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Abstract: Fluoroquinolones (FQs) are broad-spectrum antibiotics widely used to treat animal and
human infections. The use of FQs in these activities has increased the presence of antibiotics in
wastewater and food, triggering antimicrobial resistance, which has severe consequences for human
health. The detection of antibiotics residues in water and food samples has attracted much attention.
Herein, we report the development of a highly sensitive online solid-phase extraction methodology
based on a selective molecularly imprinted polymer (MIP) and fluorescent detection (HPLC-FLD) for
the determination of FQs in water at low ng L−1 level concentration. Under the optimal conditions,
good linearity was obtained ranging from 0.7 to 666 ng L−1 for 7 FQs, achieving limits of detection
(LOD) in the low ng L−1 level and excellent precision. Recoveries ranged between 54 and 118% (RSD
< 17%) for all the FQs tested. The method was applied to determining FQs in river water. These
results demonstrated that the developed method is highly sensitive and selective.

Keywords: molecularly imprinted polymers; fluoroquinolones; solid phase extraction; online SPE;
water samples

1. Introduction

The increase in antibiotic resistance has become a serious problem worldwide [1]. The
presence of resistant bacteria in hospitals and communities has been associated with the
indiscriminate use of antimicrobials during treatments, remaining one of the fundamental
problems of modernity [2]. With the advances in science and access to antibiotics for the
world population, new challenges have arisen regarding their use in humans and animals
to allow higher production [3]. The indiscriminate use of these compounds has increased
the presence of antibiotics in wastewater [4] and in foods of animal origin [5], in which
due to their low concentrations, they lose their potency, allowing the bacteria to become
resistant, and incapable of being killed.

When it comes to environmental pollution, the occurrence of these compounds in
different bodies of water has been manifested in various parts of the world [6,7]. Among
the compounds of greatest interest are fluoroquinolones (FQs), which, with their stability
and low biodegradability, result in long persistence in the aquatic environment [8,9]. Today,
there is considerable interest in studying and determining FQs in the environment, being a
problem identified in both developed and underdeveloped countries [10,11]. In Cuba, not
many studies have been carried out aimed at understanding the origin of these compounds
in waters and their relationship with the presence of resistance genes [12]. Unfortunately,
only a very few studies reported the presence of FQs in surface waters, especially in Havana
City (Cuba), for instance the studies of the Quibú river [13]. Usually, the dilution that the
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compounds undergo in the environment and the access to methodologies with low limits
of detection (LOD) limit the monitoring of environmental waters.

A wide variety of procedures and techniques have been applied for the extraction and
quantification of FQs in surface water samples. In this sense, the online extraction method-
ologies [11], liquid-liquid extraction with subsequent salting-out [14], solid phase extraction
(SPE) by mixed-bed sorbents, C18, or OASIS HLB [4,15], capillary electrophoresis [16], mag-
netic mixed hemimicelles [17], restricted access materials [18], boron-rich monoliths [19],
Kraft’s lignin [20], and molecularly imprinted polymers (MIP) can be mentioned [21–24].

The preferred analytical methods involve liquid chromatography (HPLC) analy-
sis combined with mass detection [11,14,15], fluorescence (FLD) [4,13], and ultraviolet
detection [17,19]. Flow injection analysis with chemiluminescent detection [13] and electro-
chemical measurements [16] have also been reported.

In online SPE procedures, preconcentration and transfer of the whole sample to the
chromatographic system translate in improved limits of detection. Therefore, the analytical
method developed in the present work allows the ultra-trace detection of fluoroquinolones
employing an adsorbent material (MIP) highly selective to these analytes for their extraction
and clean-up. Moreover, the adsorbent material can be reused because the volume sample
used in the analysis is higher than typical methods, minimizing in this way errors in the
determination of the target molecules and the cost per sample can also be reduced. Automa-
tion and minimal or no sample manipulation are other important features of the proposed
method. Finally, the online system used was affordable and easy to implement, allowing it
to be fully automated and work as an early-warning or on-site monitoring system.

In this work, we describe the use of a molecularly imprinted polymer (MIP) as a
selective sorbent for an automated online SPE-HPLC-FLD extraction and the determination
of FQs at the low ng L−1 level and its application to river water samples.

2. Materials and Methods
2.1. Chemicals

Antibiotics (Figure 1) enrofloxacin (ENRO), norfloxacin (NOR), lomefloxacin (LOME),
enoxacin (ENOX), levoxacin (LEVO), ciprofloxacin (CIPRO), methacrylic acid (MAA),
2-trifluoromethacrylic acid (TFMAA) and 2-hydroxyethyl ethylene glycol dimethacry-
late (EDMA) were obtained from Sigma-Aldrich (St. Louis, MO, USA). 2,2′-azobis(2,4-
dimethylvaleronitrile) (ABDV) was purchased from Wako (Neuss, Germany) and used
as received. Sarafloxacin hydrochloride (SARA), was a gift from Fort Dodge veterinaria
(Girona, Spain). Danofloxacin (DANO) was purchased from Riedel-de-Haën (Seelze, Germany).

Acetonitrile (ACN) and methanol (MeOH) (HPLC-grade) were provided by SDS
(Peypin, France) and trifluoroacetic acid (TFA) (HPLC-grade, 99%) was from Fluka
(Buchs, Switzerland).

Water was purified using a Milli-Q system (Millipore, Bedford, MA, USA). The
monomers were purified, as required, by chromatography immediately before use, using
an inhibitor–remover from Aldrich (Milwaukee, WI, USA). All solutions prepared for the
HPLC were passed through a 0.45 µm nylon filter before use. 2-[4-(2-hydroxyethyl)-1-
piperazinyl]ethanesulfonic acid (HEPES) was supplied by Aldrich (Steinheim, Germany).
Trifluoroacetic acid (TFA) (HPLC-grade) was from Fluka (Buchs, Switzerland).

2.2. Polymer Synthesis

MIP/NIP particles were synthesized according to previous work [25]. Briefly, a pre-
polymerization mixture was obtained by mixing 0.5 mmol of the template (ENOX) and
1 mmol of the functional monomers (MAA, TFMAA) solved in 1 mL of ACN, mixed with
20 mmol of the crosslinker (EDMA) and 2% (weight of the final mixture) of the initiator
(ABDV). Then 7 g of silica (Si-500 40–75 µm, Silicycle) were placed in a 100 mL glass vial
and mixed by stirring with 3.3 mL of the cocktail solution until the silica beads were freely
flowing. Then the vial was sealed with a septum and the system was purged with N2 for
5 min. The polymerization was carried out in an oven at 60 ◦C for 24 h.
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Figure 1. Chemical structures of the template molecule (ENOX) and the target FQs.

After polymerization, etching was performed by adding 3 × 140 mL of an aqueous
solution of ammonium hydrogen difluoride (3 M) and shaking for 24 h. The final solid
obtained was washed with water (until pH ~ 7), methanol/TFA 99/1 (1 L) and methanol
(0.5 L). Finally, the solid was dried in vacuum at 50 ◦C for 24 h. Before use, they were
sedimented using MeOH/water (80/20, v/v) to remove fine particles. NIP polymer was
prepared in the same way but in the absence of template molecule.

2.3. Apparatus and Analytical Conditions

The pH of the buffer solutions and samples was adjusted with an ORION 710A pH/ISE
meter (Beverly, MA, USA).

Chromatographic analysis was carried out with an HP-1200 HPLC from Agilent
Technologies (Palo Alto, CA, USA) equipped with two quaternary pumps, online degasser,
autosampler, automatic injector, column thermostat and a fluorescence (FLD) detector.
The scheme of the configuration used for the online MISPE procedure is represented in
Figure 2. The MISPE preconcentration column was connected to the HPLC system using
a Rheodyne valve 7750E. Chromatographic separation was carried out on phenyl-hexyl
analytical column (250 × 4.6 mm i.d., 3 µm) from Phenomenex (Torrance, CA, USA). The
analytical separation was performed using a gradient elution combining solvent A (TFA
0.5%; pH 2.0), solvent B (acetonitrile) and solvent C (methanol) according to Table S1. The
initial conditions were maintained for 10 min at 1 mL min−1. The column temperature
was kept at 30 ◦C. The fluorescence excitation/emission wavelengths were programmed
at 280/440 nm for NOR, CIPRO, DANO, LOME, ENRO and SARA, and at 280/515 nm
for LEVO.
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Quantification was performed using external calibration peak area measurements.
Linear calibration graphs were obtained in the following ranges: 3.3–333 µg L−1 for NOR
and ENRO; 6.6–333 µg L−1 for LEVO, PRO and SARA; 6.6–666 µg L−1 for LOME, and
0.7–133 µg L−1 for DANO.

The preconcentration column consisted of a stainless-steel column (50 × 4.6 mm i.d.)
packed with the NIP/MIP slurries in methanol, using MeOH/water (80/20, v/v) as the
pushing solvent. The conditions used for the preconcentration, washing and elution of the
samples are summarized in Table 1.

Table 1. Preconcentration steps for the online MISPE analysis of water samples.

Step Experimental Condition V (mL)

1 Preconditioning: HEPES 0.05 M. pH 7.5 10

2 Loading of the sample in HEPES 0.05 M. pH 7.5 150

3 Washing 1: water 3

4 Washing 2: ACN/TFA 0.005% in water pH 3.0 (20:80) 3

5 Washing 3: water 3

6 Elution: ACN/TFA 0.5% in water. pH 2.0 (20:80) 10
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2.4. Sample Collection and Analysis

Surface water samples (1 L) were collected in amber glass bottles at four different
points in the Quibú river basin, close to Habana City (Cuba). Two sampling points were
close to a local hospital, whereas the other two sampling points were approximately 10
km far away from the hospital. Sodium azide was added to each sample after collection,
and the samples were stored in the dark at 4 ◦C until analysis. All the samples were
vacuum-filtered through a 0.22 µm nylon filter into glass vials to remove suspended matter.
The samples (150 mL) were analysed following the optimized online MISPE–HPLC method
and FQs concentrations were determined from the calibration curves. All the analyses were
carried out in triplicate.

3. Results and Discussion
3.1. Online MISPE Optimization

In previous work, it was described [25] that the non-specific interactions between the
FQs and the imprinted polymer can be minimized in the presence of mixtures of acetoni-
trile/water. FQs can be present in aqueous solutions as neutral, anionic and intermediate
forms (zwitterions) due to the presence of carboxylic and amino groups. Therefore, their
extraction behaviour will be pH-dependent. Thus, pH plays a key role in the retention
of these compounds. In acidic conditions, functional monomers (pKa TFMA = 3.0, pKa
MAA = 4.2) are protonated and their interaction with FQs is weak. On the other hand, MIP
showed higher retention of the FQs in a pH range of 3–6, where the interaction MIP-FQ
is consistent due to an ionic interaction between the protonated amino group of the FQs
and the negatively charged functional monomers [21]. At higher pHs, no interaction was
observed due to the deprotonation of the antimicrobials. Thus, a mixture of ACN/TFA
0.005% pH 3.0 (20:80, v/v) was selected as the washing solvent. Furthermore, due to the
higher amount of mass of the polymer in the preconcentration column, in comparison to
the conventional off-line MISPE cartridges used before, two additional steps with water,
before and after the washing step, were introduced to equilibrate the preconcentration
column. The recovery of the target FQs is depicted in Figure 3.
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Figure 3. Recovery of target FQs in the MIP and NIP. FQs concentration: 500 ng L−1. Loading
volume: 20 mL of water.

The recoveries obtained in these conditions were in the range 73.9–100.6% (RSD < 8.4%,
n = 3) for the imprinted polymer and 0.3–4.2% (RSD < 6.9%, n = 3) for the nonimprinted
material. Hence, these values confirm the presence of very high-affinity binding sites in
the structure of the imprinted polymer, and the selected conditions minimize the retention
resulting from the non-specific interactions. Thus, these conditions were selected for
further experiments.
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The effect of sample flow rate and volume was studied by a two-level factorial design
and adding a centre point to the design, with the recovery of each FQ the target response.
The design consisted of four experiments performed in triplicate and three replicates for the
central point. In all the experiments, the amount for each FQ tested was fixed to 10 ng. The
experimental domain and the results, in terms of average recovery, are shown in Table 2.

Table 2. Experimental domain and two-level factorial design.

Parameter Code
Level

Minimum Central Maximum

Sample flow rate (mL min−1) FR 0.5 1.5 2.5
Sample volume (mL) V 20 110 220

Experiment V FR
Recovery (%) 1

NOR LEVO CIPRO DANO LOME ENRO SARA

1 20 0.5 96 61 82 112 83 99 89
2 20 2.5 96 54 75 116 80 90 94
3 110 1.5 97 47 61 112 90 98 84
4 220 0.5 105 78 77 105 118 92 93
5 220 2.5 98 59 67 101 100 70 78

1 Amount of FQ: 10 ng.

Recovery values were between 54 and 118% (RSD < 17%) for all the FQs tested.
No significant differences in the recovery of the FQs were observed within the range of
0.5–2.5 mL min−1. On the other hand, the online system was able to percolate 200 mL of
sample without significant loss of NOR, DANO, LOME, ENRO, or SARA at the three con-
centration levels tested (50, 91 and 500 ng mL−1 with recoveries of 78–118%, RSD < 17%),
demonstrating the excellent capacity of the sorbent for these FQs. The differences in the
recoveries obtained can be attributed to the different structure with the template molecule,
specially in the part of the piperazinyl ring [22]. Nevertheless, in the experimental domain
studied, LEVO and CIPRO showed slightly lower recoveries (47–82%, RSD < 6%). To
achieve recovery of LEVO and CIPRO, the most common FQ used in Cuba, above 65%,
flow rate and sample volume were optimized based on the results of the factorial design.
Based on these results, a sample loading flow rate of 1.0 mL min−1 and a sample volume of
150 mL were selected for subsequent studies as a compromise between sample throughput
and back pressure on the MISPE column. An example of a typical chromatogram obtained
is shown in Figure 4.

3.2. Method Validation

The analytical method was validated in terms of linearity, precision, accuracy, sensitiv-
ity, limits of detection (LOD), and quantification (LOQ). Calibration solutions were prepared
by spiking distilled water with each of the targeted FQs in the linear range of 0.5–100 µg
for 150 mL volume, shown in Table 3. Good linearity was observed within the evaluated
concentration ranges for all FQs tested (determination coefficient > 0.9843). The precision of
this method was evaluated by measuring the RSDs of the inter-day tests. The experiments
were carried out with the FQs spiked at different concentrations (0.7–666 ng L−1) in mineral
water samples. The fortified samples were analysed on consecutive days, and all experi-
ments were performed in triplicate. Inter-day recoveries (accuracy) were obtained from
65.7 to 100.6% with the RSDs (precision) less than 8.4%, indicating good within-laboratory
precision achieved by the analytical procedure. Recoveries remained on a constant trend in
the inter-day recovery curve, indicating satisfactory accuracy.
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Table 3. Analytical characteristics of the online MISPE method.

FQ Linear Range (ng L−1) r2 LOD (ng L−1) LOQ (ng L−1) Recovery (%) 1

NOR 3.3–333 0.9974 0.3 0.9 99 (2.8)

LEVO 6.6–333 0.9977 0.3 1.0 66 (5.3)

CIPRO 6.6–333 0.9855 0.7 2.2 66 (8.4)

DANO 0.7–133 0.9843 0.3 0.7 101 (2.9)

LOME 6.6–666 0.9993 0.2 0.5 74 (3.8)

ENRO 3.3–333 0.9967 0.3 1.1 88 (2.8)

SARA 6.6–333 0.9995 0.1 0.4 70 (7.8)
1 FQ concentration: 67 ng L−1. RSD (%) in brackets (n = 3).

For comparison with other methods, LOD and LOQ were calculated based on the
calibration curve, loading 150 mL of water for each calibration point (n = 3). The limit
of detection (LOD) was calculated as 3.3S/slope and the limit of quantification (LOQ) as
10S/slope (S, standard deviation of the intercept). The LOD and LOQ were in the range
of 0.1–0.7 ng L−1 and 0.4–1.5 ng L−1, respectively. From these results, it can be concluded
that the online MISPE approach could reliably be used for the extraction of the target FQs
in water samples. The use of a MIP as an online SPE sorbent minimizes sample treatment
and the automatisation of the whole procedure is very efficient compared to previously
reported methods (Table 4). Moreover, the method renders better LODs and LOQs in the
determination of these antibiotics. LOD and LOQ were very similar to previous methods.
However, most of the methods used for the determination of antibiotics are non-automated
methods. More specifically, in the case of solid-phase extraction, all the methods developed
with similar LODs up to now are off-line. The fact that the entire system is fully automated
allows a decrease in the relative standard deviations (RSD%) in the determination of
the antibiotics for these concentration levels. It also allows a considerable decrease in the
analysis time per sample. Finally, the material has been able to be reused more than 50 times
without losing its properties. This fact, combined with the small amount of polymer used
in the preconcentration column (~50 mg), is translated into a significant decrease in the
final cost of the analysis per sample.
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Table 4. Analytical methods for the determination of FQs in water samples.

Analytical Method Analyte LOD (ng L−1) LOQ (ng L−1) References

LC-MS/MS

NOR 36.3 121

[26]
CIPRO 7.0 23.4
LOME 59 197
ENRO 55.1 184

UA-IL-DLLME-LC-FLD

NOR 0.8 3

[27]
CIPRO 4 13
DANO 0.8 3
LOME 13 43
ENRO 10 33

SPE-LC-MS/MS
NOR 3.4 10.2

[15]CIPRO 3.3 10.1
ENRO 3.3 10.1

SPE-LC-MS/MS
NOR 0.11 0.38

[28]CIPRO 0.09 0.29
ENRO 0.02 0.06

MSPE-HPLC-MS/MS

NOR 1 -

[29]
CIPRO 3 -
ENRO 3 -
SARA 2 -
LOME 3 -

MSPE-HPLC-MS/MS

NOR 8.5 28

[30]

CIPRO 23 78
ENRO 3.9 13
SARA 6 20
LOME 2.4 8.2
DANO 15 49

SPE-HPLC/MS/MS

NOR 0.5 1.5

[31]
CIPRO 1 3
ENRO 1 3
LOME 1 3
DANO 0.5 1.5

MSPE/HPLC-DAD
CIPRO 20 -

[32]ENRO 20 -
DANO 10 -

Electrochemical biosensor CIPRO 29 - [33]

Present work

NOR 0.3 0.9
LEVO 0.3 1.0
CIPRO 0.7 2.2
DANO 0.3 0.9
LOME 0.2 0.5
ENRO 0.3 1.1
SARA 0.1 0.4

3.3. Analysis of Quibú River Water

Analysis of the Quibú River water was carried out at four different points of its flow.
Points A and B (Figure 5) correspond to a critical zone where effluents from a local hospital
are discharged. The concentration of antibiotics in water at these points and the evolution
of possible contaminants along the course of the river were studied. To this aim, the state
of the waters was re-examined at distances of approximately 9 (point C) and 11 km (point
D) from points A and B. As it can be observed in Table 5, at points A and B, the presence of
the antibiotics NOR, ENRO and DANO could be observed in the Quibú river at ng L−1

concentration level, with the concentration of NOR being almost 10 times higher than other
antibiotics. This fact makes sense since NOR is an antibiotic more widely used in different
treatments than others that belong to this family. After several kilometres, at points C and
D, the concentration of these analytes could not be quantified, so it is to be assumed that
the concentration of antibiotics decreases along the course of the river, making impossible
its quantification. In this way, it can be confirmed that the proposed method is valid for the
punctual monitoring of water quality at ultratrace level for these antibiotics.
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Table 5. Analysis of Quibú river water samples.

Sampling Point FQ Estimated Concentration
(ng L−1)

A
NOR 21.3

DANO 3.2
LOME 3.5

B
NOR 21.7

DANO 2.2
LOME 2.3

C Not found

D Not found
RSD < 2% in all cases (n = 3).

4. Conclusions

The present work has proven the application of a MIP as a robust sorbent for the si-
multaneous and automated online SPE determination of trace amounts of fluoroquinolones
in water samples. The optimized procedure yields detection limits in the low ng L−1 levels
in surface water with recoveries higher than 70% for all the target FQs. The MISPE column
can be reused for more than 50 assays without losing its concentration efficiency. Finally,
the developed method can be a useful tool for studying the occurrence and fate of FQs in
the aquatic environment at a reasonable cost.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238120/s1, Table S1. Chromatographic mobile
phase gradient.
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