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Abstract: Areca nut (AN) is widely consumed all over the world, bringing great harm to human
health and economy. Individuals with AN chewing are at high risk of cardiovascular disease and
impaired immune system and metabolic system. Despite a growing number of studies having
reported on the adverse effects brought by AN chewing, the exact mechanism of it is limited and the
need for additional exploration remains. In recent years, the interaction between microorganisms,
especially intestinal microorganism and host, has been extensively studied. AN chewing might
disrupt the oral and intestinal microbiota communities through direct connect with the microbes it
contains, altering PH, oxygen of oral and intestinal microenvironment, and disturbing the immune
homeostasis. These mechanisms provide insights into the interplay between areca nut and host
microbiota. Emerging studies have proposed that bidirectional interaction between polyphenols and
intestinal microbes might play a potential role in the divergence of polyphenol, extracted from AN,
among individuals with or without AN-induced cancer development and progression. Although
some AN chewers have been aware of the harmful effects brought by AN, they cannot abolish this
habit because of the addiction of AN. Increasing studies have tried to revealed that gut microbiota
might influence the onset/development of addictive behaviors. Altogether, this review summarizes
the possible reasons for the disturbance of host microbiota caused by areca nut chewing and clarifies
the complex interaction between human microbiome and major constituents and the addiction and
carcinogenicity of AN, tempting to provide novel insights into the development and utilization of it,
and to control the adverse consequences caused by AN chewing.

Keywords: areca nut; polyphenol; arecoline; gut microbiota; addiction; carcinogenicity

1. Introduction

Approximately 10–20% of the world’s population use areca nut (AN) products in
some form, with the most prevalent use in many regions in south Asia, south-east Asia,
and the Asia Pacific region [1,2]. AN is also widely consumed, with or without tobacco,
among the Australian, Canadian, European, and USA Indo-Asian immigrants [3]. AN has
many clinical effects, such as dispelling nausea, improving cognitive performance, aiding
digestion, inhibiting inflammation, fighting against parasitic infections and hypertension,
and acting as an antidepressant as well as a substitute for cigarettes [4,5]. However, AN
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is the fourth most addictive substance used in the world, only surpassed by nicotine,
alcohol, and caffeine [6,7]. AN has been identified as carcinogenic to humans (Group
1) by the International Agency for Cancer Research (IARC) [8]. There is much evidence
that AN chewing is associated with oral, pharyngeal, and esophageal cancers [9–11]. It is
also reported that AN chewing habit has detrimental effects on the metabolic system [12],
increasing the risk of obesity [13], hyperglycemia [14], and, causing hypothyroidism [15]
and vitamin D deficiency [16]. Chronic AN consumption also interferes with the immune
system [17–19], causing suppression of T-cell activity and decreased release of cytokines [20].
AN usage also increases cardiovascular disease rate, including heart attack, coronary
artery diseases [21,22] and paroxysmal supraventricular tachycardia (PSVT) [23]. Despite
a growing number of studies that have reported the adverse effects brought by areca
chewing, the exact mechanism remains to be explored. There are still about 600 million
people, including children using betel around the world [6], causing great damage to
human health and property.

As the second genome of the human body, the human microbiome has become an area
of utmost interest, which is not a passive victim in many pathological processes, but a driver
or stimulator in pathophysiological processes [24]. Microbiome refers to the community of
microbes that reside in a defined environment, including bacteria, viruses, fungi, protozoa,
along with their genes and genomes. The gastrointestinal tract is the most popular region
for microbiota colonizing, followed by oral cavity [25]. Microbes residing in humans evolve
with hosts and are susceptible to living habits, such as diet, tobacco, alcohol, and areca
nut, which are causal factors of many disorders. Early studies implicated alterations in
oral microbial composition in areca nut chewers with distinct oral premalignant lesions
such as leukoplakia, erythroplakia, and submucous fibrosis [26,27], which contributes to
oral cancers. Mei, et al. reported that AN seed polyphenol altered the composition of
the gut microbiome [28]. In this review, we summarize the current understanding of the
interaction of major constituents in areca nut and host microbiome and its involvement in
the addiction and carcinogenesis of AN in an attempt to raise profound research questions
that remain to be explored.

2. Microorganisms Contained in Areca Nut Alter Oral and Intestinal
Microenvironment

AN products are easily available and the quality is not controlled very strictly because
of their low prices [29]. AN is used at distinct stages of maturity in natural state or after
processing in many forms, bringing different microbes to host microbiome. A pilot study,
evaluating 12 samples of areca nut-containing chewing substances, found that wet gutka
preparations were contaminated by Escherichia coli and Enterobacteriacaea. High levels of
fungal aflatoxin (range: 0.43–1.84 mg/kg), a proven carcinogen, were identified in all
samples [30]. Massive studies demonstrated the adverse health impacts of areca nut on
systemic pathophysiological changes that might lead to disease, and that they are associated
with the chemistry; metabolism; and pharmacology of polyphenols, tannins, trace elements,
and areca alkaloids, specifically presenting in AN [31]. However, few studies investigated
the microbes in areca nut in recent years, and this may be incriminated as causative factors
in AN-chewing-associated diseases. More studies are required to be conducted to explore
the microbes that distinct AN products contain. AN chewing is known to impair the
host immune system, presenting suppression of T-cell activity and decreased release of
cytokines [32]. Disruption of the immune balance might induce changes in the composition
and function of the host microorganism. Furthermore, it is reasonable that chronic exposure
to areca nut chewing is likely to favor specific bacterial colonization via altering oxygen,
PH, and acid production of oral cavity. Hernandez, et al. demonstrated that current
chewers had significantly elevated levels of Streptococcus infantis and various levels of
distinct taxa of the Actinomyces and Streptococcus genera [26]. Zhou, et al. explored the
effects of the Fuzhuan brick tea supplemented with different concentrations of ANs on gut
microbiota in mice, and found that influence on intestinal microbial structure increased as
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the concentration of AN increased [33]. Altogether, mechanisms of areca nut chewing to
influence host microbiota are through direct connect with the microbes it contains, altering
the PH and oxygen of the oral and intestinal microenvironment, or through disturbing the
immune homeostasis, and these mechanisms provide insights into the interplay between
areca nut and host microbiota (Figure 1).
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3. Major Constituents in Areca Nut

Areca nut, as a natural product, is composed of a variety of ingredients. Major con-
stituents in AN include trace elements, polyphenols (flavanols and tannins), carbohydrates,
alkaloids, proteins, fats, and crude fiber. Among them, the carcinogenic potential of AN
is attributed to polyphenols and areca alkaloids [34,35]. The latter also contributes to
addiction of AN [35]. Next, we reviewed the main components of areca nut that drives
addiction and oncogenicity and highlighted the mechanisms by which microbiota and/or
their microbial metabolites exert their action on the polyphenols and areca alkaloids of
areca nut as promoters of the addictive and carcinogenic effects.

4. Carcinogens in Areca Nut

A large body of literature found that habitual AN chewing was tightly associated with
the occurrence and development of oral, esophageal, and pharyngeal cancers [9–11,36,37]. In
addition, many studies revealed that long-term AN usage increased the risk of hepatocel-
lular carcinoma (HCC) [38]. Chao, et al. found that AN chewing was a significant factor
for non-muscle-invasive bladder cancer recurrence [39]. In-vitro arrays showed that areca
nut extract treatment enhanced migration and invasion of head and neck squamous cell
carcinoma (HNSCC) cells by upregulating cyclooxygenase-2 (COX-2)/vimentin expression,
which is associated with poor survival of HNSCC patients [40]. Studies have reviewed the
potential carcinogenic mechanism of alkaloids, while few studies have been conducted to
explore the oncogenicity of areca nut polyphenols.

4.1. Contradictory Role of Polyphenols in Cancers

Evidence is emerging on the toxicity of the dietary polyphenols extracted by areca
nut [41]. Major polyphenols found in AN are tannins, catechins, flavonoids, safrole, and
eugenol, among which, tannins, safrole, eugenol, and catechins have been proven to be car-
cinogens. Many experimental and preclinical studies proposed that polyphenol and tannin
fractions of AN had a relevant role in BQ-induced cancer development and progression,
mainly attributed to their immunomodulatory properties [42,43]. For example, reactive
oxygen species (ROS) produced during the autoxidation of BN polyphenols in the saliva of
chewing BQ is crucial in the initiation and promotion of oral cancer [44]. Also, incidences
of esophageal cancer have been reported to be associated with consumption of tannins-rich
foods such as BN, and carcinogenic activity of tannins might be related to components
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associated with tannins rather than tannins themselves, suggesting a potential role of gut
microbiota in tannins carcinogenicity. Epidemiological studies found that a polyphenol-
rich diet protected against cancer, as well as many short-term assays revealed that AN
polyphenols and tannins were not mutagenic and, in fact, even had antimutagenic effects.
Some literature reported that polyphenols favored the generation of ROS [45]. Contrasting
this, AN polyphenols were reported to be able to form conjugates with carcinogens, to
trap nitrite and ROS [46,47]. The prominent polyphenols in AN and their contradictory
activities are summarized in Table 1. And reported major classes of polyphenols extracted
from other plants are also showed in Table 2.

Table 1. Prominent polyphenols in AN and their activities.

Formulas Polyphenols Activity Gut Microbiota-Relevant Reference
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Resveratrol Reynoutria japonica Houtt.
and Vitis

Antimicrobial, antioxidant, and
anti-inflammatory activity Yes [53]

Quercetin Fagopyrum esculentum Moench.
Anti-virus, anti-bacterial,

anti-cancer, and
cardiovascular-protective effect

Yes [54]

Catechin Green tea
Anti-cancer, anti-virus, anti-fungi,

anti-bacterial, and
cardiovascular-protective effect

Yes [55]

Puerarin Pueraria lobata
Anti-oxidant, anti-inflammatory,

antihypertensive, and
neuroprotective activity

Yes [56]

Anthocyanidin Elderberries Anti-oxidant, anti-mutagenic, and
anti-proliferative properties Yes [57]

Tannic acid Fruit Anti-oxidant and
anti-bacterial effect Yes [58]

The underlying mechanism of these observed dual, and apparently contradictory,
functions of AN polyphenols and tannins in the process of BQ-induced carcinogenesis
remains to be explored.

4.2. Bidirectional Interaction between Polyphenols and Intestinal Microbes

Polyphenols have an extremely low oral bioavailability and are almost unchanged
when reaching the colon, and most of them are intensively catabolized by gut micro-
biota to a wide variety of new chemical structures that are often more active and better
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absorbed than the original phenolic compound passing hardly into the systemic blood
circulation [59–61], and in turn, polyphenols could modulate oral and gut microbiota
composition in host homeostasis and diseases. Several human and animal studies re-
ported that polyphenols can elevate butyrate-producing bacterial and probiotics such as
Lactobacillus and Bifidobacterium, while inhibiting opportunistic pathogenic or proin-
flammatory microbes. For example, bound polyphenol from foxtail millet bran can inhibit
colitis-associated carcinogenesis by remodeling gut microbiota in a mice model [62]. The
two-way interplay between microbial communities and polyphenols in the intestine is
important for the latter to exert anticancer effects and might be the underlying mecha-
nism for their contradictory and dual effects. Emerging studies have reported that diet
polyphenols exert anti-obesity [63–66], anti-inflammatory, and anti-oxidant effects via mod-
ulating gut microbiota. For instance, Ho, et al. found that Heterogeneity in gut microbiota
drive polyphenol metabolism that influences α-synuclein misfolding and toxicity [67].
Mei, et al. revealed that areca nut (areca catechu L.) seed polyphenol could ameliorate
osteoporosis via altering gut microbiota to increase lysozyme expression and controlled
the inflammatory reaction in estrogen-deficient rats [28]. Studies have shown that AN
could supplement polyphenols such as chlorogenic acid, (+)-catechin, (−)-epigallocatechin
gallate, (−)-gallocatechin gallate, rutin, and theaflavin, which could greatly reduce high-fat
diet-induced adverse effects, via easing food stagnation, eliminating indigestion, enhancing
gastrointestinal motility, and regulating the activity of related enzymes [68,69]. Meanwhile,
studies have revealed that AN could increase the risk of obesity and hyperglycemia. Gut
microbes have the potential to explain these two opposite effects induced by AN. Despite
few studies having explored the role of gut microbes in the carcinogenicity of polyphenols,
there have been several studies linking gut microbes to cancer development and treat-
ment [70–73]. For example, intestinal fusobacterium nucleatum promotes colorectal cancer
development and facilitates tumor metastasis and chemoresistance to 5-fluorouracil via
its immunosuppressive effects [74–76]. Also, gut microbiota regulates the activity, efficacy,
and toxicity of chemotherapy agents, such as gemcitabine [77], cyclophosphamide [78,79],
irinotecan [80–82], and cisplatin [83–85]. Further research is required to clarify whether
areca nut chewing changes the composition and function of intestinal microbes or whether
intestinal microbes metabolize areca nut into carcinogens.

In recent years, there has been increasing evidence that the aryl hydrocarbon receptor
(AhR) plays a major role in tumorigenesis and makes the AhR an interesting pharma-
cological target in cancer treatment [86–89]. Polyphenols, especially flavonoids, major
constituents of AN, are the largest class of natural AhR ligands that are available for hu-
mans and animals [90,91]. Mounting evidence demonstrated that flavonoids, exhibiting
AhR agonist and/or antagonist activity, are widely used for the regulation of the intestinal
immune system and tumor treatment [92–96]. Dietary flavonoids are absorbed in the
intestine, and the intestinal microbiota, which is deeply involved in the metabolism of
them, originated from foods [97], and in turn, acting as AhR ligands, are able to regulate
intestinal microbiota composition and intestinal immunity [98]. For example, tryptophan,
a reported AhR ligand, could be metabolized by the certain bacterial strain, Lactobacillus
bulgaricus OLL11816, to AhR-activating indoles that have shown AhR-activating poten-
tial [99,100]. However, whether flavonoids are dietary, generated by the host, or through
bacterial metabolism has not been exactly established and requires further investigation.

In conclusion, few studies have reported the gut microbiome profiles in AN chewers,
but some studies have shown oral microbiota composition alteration might mirror oral
cancer progression in AN chewers [26,27]. However, whether microbial changes are
involved in areca nut-induced oral carcinogenesis is only speculative. Further research is
required to discern the clinical significance of an altered oral microbiota and the mechanisms
of oral cancer development in areca nut chewers. Additional studies are necessary to clarify
the precise metabolic intermediates of AN by gut microbiota or the single agent responsible
for AN toxicity.
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5. Addiction in Areca Nut
5.1. Areca Alkaloids(Arecoline)

Although some AN chewers have been aware of the harmful effects brought by AN,
they cannot abolish this habit because AN quid chewing is able to produce a sense of
well-being, euphoria, warm sensation of the body, salivation, palpitation, sweating and
heightened alertness, combat against hunger, and increase capacity and stamina to work by
its numerous central nervous system effects [101]. It has been reported that the addictive
property of AN is prominently due to its alkaloids [35]. Further, various levels of areca
alkaloids could potentially contribute to variations in addictive potential in AN [102,103].
Major alkaloids found in AN are arecoline, arecaidine, guvacoline, and guvacine. Major
alkaloids found in AN and their activities are showed in Table 3. Among these, arecoline
has deep brain penetration to exert its numerous parasympathetic and muscarinic effects,
which is responsible for the addiction and habitual use of AN. Mechanistically, arecoline
acts on nicotinic acetylcholine receptor (nAChR), which partly accounts for the addiction
and habitual use of AN [104,105], while the present data suggests a role also played by
sympathetic activation [99]. These studies demonstrated further that the effects of arecoline
reached the maximal within 4–6 min and high levels of arecoline are present in the oral
cavity even 10 min after the onset of AN chewing, suggesting that active compounds
released from areca nut chewing are absorbed mainly in the oral cavity, most probably
through the mucous membrane [106].

Table 3. Major alkaloids found in AN and their activities.

Formulas Alkaloids Activity Reference
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5.2. Microbiota-Gut-Brain Axis: A Potential Regulator of AN Addiction

In addition, the proposal of microbiota–gut–brain axis provides a novel insight into
clarifying the addictive mechanism of AN (Figure 2). Gut cytokines are known to activate
the vagus nerve that constitutes the main axis transferring gut microbiota information
to the brain, while the latter induces pro-rewarding effects in nucleus accumbens [109].
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An expanding body of evidence supports that gut microbiota modifications and/or manip-
ulations may also play a crucial role in the manifestation of specific behavioral responses
regulated by neuroendocrine pathways. The gut microbiota and their metabolites influ-
ence neuroendocrine function through several routes, including the vagus nerve; immune
activation with production of immune mediators; and production of neurotransmitters,
short chain fatty acids (SCFAs), and tryptophan, to modify host behaviors relevant to stress,
addiction, cognition, eating, and sexual and social behavior [110]. Xu, et al. examined the
composition and diversity of intestinal microbiota in patients with substance use disorders
(SUDs) and in healthy controls (HCs). The results showed that the abundances of Thauera,
Paracoccus, and Prevotella are significantly higher in SUDs compared to HCs [111]. Further,
gut microbiota is related to excessive alcohol consumption and induces altered striatal
dopamine receptor expression in a compulsive alcohol-seeking model [112]. Mounting
studies have shown that cocaine and alcoholism addiction is associated with changes in
the composition of the gut microbiota [113–118].
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gut microbiota in areca nut metabolism, as well as the direct and indirect interaction among gut
microbiota, neuroendocrinology, and addiction.

Importantly, emerging studies suggested that the gut microbiota might influence the
onset/development of addictive behaviors. The role of gut microbes in alcohol dependence
has been increasingly reported. Oral administration of nonabsorbable antibiotics reduces
the voluntary alcohol intake in alcohol-preferring animals [109]. Individuals presented
with an increased intestinal permeability and a dysbiosis might show a more severe pro-
file of alcohol dependence than other non-dysbiosis controls [119]. Also, gut microbiota
dysbiosis during chronic alcohol exposure is closely correlated with alcohol-induced neu-
ropsychic behaviors and BDNF/Gabra1 expression [120]. The above studies provide a new
perspective for understanding underlying mechanisms in alcohol addiction. Further, gut
microbiota is capable of modulating alcohol withdrawal-induced anxiety in mice [121], and
altering sociability and depression by inducing β-hydroxybutyrate metabolism changes
in alcohol use disorder [122]. Peterson, et al. found sex-dependent associations between
addiction-related behaviors and the gut microbiota composition in outbred rats [123].

Alteration of the gut microbiota in mice also drives the behavioral response to co-
caine. Animals with reduced gut bacteria, by treating with prolonged treatment with non-
absorbable antibiotics, showed an enhanced sensitivity to cocaine reward and enhanced
sensitivity to the locomotor-sensitizing effects of repeated cocaine administration [44]. Lee,
et al. showed that the gut microbiota causally mediated reward and sensory responses
related to regimen-selective morphine dependence. Depleting the gut microbiota via
antibiotic treatment recapitulated neuroinflammation and sequelae, including reduced
opioid analgesic potency and impaired cocaine reward following intermittent morphine
treatment [124]. Chronic depletion of gut microbiota also affects other behavioral and
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neurochemical consequences in the rat [125]. For example, Burokas, et al. showed that
manipulating microbiota, thus targeting the microbiota–gut–brain axis, had anxiolytic
and antidepressant-like effects and reversed the impact of chronic stress in mice [126].
In addition, oral administration of heat-killed lactobacilli can alter the social behavior of
healthy mice [127]. The above findings provided direct evidence of the link between gut
microbiota, neuroendocrinology, and addiction or other behavioral responses, highlighting
the key role of the gut microbiota in the formation and treatment of drug dependence, and
may provide new treatment strategies for using novel medicine targeting gut microbiota to
treat drug addiction. In addition, gut microbiota might directly influence the development
or onset of addiction via modulating the oxytocin, serotonin, and dopamine levels and
function [110]. While the underling mechanism is required to further investigate, in order
to assess which other neuroendocrine pathways are involved in addiction and in which
cases the gut microbiota plays a causal role. The relationship between microbes and areca
nut addiction also remains to be explored.

6. Conclusions and Future Perspectives

Altogether, more microbiome research remains to be conducted in the coming years
in an attempt to better characterize the role of human microbiome in carcinogenicity and
addiction of areca nut. AN chewing is known to be a risk factor for several diseases, it
could influence the human microbiome directly and indirectly via introducing its own
microbiota, suppressing the immune system, changing the local microenvironment, or other
potential mechanisms. The exact explanation of how AN chewing affects the microbiome
still requires further exploration.

The property of carcinogenicity and addiction in AN brings great harm to people’s
health; there is no adequate explanation for it currently. However, it is known that the
carcinogenicity of areca nut is mainly polyphenols and arecoline, and the latter is sig-
nificantly associated with areca nut addiction. Polyphenols, originating from various
natural products, have been reported to have both carcinogenic and anticancer effects, with
a two-way interaction with gut microbiota. Most polyphenols are intensively catabolized
by gut microbiota to a wide variety of new chemical structures, with physiological and
biochemical effects. Further, polyphenols could change the gut microbiota composition
and function. Establishing an adequate mechanism of how gut microbes and polyphenols
interplay might help us clarify dual, contradictory property of polyphenols. Recently,
the notion of microbiota–gut–brain axis provides a novel insight into clarifying addictive
mechanisms of AN. Several studies have reported a significant alteration in individuals
of alcohol and drug addiction. It has long been recognized that gut cytokines can activate
the vagus nerve, and the latter induces pro-rewarding effects in nucleus accumbens. In
addition, mounting studies suggest that the gut microbiota might directly or indirectly
influence to some extent the onset/development of addictive behaviors. Despite the find-
ings for the interaction of AN chewing addiction and gut microbiota being scarce, reported
studies provide some evidence of the link among gut microbiota, neuroendocrinology,
and addiction. Further investigation is required in order to assess in which cases the gut
microbiota plays a causal role in AN addiction and which other neuroendocrine pathways
are involved. More studies integrating metagenomics, transcriptomics, and metabolomics
with clinical results are required to gain more insight into the hugely complex network of
the AN chewing-microbiome-host phenotype; in addition, finding a novel intervention
target to solve the carcinogenicity and addiction of areca nut is important.
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