. Moreover,
yamogenin can inhibit triacylglyceride accumulation and suppress mRNA expression of
fatty acid synthesis-related genes in HepG2 [28]. Our previously reported study showed
that yamogenin has cytotoxic activity on human cervical HeLa and ovarian SKOV-3 cells
in vitro [29]; however, its mechanism of action, according to our knowledge, has not been
determined. As yamogenin and diosgenin have similar chemical structures, as shown
in Figure 1, it is highly probable that their biological activities and anticancer pathways
can be comparable. In addition, both compounds are present in the same popular plant
materials used according to their nutritional and pro-healthy properties [23–25]. It should
be emphasized that yamogenin is a compound that is relatively poorly analyzed both in
terms of pharmacology and anticancer activity in vitro. The significance of clarifying the
effect of yamogenin in tumor cells may be the basis for further study in these fields.
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Figure 1. The structure of yamogenin and diosgenin.

In this study, we present the activity of yamogenin on human cancer ovarian SKOV-3
cells in vitro. The mechanism of action leading to cell death induced by the compound was
determined. We postulate that yamogenin induces cell death via apoptosis, and both the
intrinsic and extrinsic pathways are involved in this process.

2. Results
2.1. Yamogenin Decreases the Viability of the Ovarian Cancer SKOV-3 Cells

To estimate the proliferation and viability of ovarian cancer SKOV-3 cells as well as
non-cancer keratinocytes treated with yamogenin, we performed experiments with Real-
Time Cell Analyzer (xCELLigence system). The system enables evaluation of the cellular
viability based on changes in electric impedance, which can be observed in real-time and
continuously. The obtained results showed that yamogenin decreased the viability of the
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cancer SKOV-3 cells as well as non-cancer HaCaT. The IC50 values calculated by the system
were 23.90 ± 1.48 and 16.40 ± 1.41 µg/mL, respectively (Figures 2A and 3A). Furthermore,
we show the changes in IC50 values of yamogenin every 30 min during the whole time of
conducted experiments (24 h) (Figures 2B and 3B), as well as the level of changes in the
cytotoxic effect (slope) of yamogenin for every used compound concentration (Figures 2C
and 3C). In the case of SKOV-3 cells, the increase in the cytotoxic effect of yamogenin was
visible above 10 µg/mL of the compound concentration, while in HaCaT cells, this effect
occurred above 15 µg/mL.
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Figure 2. RTCA profiles of cell index (A), IC50 values (B), and slope of changes (C) in cytotoxic
effect of yamogenin on the SKOV-3 cells. The cells were incubated with the compound for 24 h, and
normalized cell index vs. concentration of yamogenin was calculated by RTCA system (A). The IC50

values of yamogenin were obtained at every time point of the experiment (every 30 min) (B). The
slope of changes in cytotoxic effect of yamogenin was calculated for every used concentration of the
compound during the experiment (C). The results were obtained in three independent experiments.
Error bars represent standard deviations.

To confirm the yamogenin effect on the viability and morphology of SKOV-3 cells,
we performed fluorescent staining using Hoechst 33342 dye. The microscopic observation
before staining revealed an increase in the number of cells with loss of cell volume and
detached from the plate surface (Figure 4C,D). After staining, we also observed significant
fragmentation and condensation of chromatin in nuclei of the cells treated with yamogenin
in comparison with the control (Figure 4G,H,K,L).
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Figure 4. The SKOV-3 cells treated with yamogenin for 24 h and processed with Hoechst 33342 dye.
The cells were incubated with ethanol (0.7% (v/v)—a control, (A,E,I)), yamogenin at concentrations
of 20 (B,F,J), 50 (C,G,K), and 70 µg/mL (D,H,L), and then stained with fluorescent Hoechst 33342
dye (E–L). The cells were observed under 200× magnification (A–H) and 400× magnification (I–L).
Arrows indicate the condensation of chromatin in the treated cells.
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2.2. Yamogenin Induces Cell Cycle Arrest in Sub-G1 Phase of SKOV-3 Cells

The cell cycle of SKOV-3 treated with yamogenin was assessed with flow cytometry.
The results showed that the compound induced cell cycle arrest in the sub-G1 phase. The
results were 12.6 ± 0.34, 11.88 ± 0.21, 12.05 ± 0.58, 21.8 ± 1.37, and 28.9 ± 2.51% for
the control (ethanol 0.7%), and yamogenin concentrations of 10, 20, 50, and 70 µg/mL,
respectively (Figure 5).
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Figure 5. The arresting of SKOV-3 cell cycle induced by yamogenin. The ethanol and compound
were added to the cells at concentrations of 0.7% ((v/v), a control, (A)) and 10, 20 (B), 50 (C), and
70 µg/mL (D), respectively. After 48 h, the cells were analyzed with flow cytometry. Green color on
(A–D) represents the sub-G1, blue—the G0/G1, purple—the S, and khaki—the G2/M population of
the cells. The values represent the means ± SD obtained from three independent experiments. Error
bars represent standard deviations. Significant differences relative to the control are marked with an
asterisk (the Student’s t-test, * p < 0.05).

2.3. Yamogenin Depolarizes Mitochondrial Membrane in SKOV-3 Cells

To estimate the changes in the polarization of the mitochondrial membrane in SKOV-3
cells treated with yamogenin, we used flow cytometry. The obtained results showed that
yamogenin caused a decrease in MMP (mitochondrial membrane potential), and this effect
was very significant at concentrations of the compound above 20 µg/mL. The percentage of
live/depolarized cells was 4.1 ± 0.75, 5.99 ± 0.96, 18.48 ± 3.16, 46.28 ± 1.44, and 67.70 ± 2.67
for the control, and yamogenin concentrations 10, 20, 50, and 70 µg/mL, respectively (Figure 6).



Molecules 2022, 27, 8181 6 of 18
Molecules 2022, 27, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 6. The changes in MMP of SKOV-3 treated with yamogenin for 24 h. The cells were incu-
bated with ethanol (0.7% (v/v)—a control, (A)) and yamogenin concentrations of 10, 20 (B), 50 (C), 
and 70 µg/mL (D), respectively. The amount of live and dead depolarized cells was obtained with 
flow cytometry and is presented as percentage of the cells in the treated population (E). The values 
represent the means ± SD of three independent experiments. Error bars represent standard devia-
tions. Significant differences relative to the control are marked with an asterisk (the Student’s t-test, 
* p < 0.05). 

2.4. Yamogenin Induces Oxidative Stress in SKOV-3 Cells 
The cells were treated with different concentrations of yamogenin, and the flow cy-

tometry analysis revealed that the compound increased the level of cellular oxidative 
stress and its relative value was over two times higher than in the control cells. The re-
sults were 2.57 ± 0.21 and 2.70 ± 0.24 for concentrations of 50 and 70 µg/mL, respectively, 
while for the cells treated with ethanol (0.7% (v/v), a control), this level was 1.0 ± 0.08 
(Figure 7). 

Figure 6. The changes in MMP of SKOV-3 treated with yamogenin for 24 h. The cells were in-
cubated with ethanol (0.7% (v/v)—a control, (A)) and yamogenin concentrations of 10, 20 (B), 50
(C), and 70 µg/mL (D), respectively. The amount of live and dead depolarized cells was obtained
with flow cytometry and is presented as percentage of the cells in the treated population (E). The
values represent the means ± SD of three independent experiments. Error bars represent standard
deviations. Significant differences relative to the control are marked with an asterisk (the Student’s
t-test, * p < 0.05).

2.4. Yamogenin Induces Oxidative Stress in SKOV-3 Cells

The cells were treated with different concentrations of yamogenin, and the flow
cytometry analysis revealed that the compound increased the level of cellular oxidative
stress and its relative value was over two times higher than in the control cells. The results
were 2.57 ± 0.21 and 2.70 ± 0.24 for concentrations of 50 and 70 µg/mL, respectively, while
for the cells treated with ethanol (0.7% (v/v), a control), this level was 1.0 ± 0.08 (Figure 7).
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2.5. Yamogenin Triggers Up-Regulation of the Tumor Necrosis Factor Receptor Superfamily
(TNFRSF) Members Genes

To estimate the up- and down-regulation of selected genes, we prepared an RT-PCR
analysis. The obtained results showed that yamogenin at a concentration of 40 µg/mL
significantly increased expression at mRNA level (over two times higher than control) of
35 genes related to cell death and down-regulated three genes. The most changes were
observed in the case of BCL2 Associated Agonist of Cell Death (BAD), BCL10 Immune
Signaling Adaptor (BCL10), BCL2 Related Protein A1 (BCL2A1), BCL2 Like 13 (BCL2L13),
BCL2 Interacting Killer (BIK), X-Linked Inhibitor of Apoptosis (XIAP), BCL2 Interacting
Protein 3 (BNIP3), BCL2 Interacting Protein 3 Like (BNIP3L), BCL2 Family Apoptosis
Regulator BOK (BOK), Death Effector Domain Containing 2 (DEDD2), Fas Associated via
Death Domain (FADD), Leucine Repeat Death Domain (LRDD), Nuclear Factor Kappa
B Subunit 2 (NFKB2), NFKB Inhibitor Alpha (NFKBIA), NFKB Inhibitor Zeta (NFKBIZ),
Phorbol-12-Myristate-13-Acetate-Induced Protein 1 (PMAIP1), Tumor Necrosis Factor
(TNF), and TNF Receptor Superfamily Member 25 (TNFRSF25) gene. The up-regulation
was over 2.5 times higher than the control (Figure 8), while the down-regulation was
lower than 0.5 for Fas Cell Surface Death Receptor (FAS) (0.48 ± 0.002), TNF Receptor
Superfamily Member 21 (TNFRSF21) (0.49 ± 0.003), and TNF Superfamily Member 10
(TNFSF10) (0.25 ± 0.001).
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Figure 8. The relative gene expression at mRNA level in SKOV-3 cells treated with yamogenin. The
cells were incubated with ethanol (0.4% (v/v)—a control) and the compound at a concentration
of 40 µg/mL for 24 h. The results were obtained with Real-Time PCR, and values represent the
means ± SD of three independent experiments. Error bars represent standard deviations. The
expression of genes was normalized to HPRT1 endogenous control gene, and their levels are presented
as a fold-change over the value 1.0 (control).

2.6. Yamogenin Increases the Activity Level of Caspases-3/7/8/9 in SKOV-3 Cells

To estimate the level of activity of initiator and executioner caspases, we used lu-
minometry and flow cytometry, respectively. In luminometric analysis, we observed a
significant increase in caspase-8 and -9 activities. The results revealed that the relative
activity level of caspase-8 was 1.14 ± 0.18, 1.71 ± 0.05, 3.43 ± 0.09, and 3.45 ± 0.09 times
higher than the control at yamogenin concentrations of 10, 20, 50, and 70 µg/mL, respec-
tively. The relative activity level of caspase-9 was also much higher than the control and
was 1.12 ± 0.14, 3.08 ± 0.34, 5.09 ± 0.47, and 5.49 ± 0.36 at yamogenin concentrations of
10, 20, 50, and 70 µg/mL, respectively (Figure 9).

The obtained results from flow cytometry analysis indicated that the activity level of
caspase-3/7 increased in the cells treated with yamogenin above concentration of 20 µg/mL.
When caspase-3/7 is active, the released fluorescent dye (previously linked to a DEVD pep-
tide substrate) labels the DNA of the apoptotic cells. Thus, the method enables estimation
of the amount of apoptotic and dead cells in the treated population. The percentage of late
apoptotic cells in this experiment was 2.17 ± 0.13, 2.90 ± 0.42, 18.68 ± 0.67, 50.08 ± 1.99,
and 55.95 ± 2.11 for the control, and 10, 20, 50, and 70 µg/mL of yamogenin, respec-
tively. The number of dead cells was 1.88 ± 0.29, 1.58 ± 0.37, 5.61 ± 0.25, 16.83 ± 1.37,
18.75 ± 1.98 % for the control, and 10, 20, 50, and 70 µg/mL of yamogenin, respectively
(Figure 10).
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Figure 9. The relative activity level of caspase-8 and -9 in SKOV-3 cells treated with yamogenin.
The compound and ethanol were added to the cells at concentrations of 10–70 µg/mL and 0.7%
(v/v), respectively, for 24 h. The results were obtained with luminometry, and the values represent
the means ± SD obtained from three independent experiments. Error bars represent standard
deviations. Significant differences relative to the control are marked with an asterisk (the Student’s
t-test, * p < 0.05).
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Figure 10. The activity of caspase-3/7 in SKOV-3 cells treated with yamogenin presented as percent-
age of the apoptotic cell populations. The cells were incubated with ethanol (0.7% (v/v)—a control,
(A)) and the compound at concentrations of 10, 20 (B), 50 (C), and 70 µg/mL (D). The amounts of
live, apoptotic, and dead cells were obtained with flow cytometry and are presented as percentage of
the cells in the treated population (E). The values represent the means ± SD of three independent
experiments. Error bars represent standard deviations. Significant differences relative to the control
are marked with an asterisk (the Student’s t-test, * p < 0.05).



Molecules 2022, 27, 8181 10 of 18

2.7. Yamogenin Activates Bid in SKOV-3 Cells

The cells were incubated with yamogenin at concentrations of 20 and 40 µg/mL.
After 24 h, the cells were treated with primary anti-Bid antibody and secondary goat anti-
rabbit IgG Alexa Fluor 594. The cellular nuclei were stained with Hoechst 33342 dye and
visualized with fluorescent microscopy. The obtained results showed that the intensity of
red fluorescence is much stronger in the yamogenin-treated cells than in the control, which
indicates that Bid was activated in SKOV-3 cells (Figure 11).
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Figure 11. Yamogenin activates Bid in SKOV-3 cells. The cells were incubated with ethanol (0.4%
(v/v)—a control) and yamogenin at concentrations of 20 and 40 µg/mL for 24 h and then stained with
primary anti-Bid antibody (1:300), secondary anti-rabbit IgG Alexa Fluor 594 antibody (1:1000, red
fluorescence), and Hoechst 33342 dye (green nuclei). The results were observed under a fluorescent
microscope at 400× magnification.

2.8. Yamogenin Induces H2A.X Activation in SKOV-3 Cells

The cells were treated with yamogenin or etoposide as a positive control to assess the
amount of the cells with activated H2A.X. Active form of a histone H2A.X (phospho histone
H2A.X, known as γH2A.X)—an indicator of DNA damage is generally detected with
conjugated antibodies—a phospho-specific anti-phospho-histone H2A.X (Ser139)-Alexa
Fluor555 and an anti-histone H2A.X-PECy5. The total level of histone H2A.X was measured
in SKOV-3 cells treated with yamogenin. The significant changes in the percentage of the
cells with phospho H2A.X we observed at yamogenin concentrations of 50 and 70 µg/mL in
comparison to the control, and this amount was 13.54 ± 2.61 and 20.2 ± 2.08%, respectively.
In the case of etoposide, the percentage of the cells with phospho H2A.X was 46.2 ± 3.89
(Figure 12).
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Figure 12. The activation of H2A.X in the SKOV-3 cells treated with yamogenin. The cells were
incubated with ethanol (0.7% (v/v)—a control, (A)) and the compound at concentrations of 10, 20 (B),
50 (C), 70 µg/mL (D), and etoposide (E) as a positive control for 24 h. The results were obtained with
flow cytometry, and values represent the means ± SD obtained from three independent experiments.
Error bars represent standard deviations. Significant differences relative to the control are marked
with an asterisk (the Student’s t-test, * p < 0.05).

3. Discussion

In our study, we examined the effect of yamogenin on human ovarian cancer SKOV-
3 cells. The tested compound showed cytotoxic activity on the cell line, and this effect
was dose- and time-dependent. Furthermore, the compound caused cell death. Another
experiment revealed that yamogenin suppressed cell proliferation and induced strong
inhibition of the cell cycle in the sub-G1 phase. The arresting of the cell cycle in this phase
may indicate that apoptosis is the main way of cellular death. To confirm this hypothesis,
we performed experiments to show changes in the activity level of initiator and executioner
caspases. In this case, caspase-8, -9, and -3/7 were upregulated, and these changes were
significant in comparison to the control. These effects were dose-dependent.

Apoptosis is one of the main types of regulated cell death and is characterized by
morphological and biochemical changes in cells. Some of the most well-known hallmarks
of apoptosis are cell shrinkage, plasma membrane blebbing, condensation of chromatin,
and DNA fragmentation [30]. All these changes were observed in our experiment after
treating the cells with different concentrations of yamogenin. After staining the cells with
fluorescent Hoechst dye, a clear formation of condensed nuclei with the fragmentation of
DNA was observed.
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The apoptotic process can take place through the activation of external and/or in-
ternal stimuli [31]. The external way starts from the interaction of cell death receptors
(DR) with external factors such as drugs, UV, radiation, and pathogens infections. This
pathway involves transmembrane receptors that are members of the tumor necrosis fac-
tor (TNF) receptor superfamily, characterized by cysteine-rich extracellular domains, as
well as cytoplasmic death domains [30,32,33]. The well-known receptors and ligands in-
clude FasL/FasR, TNF-α/TNFR1, Apo3L/DR3, Apo2L/DR4, and Apo2L/DR5 [30,34,35].
The first two models—FasL/FasR, TNF-α/TNFR1 are best described. In this model, the
receptors can be activated by the Fas ligand (FasL) and tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL). The apoptotic signal is induced when these ligands
bind to DR and TRAIL receptors. The binding of FasL to FasR triggers the binding of the
adapter protein FADD as well as the binding of the TNF ligand to the TNF receptor results
in the binding of the adapter protein TNF-associated death domain (TRADD) with the
recruitment of FADD and receptor-interacting protein (RIP) [36,37]. In the next step, the
death-inducing signaling complex (DISC) is formed, and the activation of procaspase-8
is observed [38]. Furthermore, DEDD2 encodes a protein that is associated with the ex-
trinsic pathway of apoptosis and may target caspase-8 and -10 to the nucleus and regulate
nuclear events—degradation of intermediate filaments during the cell death [39]. In our
work, Real-Time PCR analysis revealed that the expression of TNFRSF members genes in
yamogenin-treated SKOV-3 cells was significantly upregulated, as well as mRNA expres-
sion of FADD and DEDD2, which was over two times higher in comparison to the control.
Simultaneously, we did not observe the increased expression of FAS, which may indicate
that yamogenin preferentially induces apoptosis by one of the groups of death receptors.
Furthermore, the activity level of caspase-8 measured with luminometry was over three
times higher than in the untreated cells, which confirms that the extrinsic way of apoptosis
plays an important role in the cell death of SKOV-3.

The extrinsic pathway may enhance the intrinsic way, and the protein that links
these two pathways is Bid. Its activated form translocates to the mitochondria and, after
interaction with Bcl-2-associated X (Bax) and Bcl-2 antagonist or killer (Bak) proteins, causes
mitochondrial outer membrane permeabilization (MOMP) and a decrease in mitochondrial
membrane potential (MMP) is observed [31,40,41]. In our work, we show a significant
decrease in MMP in SKOV-3 cells treated with yamogenin, as well as activation of Bid, and
this effect was the strongest at the highest used concentrations of the compound.

The intrinsic pathway of apoptosis, called the mitochondrial pathway, occurs as an
effect of cellular stress caused by DNA damage or endoplasmic reticulum stress [30]. We
observed an increase in oxidative stress level in the yamogenin-treated cancer cells, as well
as DNA damage. H2A.X is a member of the histone H2A family, and its phosphorylation at
serine 139 is a hallmark of DNA damage [42]. Detection by flow cytometry is possible with
conjugated antibodies to measure the total level of histone H2A.X in a tested population
of cells. In SKOV-3 cells treated with yamogenin, DNA damage occurred; however, the
number of cells with damaged DNA was up to 20%, while in the case of etoposide treatment,
the percentage of the cells with phospho-histone H2A.X was almost 50%. Nevertheless,
these results indicate that DNA damage is one of the factors taking part in the death of
SKOV-3 cells.

The final stage of apoptosis is activation of effector caspase-3 and -7 by initiator
caspase-9. The latter caspase cleaves execution caspases through proteolysis, which acti-
vates other execution caspases in a feedback system [43]. Our study showed that caspase-9,
as well as effector caspase-3/7, were activated. The activity level of caspase-9, measured
by luminometry, was three times higher in SKOV-3 cells treated with a yamogenin con-
centration of 20 µg/mL and five times higher at concentrations of 50 and 70 µg/mL in
comparison to the untreated cells. This confirms the participation of the mitochondrial
pathway in the apoptotic process of the ovarian cell line. The proposed scheme of the death
process in SKOV-3 cells treated with yamogenin is shown in Figure 13.
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Saponins are potential anticancer compounds with different mechanisms of action.
They can trigger cell death through apoptotic or non-apoptotic stimulation. One of the
more well-known steroidal saponins is diosgenin, which inhibited the cell cycle in the G1
phase and activated p53 in osteosarcoma cells [19]. In that study, the expression of caspase-3
mRNA was not modified, but hsp70 mRNA expression was strongly increased. The hsp
proteins have the function of regulating cellular homeostasis and promoting survival. They
are also associated with p53 [44]. Moreover, diosgenin can trigger similar results in other
cell lines. For example, in laryngocarcinoma HEp-2 and melanoma M4Beu cells, diosgenin
also strongly inhibited proliferation, blocked the cell cycle as in osteosarcoma cells, and
activated p53; however, cell cycle arrest was observed in S and G2/M phases [45]. The
compound induced apoptosis by a mitochondrial pathway in both lines (HEp-2 and M4Beu)
with a fall of mitochondrial potential, caspase-9 and -3 activation, nuclear localization of
apoptosis-inducing factor (AIF), and cleavage of poly (ADP-ribose) polymerase (PARP) [45].
The HeLa cells were treated with diosgenin, and the mitochondrial pathway of apoptosis
also occurred, but without the participation of the extrinsic way of the cell death [46].
Next, in human leukemia K562 cells, this steroidal saponin can induce as well G2/M cell
cycle arrest and apoptosis with disruption of intracellular Ca2+ homeostasis, mitochondrial
membrane depolarization, ROS production, and caspases activity [20]. All these works
clearly show that diosgenin triggers cell death through intrinsic, mitochondrial way of
apoptosis. In turn, another study indicates that different mechanisms of action of diosgenin
and other saponins can be observed. In breast cancer cells, estrogen receptor positive
and negative, diosgenin affected prosurvival Akt-mediated NF-κB and mitogen-activated
protein kinase (MAPK) signaling pathways, caused G1 cell cycle arrest and downregulated
cyclin D1, cdk-2, and cdk-4 expression resulting in the inhibition of cell proliferation and
induction of apoptosis [21]. Dioscin—a diosgenin glycoside—induced apoptosis in human
ovarian cancer SKOV-3 cells in a dose-dependent manner, increased caspase-3 and -9
activity, the protein expression of Bax, and suppressed cell viability by regulating the
PI3K/AKT/MAPK signaling pathways [47]. Next, icogenin, isolated from Dracaena draco,
was tested on myeloid leukemia HL-60 cell line and induced nuclear changes, fragmentation
of poly(ADP-ribose) polymerase-1, and led to apoptosis [1,16]. Another steroidal saponin,



Molecules 2022, 27, 8181 14 of 18

polyphyllin D from Paris polyphylla, was tested on human lung cancer NCI-H460 cells and
caused upregulation of endoplasmic reticulum (ER) stress-related proteins, disruption of
mitochondrial membrane, and activation of caspase-9 and -3 [15]. Another study revealed
that the mixture of steroid glycosides (balanitin-6 and -7) from Balanites aegyptiaca showed
cytotoxic activity on human lung cancer A549 and glioblastoma U373 cells with a decrease
in intracellular ATP and disorganization of the actin cytoskeleton. In this case, cell death
was not associated with apoptosis [48].

Yamogenin, in comparison to diosgenin and other steroidal saponins, has a similar
effect by induction of cell cycle arrest and apoptosis with the significant role of the intrinsic
mitochondrial pathway, in which mitochondrial membrane depolarization, ROS produc-
tion, and caspase-9/3/7 activation are observed. The extrinsic pathway of apoptosis was, in
turn, confirmed in the case of pennogenin glycosides obtained from Paris quadrifolia [49]. In
the study, the compounds triggered apoptosis by death receptors, activated caspase-8 and
caspases-3/7, and also induced the intrinsic way with depolarization of the mitochondrial
membrane, Bid, and caspase-9 activation [49].

Since research on yamogenin's effect on cancer cells is very limited, other cellular
factors that can be involved in the death induced by yamogenin, as well as the compound
action in cells and organs in vivo, should be determined in the future.

4. Materials and Methods
4.1. Preparation of Yamogenin Solution

Yamogenin was obtained from Merck Millipore (Burlington, MA, USA) and dissolved
in absolute ethanol at the concentration of 10 mg/mL with the use of an ultrasonic water
bath (50 Hz).

4.2. Cell Culture

The human ovarian cancer SKOV-3 cell line and human keratinocytes HaCaT were
obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). The
SKOV-3 cell line was cultured in McCoy’s Medium, and HaCaT cells were maintained
in Dulbecco’s Modified Eagle’s Medium (DMEM). Both media were supplemented with
100 units/mL of penicillin, 100 µg/mL of streptomycin, and 10% (v/v) fetal bovine serum
(FBS) (Merck Millipore). The cells were incubated at 37 ◦C and 5% CO2.

4.3. Real-Time Cell Analysis

Real-Time Cell Analyzer (xCELLigence system, Acea Biosciences, San Diego, CA, USA)
was used to estimate the effect of yamogenin on SKOV-3 and HaCaT cell lines. This system
enables the monitoring of cell viability and proliferation in real-time and continuously. The
cells were seeded (2 × 104 cells/well) in E-plates 16 (Acea Biosciences, San Diego, CA, USA)
for 24 h, then yamogenin was added to the plate wells at concentrations of 1, 5, 10, 15, 20,
30, 40, and 50 µg/mL, as previously described [29]. During 24 h of incubation of SKOV-3
cells with the compound, the changes in viability, proliferation, and morphology were
detected by the xCELLigence system. The values of IC50 calculated during the experiment,
as well as slope, were obtained with RTCA Software v.1.2.1. (Acea Biosciences, San Diego,
CA, USA). The experiments were performed in duplicate, in three independent repeats
(n = 6).

4.4. Hoechst 33342 Staining of SKOV-3 Cells Treated with Yamogenin

The SKOV-3 cells were seeded in a 12-well plate with coverslips (1 × 105 cells/well)
and incubated with yamogenin at concentrations of 20, 50, and 70.0 µg/mL. The concentra-
tion of ethanol in the wells did not exceed 0.7% (v/v). After 24 h, the cells on the coverslips
were washed with PBS buffer and stained with Hoechst 33342 dye (ThermoFisher Scientific,
Waltham, MA, USA). The coverslips were observed under the fluorescence microscope
(350/461 nm). The experiment was repeated twice.
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4.5. Cell Cycle Analysis of SKOV-3 Cells Treated with Yamogenin

The SKOV-3 cells were seeded in a 6-well plate (5 × 105 cells/well) and incubated
with yamogenin in the concentration range of 10.0–70.0 µg/mL for 48 h. The concentration
of ethanol added to the cells did not exceed 0.7% (v/v). Next, the cells were prepared with
Muse Cell Cycle Assay Kit (Merck Millipore), and the number of cells in each phase of the
cell cycle was determined by Muse Cell Analyzer (Merck Millipore). The experiment was
repeated three times.

4.6. Estimation of Mitochondria Membrane Depolarization in SKOV-3 Cells Treated with
Yamogenin

The SKOV-3 cells were seeded in a 12-well plate (1 × 105 cells/well) and incubated
with yamogenin at concentrations of 10.0–70.0 µg/mL. The concentration of ethanol added
to the cells did not exceed 0.7% (v/v). After 24 h of the treatment, the cells were stained
with Muse MitoPotential Assay Kit (Merck Millipore), and determination of the percentage
of depolarized/live and dead cells was conducted with Muse Cell Analyzer. All the
experiments were independently repeated three times.

4.7. Reactive Oxygen Species (ROS) Production in SKOV-3 Cells Treated with Yamogenin

The SKOV-3 cells (1 × 105 cells/well, 12-well plate) were treated with yamogenin
in the concentration range of 10.0–70.0 µg/mL. The concentration of ethanol added to
the cells did not exceed 0.7% (v/v). After 24 h of incubation, the cells were stained with
Muse Oxidative Stress Kit (Merck Millipore) and analyzed with Muse Cell Analyzer. The
experiments were conducted in three independent repeats.

4.8. RT-PCR Analysis of Genes Expression in SKOV-3 Cells Treated with Yamogenin

The SKOV-3 cells were incubated with yamogenin at a concentration of 40.0 µg/mL
for 24 h. Next, the total RNA of the cells was isolated using the RNeasy Mini Kit (Qiagen,
Hilden, Germany), and the concentration of RNA was estimated with Agilent Technologies
4200 TapeStation (Agilent Technologies, Santa Clara, CA, USA), according to the manufac-
turer’s protocol. The Maxima First Strand cDNA Synthesis Kit (ThermoFisher Scientific,
Scientific, Waltham, MA, USA) was used for cDNA synthesis.

cDNA was applied on the TaqMan Array Human Apoptosis Fast 96-well plates
(ThermoFisher Scientific). Each plate contains 92 assays for genes associated with cell death
and four assays for control genes (Supplementary Materials: Table S1). The PCR reactions
were performed in StepOnePlus Real-Time PCR System (ThermoFisher Scientific). The data
were obtained in three independently repeated experiments and analyzed with StepOne
software v. 2.3. (ThermoFisher Scientific, Scientific, Waltham, MA, USA).

4.9. Caspases-3/7/8/9 Activity in SKOV-3 Cells Treated with Yamogenin

The cells were seeded in 12-well plate (1 × 105 cells/well) and treated with yamogenin
at concentrations of 10.0–70.0 µg/mL. The concentration of ethanol added to the cells did
not exceed 0.7% (v/v). After 24 h of treatment, caspase-3/7 activation was measured, and
an estimation of the apoptotic status of the cells was conducted. The cells were stained
with a fluorescent reagent that contained a DNA-binding dye linked to a DEVD peptide
substrate. The dye is released from the complex when caspase-3/7 is active. A cell marker
(7-AAD) was also used in the assay as a marker of dead cells. The cells were analyzed
with flow cytometry (Muse Cell Analyzer). The experiments were performed in three
independent repeats.

The caspases-8 and -9 activity level in the cells was determined with Caspase-Glo
8 or 9 Assay Kit (Promega, Madison, WI, USA) and Glomax Multi + Detection System
(Promega). The cells were seeded in 96 well plates (1 × 104 cells/well), and after 24 h of
incubation, they were treated with yamogenin at concentrations of 10–70 µg/mL for 24 h.
The experiments were performed in three independent repeats.
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4.10. Assessment of Bid Activation in SKOV-3 Treated with Yamogenin

The cells on the coverslips (in a 6-well plate, 5 × 105 cells/well) were incubated with
yamogenin at concentrations of 20 and 40 µg/mL for 24 h. The concentration of ethanol
did not exceed 0.4% (v/v) (a control). Then, the cells were fixed with 4% paraformaldehyde
(v/v) for 10 min and permeabilized with 0.1% Triton in PBS (v/v) for 30 min. After blocking
with 5% BSA (w/v in PBS) for 60 min, the cells were incubated overnight at 4 ◦C with primary
rabbit polyclonal IgG anti-Bid antibody (1:300 in PBS with 2% FBS (v/v) and 1% BSA (w/v),
Merck Millipore). Then, the cells were washed three times with PBS, and a secondary goat
polyclonal anti-rabbit IgG Alexa Fluor 594 antibody (ThermoFisher Scientific) was used
(1:1000) and incubated with the cells for 1 h at RT. After this incubation, the cells were
washed three times with PBS and stained with Hoechst 33342 dye (3 µg/mL) for 20 min at
RT. The cells on the coverslips were observed under a fluorescent microscope with filters D
(355–425 nm) and N21 (515–560 nm) (Leica, Wetzlar, Germany).

4.11. Estimation of H2A.X Activation in SKOV-3 Cells Treated with Yamogenin

The SKOV-3 cells were seeded in a 12-well plate (1 × 105 cells/well) and incubated
for 24 h in a concentration range of 10.0–70.0 µg/mL. The concentration of ethanol added
to the cells did not exceed 0.7% (v/v). The positive control—etoposide—was used at a
concentration of 20 µM. After 24 h, the cells were stained with H2A.X Activation Dual
Detection Kit (Merck Millipore) according to the manufacturer’s instruction and analyzed
with flow cytometry (Muse Cell Analyzer). The experiment was repeated three times.

4.12. Statistical Analysis

Statistical data were obtained using the STATISTICA 12.0 software package (StatSoft.
Inc., Tulsa, OK, USA). All data were expressed as mean values ± standard deviation (SD).
The Student’s t-test was used to compare the results with the control sample. The statistical
significance was set at p < 0.05.

5. Conclusions

In our work, we demonstrate the antitumor effect of yamogenin in human ovarian
cancer SKOV-3 cells in vitro. The compound triggers cell cycle arrest, overproduction
of oxidative stress, mitochondrial membrane depolarization, caspase-8, -9, -3/7 and Bid
activation, and DNA damage. The cell death is activated by TNF receptor superfamily
members and is mediated by both the extrinsic and intrinsic pathways of apoptosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
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