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Abstract: Cyclic and polyphosphazenes are extremely interesting and versatile substrates charac-
terized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting
materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge
number of new materials for industrial applications. Their properties can be designed considering
the number of repetitive units and the nature of the substituent groups, opening up to a number
of peculiar properties, including the ability to give rise to supramolecular arrangements. We fo-
cused our attention on the extensive scientific literature concerning their biomedical applications:
as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative
anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their
biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the
wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or
scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based
systems and their characterization, together with some of the most relevant chemical strategies to
obtain biomaterials, have been described.

Keywords: cyclophosphazenes; polyphosphazenes; drug delivery; tissue engineering

1. Introduction

Phosphazenes are interesting and versatile chemical substrates characterized by the
presence of -P=N- repeating units giving rise to low-molecular-weight cyclic structures
with three or four units up to polymers containing thousands of -P=N- moieties, where
the P atom in the starting material (i.e., hexachlorocyclotriphosphazene, HCCP) bears two
chlorine atoms [1].

The chemistry and the properties of phosphazenes, in view of industrial applications,
have been reviewed in a series of books [2,3] and articles [4] stemming from papers pub-
lished in 1964–1965, when Allcock and coworkers [5–7] first reported the synthesis of linear
poly(organophosphazenes) (POPs) through the thermal-induced ring-opening of the HCCP
and the subsequent substitution of the chlorine atoms with suitable organic groups to
achieve a wide variety of new derivatives (Schemes 1 and 2).

The scientific and applicative interest for phosphazenes arises from the relatively easy
substitution of the chlorine atoms with an enormous variety of substituents, thus giving
rise to an extremely wide number of new materials whose properties can be designed, in
principle, based on the nature of the substituents in addition to the specific characteristics
of the -P=N- backbone. Phosphorus is one of the most important elements preventing the
combustion of organic materials, with a synergistic effect of nitrogen. Thus, not only is the
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-P=N- backbone nonflammable but it also quenches the combustion of other compounds
in contact with it, likely due to both the interruption of the free radical processes and the
formation of an intumescent barrier to the oxygen entrance [8,9]. Furthermore, the nature
of the P-N bond guarantees an extremely low torsion barrier of the backbone, thus showing
glass transition temperatures of some polyphosphazenes in the −100 ◦C region [10,11].
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It is noteworthy that a lot of patents have been deposited over time based on phosp-
hazenes, exhibiting specific properties of industrial interest. The most intriguing properties,
which can be modulated on the bases of the molecular weight, structure, nature, and
combination of substituents, range from the thermal resistance of the polymers, the tune-
able low-glass-transition temperature, the hydrophilic/hydrophobic behavior and the
water/solvent solubility to the compatibility with inorganic materials, owing to the possi-
bility to introduce organosilicon moieties as substituents [11], and the formation of aerogels
with various densities by the crosslinking of cyclotriphosphazenes and polysiloxanes [12].

Cyclophosphazenes have been proposed as hydraulic fluids, lubricant stabilizers and
additives, in particular with trifluoromethylphenoxy substituents [3], as substrates for
supramolecular assemblies [13–15], and as supports for metal catalysts, either through
metal coordination by the nitrogen atoms of the backbone or through the presence of
ligands as substituents [11,16,17].

Upon the polymerization and substitution of the reactive chlorine atoms, they give
rise to a wide variety of new polyphosphazenes, containing from 100 to 15,000 or more
repeating units (with molecular weights ranging from 2 to 10 × 106 Da) with an unusually
broad range of useful properties. Polyphosphazenes with elastomeric [18,19], optical [20],
proton-conducting [21], electrochemical [22], and fire-resistant [23] properties have been
investigated and applied in the development of membranes [24], fuel cells [25], and hybrid
materials [12]. New elastomeric inorganic silicon-based compounds, and specifically fire-
resistant elastomers and plastics, have been studied for military purposes [26,27].

Due to the huge number of phosphazene applications, we decided to delimit the topics
of this review, focusing our attention on the intriguing results of the investigations on
phosphazene systems in the biomedical field. Thus, we gathered the scientific literature
published after the books edited by Andrianov in 2009 [15] and by Teasdale [28] with the
aim to collect the most fascinating aspects of the chemistry of these materials based on their
synthetic versatility. The patents in the field have not been considered.

2. Synthesis and Characterizations
2.1. The Syntheses and the Architectures

Cyclic phosphazenes [NPCl2]n, with n < 20, are classically prepared by reaction of
PCl5 with NH4Cl in a high-boiling chlorinated solvent (i.e., tetrachloroethane, 132–145 ◦C,
6–20 h) followed by the rapid distillation of the solvent, separation from the rubber-forming
higher polymers, a final fractionation of the trimeric and tetrameric compounds, which
are the major products, and purification through recrystallization and sublimation [29,30].
The effects of different reaction conditions have been investigated, even if the reaction
mechanism remains difficult to interpret. Reasonably, the reaction proceeds through the
formation of NH4PCl6, which decomposes to NH=PCl3, which then polymerizes with the
elimination of HCl or reacts with PCl5 [31].

NH4Cl + PCl5 → NHPCl6 → NH=PCl3 → (NPCl2)n

As summarized in Figure 1, different frameworks can be achieved based on the
-P=N- backbone: cyclic structures, linear polymers, copolymers [11,15,32–35] (regular or
random diblock or triblock copolymers), combs, stars with or without a cyclophosphazene
core, dendrimers, cyclolinear and cyclomatrix polymers, and polymers with pendent
cyclotriphosphazene rings.
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The availability of a wide range of organic substituents on the -P=N-skeleton also
allows the achievement of different 3D architectures in supramolecular arrangements, from
electrospun scaffolds [36] to micelles and polymersomes [37], when amphiphilic moieties
are bonded to the P atoms or through noncovalent interactions (Figure 2) [38–40].
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Different strategies have been proposed and optimized to produce polymers with
substituents not easily available and to give different structures [41].

(i) Thermal-ring-opening method: from HCCP at 250 ◦C under a vacuum through a
cationic chain-growth polymerization process, due to the formation of the cationic
species [P3N3Cl5]+ by chlorine loss [41], which initiates the opening of a second ring,
thus propagating the polymerization (Scheme 3).
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A drawback of the nucleophilic substitution of the chlorine atoms in the P=N backbone
is that all reactions cannot reach 100% substitution of chlorine atoms. As a consequence,
the unreacted P-Cl quickly reacts with moisture, giving P-OH moieties and leading to
uncontrolled crosslinking and degradation, thus compromising the properties of the fi-
nal polymers. To achieve control over the molecular weight and polydispersity, various
catalysts have been used [42].

(ii) Living cationic polymerization method by the reaction of (Cl3P=NSiMe3) with PCl5 [43].
An intriguing study concerning the mechanism of the ambient temperature PCl5-
initiated living cationic chain growth polycondensation of Cl3P=NSiMe3 provided
evidence that, under the usual polymerization conditions, the propagation occurs
at both chain ends and identified factors to potentially control the molecular weight
and broadening of the molecular weight distribution [44]. It has been observed that
good control over the molecular weight and polydispersity can be achieved for short
polymer chains (up to 50 units), while in the case of longer polymer chains, a lower
control can be obtained. Detailed kinetic studies have been carried out to investi-
gate the mechanism of the reactions and optimize the polymerization conditions
(Scheme 4) [42,45,46]. A wide variety of reactions, from enhancing the basicity of the
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backbone N atoms to the electrophilic substitution on the phenyl ring or the exploita-
tion of the relative acidity of the P-CH3 groups for the formation of carbanions, which
can react with a wide variety of electrophiles, have been investigated (Scheme 5).
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For R = Ph and R’ = Me, many subsequent reactions can be carried out (Scheme 5) [47].
Of note is that phosphazene moieties bearing π-donating dialkylamino substituents

bonded at phosphorus have been reported to be Bronsted superbases, with an excellent de-
localization of the engendered positive charge of the cations, thus being able to deprotonate
weakly acidic compounds [48,49].

(iii) Synthesis of cyclomatrix polyphosphazenes, through the chlorine substitution with
bifunctional reactive spacer groups, such as diamines or diols, which can give rise
to different self-assembled geometries (microspheres, hollow spheres, nanotubes,
nanofibers, and sheets) (Figure 3) [3,50,51].
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2.2. The Characterization

Cyclotriphosphazenes feature a nearly planar ring structure that provides a rigid D3h
symmetrical support for the six P-bonded substituents arranged on opposite sides with
respect to the plane of the N=P cycle and outside, as shown in Figure 4 [17].
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Changes in the molecular parameters of cyclophosphazenes have been studied as a
function of substituents at fixed positions, observing specific trends. As an example, the
progressive substitution of chlorine atoms in the HCCP structure with HNBut moieties
increases the P-N bond lengths involving the P atom bearing the substituents and the
remaining P-Cl bonds [52].

Spectroscopically, the presence of intense absorptions at about 1200 cm−1 (P-N-P
stretching mode) and at 700–950 cm−1 in the FTIR spectra of the compounds indicates the
presence of the phosphazene ring. The 31P NMR technique allows investigating the number,
the nature, and the position of the substituents, starting from the singlet at 21.23 ppm
(in CD3COCD3) for HCCP [53,54] until the characterization of dendrimeric structures
(Figure 5) [3].
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biphenyl)]cyclotriphospazene and (b) = 2,2–bis(4–formylphenosy)–4,4,6,6,–bis[spiro(2′,2′′–dioxi–
1′,1′′–biphenyl)]cyclotriphospazene.

Depending on the number and position of substituents, up to three chiral centers can
be achieved, giving rise to racemic and diastereoisomers species. Many investigations have
been carried out, mainly on >P(spiro) systems bearing a bidentate moiety on two of the P
atoms and different ones on the third (Figure 5) [55].

As for polyphosphazenes, their stereogenic properties attracted a great deal of at-
tention in polymer science, as well as biological, pharmaceutical, and medicinal science,
because of their high potential for application in advanced materials. In the case of linear
[N=P(RR’)]n polymers, the phosphazene moiety has a chiral center and the polymer is
stereogenic. In the case of cyclolinear and cyclomatrix polymers, the stereogenic properties
depend on whether there is more than one type of substituent in the “monomer” unit.
These polymers can be optically active, giving rise to meso, racemic, or diastereoisomeric
mixtures. Again, 31P NMR studies can help the understanding of the structure and the
properties of these systems [56,57].

2.3. Computational Approaches to Phosphazenes

In this section, we will briefly describe the computational approaches to the description
of the P-N bond in phosphazenes, as well as the Molecular Dynamics (MD) methods to
deal with macrosystems, such as the polyphosphazenes employed in biochemical systems.

2.3.1. Quantum Chemical View of the P-N Bond in Phosphazenes

Substituted cyclotriphosphazenes (Schemes 1 and 2), often in the relevant HCCP form,
and polyorganophosphazenes (POPs) represent the building blocks of a huge substitution
chemistry.

The nature of the P-N bond in these inorganic systems is a matter of long debate. The
P-N bond length in phosphazenes is about 1.60 Å, while related saturated phosphazenes
show a P-N bond length of about 1.80 Å [53]. Moreover, the cyclotriphosphazene ring is
planar without bond length alternation. From the standpoint of the valence bond (VB)
theory, the bond in the ring in cyclotriphosphazene should have a multiple bond character
and the presence of six π valence electrons should also confer aromaticity, thus further
stabilization, to the ring. Incidentally, this picture has been rationalized by Dewar in the
so-called “island model” [58], where the Pdπ-Npπ overlap causes electron density “islands”
along the P-N-P units with nodes on the P atoms. Concerning the POPs, also in this class of
compounds, the P-N bonds present characteristics almost alike to cyclotriphosphazenes.
It is worthy of note that the lack of bond length alternation is not a constant feature of
these systems. Indeed, bond alternation has been sometimes observed both for substituted
cyclotriphosphazenes and polymers. On these grounds, the quest concerning the nature
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of the P-N bond in phosphazenes has been focused on specific topics, i.e.,: (i) if dπ of the
P are involved in the π electrons delocalization and (ii) if there is ring aromaticity when
4n + 2 π electrons are involved in the delocalization. In this context, it has been shown
by charge density, Natural Bond Orbital (NBO), and Energy Decomposition Analysis–
Natural Orbitals for Chemical Valence (EDA-NOCV) approaches that, both for cyclic- and
polyphosphazenes, the PN bond is highly polar, with a remarkable ionic character [59–62]
along with the presence of a negative hyperconjugation involving the N lone pair with
the σ*PX (X = ligand at the P atom) and, to a lesser extent, the σ*PN orbitals [59–63]. These
outcomes discarded the hypervalent character of the P due to the participation of P dπ
orbitals in the delocalization of π electrons. Moreover, a charge density investigation [63]
showed that the cyclophosphazenes show electron density “islands” in chloro tri- and tetra-
cyclophosphazenes, allowing the separation in modular units of Cl2PN. These outcomes
resemble Dewar’s “island” models where, however, no P dπ orbitals are involved. The
P-N bond picture obtained, i.e., a highly polarized P-N bond and Np→σ*PX, σ*PN negative
hyperconjugation, also satisfactorily explain the P-N bond length alternation, mainly in
POP systems. Indeed, it has been shown that the extent of the NBO overlap of the orbitals
involved in the hyperconjugation is responsible for the P-N-P angles which, in turn, affect
the P-N bond polarity. These outcomes explain the alternating P-N bond in the most stable
cis,trans-POP configuration (Figure 6) due to the different NBO overlaps between the cis
and trans P-N bond patterns [59,64].
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Figure 6. Configuration of the most stable cis,trans-POP isomer.

The role of the substituents on the properties of the P-N bond has also been inves-
tigated by several computational methods, e.g., electron density, NBO, and EDA-NOCV
analysis [59,60,62,65]. The donor/acceptor as well as the electron-withdrawing behavior of
the ligands bonded to the P modulates the electron density at the P center without affecting
the electron density on N. Thus, a withdrawing group causes an electron density depletion
at the P and then an increasing P-N polarization, leading to a shortening of the P-N bond
and vice versa (Figure 7).
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the P atoms in cyclophosphazenes [56]. Of note is the independence of the charge on N from the
substituent on P.

Finally, the aromaticity of the cyclotriphosphazene rings was also investigated.
Chaplin et al. [59] cautiously proposed the presence of aromaticity in cyclotriphosphazenes
according to the Nucleus-Independent Chemical Shift (NICS) analysis. Indeed, the seminal
NICS(0) and NICS(1) descriptors may also be affected by the contribution of currents,
leading to erroneous conclusions [66]. Experimental charge density studies on the HCCP
definitely assessed the lack of pseudoaromatic delocalization. Moreover, the very-high-
similarity behavior of the P-N bond in HCCP and octachlorocyclotetraphosphazene en-
forced the guess that the ring planarity in cyclotriphosphazenes represents the more stable
conformation [63].



Molecules 2022, 27, 8117 10 of 41

2.3.2. Molecular Dynamic Simulations of Phosphazenes

One of the peculiar characteristics of POPs which entitle them as ideal candidates for
a wide variety of industrial applications is due to the flexibility of the backbone due to
the P-N bonds. Indeed, this bond favors the membrane formation in biological environ-
ments, and many substituent groups, bonded to the phosphorus, can easily modulate the
hydrolytic instability and consequently the biodegradability [15]. With respect to this habit,
the molecule dynamic (MD) simulations allow for gaining important insight into the molec-
ular properties of these polymers and establishing the structure–property relationships.
Despite their usefulness, only a few numbers of MD studies are reported in the literature
and are often limited to small oligomers that do not allow for the reproduction of the behav-
ior of long-chain polymers [67–69]. About 20 years ago, some studies demonstrated that a
modified CHARMm [68,70,71], AMBER [72], or DREIDING [73] force field can reproduce
the geometrical parameters (bond lengths, valence, and torsional angles) in polyphosp-
hazenes with almost 20 repeat unit chains. The COMPASS force field was used since 1998
by Fried et al. [74–78] to consider also the condensed-phase properties such as the glass
transition temperature, diffusion coefficients, and density. In more recent years, Kroger and
Fried focused their attention on polyphosphazenes for biomedical applications [79]. Their
MD simulations allow them to determine the bulk properties and investigate the atomic
interactions. They correlate the hydrogen bonds with the electrostatic interactions and the
solubility of the polymers. All these aspects are crucial when these polymers are used to
control drug release [80], in drug delivery applications [81,82], or as a microencapsulation
material, as well as an immunoadjuvant [15]. In very recent work, Wang et al. rational-
ized the effect of the side groups on the glass transition polymers starting from a system
with 150 repeat units [83], but a great advance in the MD simulations has been made by
Chen et al. [84]. In this study, the DREIDING force field with the Lennard–Jones potential
was used, and they obtained an in situ dynamic polymerization procedure to make, test,
and tune the thermos-mechanical properties of polyphosphazenes via MD simulations,
which was obtained. The bonds between monomers were formed during the simulations
and this allowed, for example, to consider the different end-to-end polymer interactions
that influence the macroscopic properties. Moreover, differently from the previous models,
a dynamic procedure was more versatile, and the properties of the POPs could be tested
also as a function of the degree of polymerization and not on fixed repeat units.

3. Biomedical Applications

During the last 20 years, a wide variety of new phosphazene systems, either trimeric
or polymeric, have been developed as biomaterials in view of different applications. The
materials to apply in biomedical applications should be biocompatible, in other words
nontoxic themselves, as well as their degradation products. Moreover, both the materials
and their degradation products also should not induce an inflammatory, carcinogenic,
pyrogenic, or allergic response. The degradation products of many polyphosphazenes
form a buffering system (ammonium phosphate) and maintain a neutral pH through
the degradation [85,86]. The most important advantage of polyphosphazenes over other
polymers is the possibility to introduce side groups with specific chemical–physical and
biological behavior to design biomaterials for tailored applications. Fluorinated chains
improve the hydrophobicity, giving rise to materials suitable for surface modifications, and
have been approved as dental liner materials because of their antimicrobial properties and
biological inertness [15,87]. The introduction of amino acid esters improves the degradation
of the polymers: the backbone degradation gives rise to nontoxic products (phosphate and
ammonia) and can be affected significantly by the presence of residual chlorine atoms and
hydroxyl groups along the chain, together with the introduction of hydrolytically labile
side groups: a number of amino acid esters have been introduced, also in combination,
observing that their steric hindrance can modulate the hydrolysis rate. The materials can be
used for drug delivery, tissue engineering, or shape–memory polymers for cardiovascular
or bile duct stents, as examples, where the material can be either biostable or biodegradable
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into nontoxic end-products according to a modulable designed degradation rate (i.e., such
as the rate of tissue growth or according to a desired therapeutic release rate) [42,88]. It
has been observed that the presence of only small amino acids as substituents such as
glycine and alanine induced a quicker degradation than phosphazenes bearing larger or
phenoxy substituents. The modulation of the degradation rate could also be obtained with
a combination of hydrophilic and hydrophobic side groups (i.e., carbohydrates or steroidal
substituents) [89–92]. The degradation mechanism involves the attack of water molecules
on organic side groups on the POPs, with the formation of P-OH units by the migration
of protons from oxygen to nitrogen, thus sensitizing the polymer backbone to hydrolysis,
yielding nontoxic degradation products which comprise mainly NH3, phosphate, and the
corresponding side groups, as depicted in Scheme 6 [93,94].
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It was observed that the degradation rates in polymers with side groups linked through
the N-atom or the O-atom are different [95]. In the case of tyrosine, which can be attached
to the polymer backbone either by amino or by phenolic moiety, only the polyphosphazene-
bearing N-tyrosine side groups are biodegradable, while the phenolic group makes the
polymers nondegradable but pH-sensitive (Scheme 7) [96–99]. The degradation rate of
some water-soluble polyphosphazenes (bearing amino acid ester units, or pyrrolidinyl,
or carboxylatophenoxy moieties) has been studied as a function of the pH, observing a
considerably faster degradation at lower pH values. The hydrolytic stability can be tailored
by the careful choice of the amino acid spacer and increased by the steric shielding of the
polymeric backbone [100–102].
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The introduction of functionalities into phosphazene pendant groups allows for the
attachment of specific molecules into the system that can increase the affinity for the desired
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species. An example could be aminoethoxyethanol: the oxygen atom can be bonded to
P and the amino unit can be used to bind, for instance, galactose or polyethylene glycol
moieties, giving rise to materials able to interact with DNA [103,104].

As for tissue engineering applications, other properties must be explored:

(i) Glass transition temperature compared with the physiological temperature: as for
bone tissue engineering, a glass transition temperature higher than the physiological
one to maintain structural integrity in an in vivo environment is required [105];

(ii) Mechanical properties: substituents must be chosen in order to match the mechan-
ical properties of the POPs (compressive and tensile strengths) and those of the
native tissues;

(iii) Porosity and porous interconnectivity of biomaterials plays a key role either in drug
delivery applications, due to their controlled degradability, or in tissue engineering,
aging as materials scaffolds for cells proliferation;

(iv) Stimuli-responsive site behavior: temperature, ultrasound, light, pH, ionic strength,
oxidative conditions, and enzyme presence are important stimuli for biomedical appli-
cations. Several stimuli-responsive materials have been prepared for tissue engineer-
ing and drug delivery due to the possibility of tuning the properties from combinations
of different side groups [105–108]. The reaction of hexakis [4-(acrylamido)phenoxy]-
cyclotriohosphazene] with N-isopropylacrilamide and N-vinyl imidazole in the pres-
ence of ammoniumpersulfate gave crosslinked hydrogels which exhibited in vitro
pH-responsive drug-release behavior [107].

In a quite recent review [109], the opportunity to combine the benefits of an inorganic
backbone and a wide variety of organic (or organometallic) side groups in POPs have been
considered for future bioapplications, such as the use of cyclomatrix polyphosphazenes to
encapsulate particles suitable for imaging applications [110] or to apply POPs in a prototype
of an artificial heart [111].

3.1. Phosphazenes in Drug Delivery
3.1.1. Biological Activity of Cyclophosphazenes

The substitution of the chlorine atoms in trimers or tetramers with N-monodentate,
N-N, or N-O bidentate moieties gave the formation of a series of phosphazene systems
for which the antimicrobial activity against Gram-positive and Gram-negative pathogenic
bacteria and fungi was tested.

The tetrapyrrolidino derivatives reported in Scheme 8 were found to inhibit the
bacteria E. coli ATCC 25922, P. aeuroginosa, B. cereus, and P. vulgaris in a comparable extent as
control antibiotics and demonstrated to be more active than Ketokonazole against C. albicans
and C. tropicalis, exhibiting higher activity than the analogue PCl2-derivatives [112,113].
It has been demonstrated that the interaction of cyclophosphazenes with DNA caused a
decrease in the mobility and intensities of form I and form II DNA due to the binding of the
compounds with DNA to A/A and G/G nucleotides [114–116]. Similar compounds have
been converted to protic salts, as reported in Figure 8, for which an antiproliferative effect
on tumor cell lines (A549, Hep 3B and FL) higher than both 5-fluorouracile and cisplatin
was demonstrated, the most active being the compounds (a) and (b) [117].

Tetramers similar to compound (c) showed greater inhibitory activity against K. Pneu-
monia, C. tropicalis, and C. albicans, and in the latter case, more efficient than Ketokona-
zole [118,119]. Additionally, trimers and tetramers bearing the N/O donor-type bidentate
ligands containing a mono-ferrocenyl group have been shown to demonstrate antitubercu-
losis and cytotoxic activity [120–122]. Some ansa-spiro cyclotriphosphazenes have been
synthesized [123] which exhibited antimicrobial activity against bacteria, one yeast strain,
and cytotoxic, apoptotic, and necrotic effects against L929 fibroblast and A549 lung cancer
cells. The biological activity of mono-ferrocenyl-2-cis-4-dichloro-ansa and mono-ferrocenyl-
spiro-tetracyclophosphazenes has been investigated as well, observing a proliferative effect
on L929 fibroblast and MCF7 breast cells up to 200 mg/mL, but a significant antituberculo-
sis effect against the M. tuberculosis H37Rv reference strain (compound d of Figure 6) [124].
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Dimeric cyclophosphazenes have been achieved by the reaction of HCCP with symmetric
N2N2 or N2O2 tetradentate donor ligands: antibacterial activity against Gram-positive and
Gram-negative bacteria has been observed. In Figure 9, the compound on the left also
exhibited high cytotoxicity against fibroblast cells, while the compound on the right was
found to be active against yeast strain C. tropicalis [125,126].
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A series of cyclophosphazenes bearing oxime groups as substituents have been re-
ported [127] to exhibit a significant antimicrobial activity against Gram-positive (S. aureus
and E. faecalis) and Gram-negative (E. coli and K. pneumoniae) microbes. In particular, the
cyclotriphosphazene bearing four thiophene-2-carbonyl derivatives reported in Figure 10
also showed antifungal activity (against A. niger and C. albicans).
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Figure 10. The oxime cyclotriphosphazene derivative exhibiting antimicrobial activity comparable to
Ciprofloxacin and Fluconazole.

To improve the antimicrobial activity, AgL complexes (L = PPh3, PPh2Me) have been
bonded to N-ring atoms of the cyclophosphazene to achieve the compound [N3P3(NHCy)6
{Ag(PPh2)}3](TfO)3, which showed a significantly higher antitumor activity against MCF7
and HepC2 cell lines compared to cisplatin and very low MIC (µM) values against S. aureus,
M. bovis (BCG), and M. tuberculosis(H37Rv) [128].

Molecular docking studies showed that cyclophosphazene systems bearing 4-oxyphenyl-
3-(substituted-phenyl)prop-2-en-1-one [129] and heteroring chalcones [130] arms interact
at the tubulin-binding cavity, similarly to colchicine, and with DNA on active sites of Bcl-2,
p-53, Caspase-3, and SRC-kinase enzymes, respectively. The chalcone-cyclophosphazene
compounds with the structure depicted in Figure 11 have been shown to be active in vitro
against human prostate PC-3 and LNCaP cancer cell lines, the most active being the
F-substituted derivatives [131].
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A biodegradable water-soluble cyclotriphosphazene bearing doxorubicin, methoxy-
poly(ethylene glycol)350 and a tumor-specific tetrapeptide (Gly-Phe-Leu-Gly) have been
prepared to study the effect of the enzymatically controlled release on the cytotoxicity
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against the leukemia L12110 cell line. A lower activity than that of free doxorubicin has
been observed but a higher in vitro cytotoxicity, such as cisplatin (Figure 12) [132].
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Figure 12. A biodegradable cyclophosphazene prodrug of doxorubicin.

3.1.2. Polyphosphazenes

The tunable degradation rates of polyphosphazenes with the formation of nontoxic
products make them largely advantageous for drug delivery applications together with
the possibility to design stimuli-responsive frameworks. Polymeric drug delivery systems
have been prepared according to two different categories:

(i) To achieve controlled drug release systems where the role of the polymer is to extend
the half-time of the drug;

(ii) To achieve targeted drug delivery systems carrying drugs to the sites of action, being
usually severely cytotoxic drugs, such as anticancer ones with tumor selectivity [42].

The polymer was designed to perform three different functions in the delivery system
owing to the nature of the interactions (H-bonds, π–π, or noncovalent interactions) occur-
ring between the polyphosphazene side-chains and the drug or directly bearing the drugs
bonded as substituents on the polymeric chain. Thus, the polyphosphazene can:

(i) Improve interpolymer complexation during the formation of the mixed polyelectrolyte;
(ii) Promote the release of polynucleotides from endolysosomal compartments;
(iii) Reduce polycations caused by toxicity.

Polyphosphazenes bearing polyethylenglycol (PEG)-type arms have been tested for
the drug delivery of reference drugs such as platinum derivatives [133]. Doxorubicin and
paclitaxel in conventional micelle, hydrogels, or nanoparticles, but also new polymer-drug-
conjugated forms have been developed, behaving as prodrugs. Different polyphosphazene sys-
tems have been studied to bind Pt(II) systems, such as [NP(PEG550 or 350)x(GlyGluPt(dach))2−x]
(dach=1,2-diaminocyclohexane), or to behave as macromolecular Pt(IV), ruthenium, and
rhodium prodrugs, of which the kinetics of release and in vitro and in vivo antitumor
activity have been investigated against selected tumor cell lines, observing a 5 µM-higher
activity with respect cisplatin with reduced systemic effects [134–137].

Three different polyphosphazenes containing tocopherol or testosterone glycinate and
hydrophilic Jeffamine M1000 via the living cationic polymerization of Cl3P=NSiMe3 have
been prepared and used to encapsulate and deliver camptothecin and epirubicin on MCF-7
cancer cells and MCF-7 spheroids. The hydrodynamic diameter of these nanoaggregates
ranged from 142 to 253 nm, with the appropriate size to allow an extruded serum circulation
with reduced renal clearance, showing similar or higher toxicity to MCF-7 human breast
cancer cells as compared to the parent anticancer drugs, causing significant cell-cycle arrest
in the G2/M phase and inducing significant apoptosis. Furthermore, camptothecin and
epirubicin-loaded nanocarriers exhibited lower IC50 values than the parent anticancer
drugs in MCF-7 spheroids [138].
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Polyphosphazenes containing the fluoroquinolone antibiotic substituents ciprofloxacin
or norfloxacin (Figure 13) from 12 to 25 mol% and from about 88 to 75 mol% of amino
acid esters, including alanine, glycine, and phenylalanine, have been prepared and the
hydrolytic behavior has been studied, observing that it occurred at about a neutral envi-
ronment. Antibacterial tests against E. coli showed activity as long as the antibiotic was
released, thus suggesting the possibility to design devices for the controlled release of
antibiotics [139].
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Figure 13. Some drugs easily encapsulated in polyphosphazenes bearing amino acid esters as
side groups.

Through the living cationic polymerization process, a series of multisubstituted POPs
with controlled molecular weight and aqueous solubility bearing folic acid as tumor-
targeting groups and hydrophobic anticancer molecules (through a pH labile linker) have
been prepared. The polymers (tested at 25 ◦C and pH 7.4) showed to be stable over a
short period of time in an aqueous environment but degraded over longer periods under
simulated physiological conditions, thus demonstrating the potential of POPs to create
tunable systems for the targeted delivery of anticancer drugs [140].

A series of chemically crosslinkable and thermoresponsive POPs as injectable biomaterial
by using thiol, hydrophobic isoleucine ethyl ester, and hydrophilic amino-polyethylenglycol
side groups, whose aqueous solutions at body temperature formed hydrogels suitable for
administration by injection, have been prepared [141].

The copolymerization of hydrophobic systems such as polylactic acid and hydrophilic
systems such as polyethylene oxide in thermosensitive poly(organophosphazene) hydrogel
(based on hydrophobic isoleucine ethyl esters group and hydrophilic α-amino-ω-methoxy-
PEG550) has been investigated for the delivery of hydrophobic drugs, such as doxorubicin
and paclitaxel, even via intratumoral injection (Scheme 9) [142,143].
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The hydrogel strategy has also been studied to achieve enzyme immobilization: a
hydrogel based on methacrylate-substituted phosphazenes was demonstrated to immobi-
lize lipase to an extent, depending on the hydrogel composition (maximum 24.02 mg/g);
the immobilized enzyme activity decreased by about 50% only after four cycles of batch
operation [144].

3.1.3. Polyphosphazenes in Gene Therapy

Cationic POPs can, in principle, give rise to electrostatic interactions with anionic
biomolecules such as DNA. Gene therapy involves the provision of cells with the required
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genetic information to produce specific proteins to modulate a given disease. Thus, the
DNA must be delivered to the target cells and protected during derivation from metabolic
processes. These results can be achieved through the preparation of cationic polymers
which undergo noncovalent interactions with negatively charged plasmid DNA. In this
frame, POPs bearing amines on P atoms have been proposed, observing a lower toxicity
with respect the use of poly(2-dimethylaminoethyl)methacrylate [145]. POPs cosubsti-
tuted with 2-dimethylaminoethylamine and imidazole showed higher transfection activity
compared to the corresponding systems without imidazole [146]. A series of poly[bis(2-
(2-aminoethoxyethoxy)phosphazenes] have been investigated for their use in gene de-
livery [147], observing that the partial substitution of amine moieties with imidazoles
improved the activity [148].

It has been reported that the presence of the polyphosphazenes was able to increase
the efficacy/toxicity ratio over one order of magnitude, showing superior efficacies in a
clinically relevant glioblastome primary cell-line (a synthetic strategy for the preparation
of a library of polyphosphazenes of interest for gene delivery), thus establishing a new
versatile, biodegradable polymeric gene delivery based on POPs with a high capacity for
gene transfer efficacy in vitro and upon in situ treatment in vivo; for instance, forming
polyelectrolyte nanoparticles by the coincubation of alkylamine and alkoxycarboxylate-
POPs or by preparing water-soluble cationic POPs bearing alkylamine and imidazole
groups [149–151]. The application of polyphosphazenes for gene delivery has remained
relatively unexplored. A polyphosphazene platform, containing side-chain double-bond
units to be reacted with alkanethiols, has been reported, which, combined with malic
acids, were able to generate mixed polyelectrolyte complexes with a sufficient positive
charge to bind polynucleotides and promote cell internalization but with the ability to
destabilize cell membranes in response to pH. Then, systems have been elaborated as gene
carriers to deliver nucleic acids as a potential means to treat glioblastoma, one of the most
aggressive and malignant cancers (classified as class IV by the World Health Organization).
A new strategy after surgical resection to prevent tumor relapse involves the delivery of
either suicide genes or gene knockdown by siRNA directly to glioblastoma via intratumor
administration. In vitro and in vivo evaluation has been carried out for gene delivery
by using biodegradable poly [2-(2-aminoethoxyoxyethoxy)phosphazene] modified with
lactobionic acid bearing a galactose group as a targeting ligand. Nanoparticles with a
size around 130 nm have been achieved by condensing pDNA, which showed a higher
transfection for BEL-7402 cells with lower cytotoxicity, with respect to the galactose-free
systems and exhibited the selectivity of gene expression at a distant tumor site. Thus, the
system could be a potential gene transfer vehicle for tumor targeting with low toxicity after
intravenous administration [152].

Moreover, the potentiality of gene silencing mediated by siRNA has been explored
for the treatment of genetic disorders and cancer where siRNA drugs can inhibit gene
expression. Rapid enzymatic degradation in the blood of siRNA could be avoided by the
use of hydrogel-based polyphosphazenes designed for the localized and long-term delivery
of siRNA [153].

3.1.4. Micelles, Liposomes, Polymersomes

Amphiphilic copolymers tend to self-assemble into a wide range of self-assembled
nanostructures such as micelles and polymersomes in an aqueous environment due to
different interactions of corresponding hydrophilic and hydrophobic groups. Polyphosp-
hazenes have been studied either as carrier substrates by encapsulation using microspheres
or micelles or by homogeneous dispersion of a drug in a biodegradable hydrogel or solid
matrix. Liposomes were prepared by evaporating a chloroform solution of phosphatidyl-
choline and the phosphazenes polymer, treating with PEG and then hydration with HBS.
Macrospheres, liposomes, and polymersomes have been prepared from amphiphilic ioniz-
able polyphosphazenes by the incorporation of three critical moieties: polyethylene glycol
octadecyl ether (C18(EO)10), aminobutyric acid (ABA), and ethylene oxide ethyl ether (EEE).
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The three units provide liposome-anchoring capabilities and are pH- and temperature-
responsive, respectively. EEE was selected as having a lower critical solution temperature
close to the physiological temperature (32 ◦C); ABA helps to modulate the critical solution
temperature with respect to environmental pH and can confer biodegradability. These lipo-
somes displayed pH-dependent release but were unstable under physiological temperature
(37 ◦C) at a pH of 7.4 [154].

Of particular interest is the release of anticancer drugs. Many anticancer drugs cur-
rently used for chemotherapy are low-molecular-weight compounds (<1000 Da). They are
administrated systematically orally or locally. Such molecules are known to have a short
half-life (<2 h), a fast clearance in the blood circulation system, and attack not only tumor
cells and tissues but, according to their level of selectivity, also normal cells, thus causing se-
vere toxicity and side effects (nephrotoxicity, neurotoxicity, cardiotoxicity) which represent
key dose-limiting factors in chemotherapy. Thus, different approaches to overcome such
problems have been investigated and proposed. The strategies are continuously evolving
based on new knowledge acquired on the physiological evolution of tumors.

Polyphosphazenes can either bind active tumor-targeting molecules (based on the
affinity or reactivity of specific antigen/receptor overexpressed in the tumor cells or tu-
mor tissues) and contemporary polyethylene glycol moieties to improve water solubility
together with the drug, usually bonded through a stimuli-responsive spacer group.

The passive targeting strategies are some physical aspects of the interaction between
the polymers and tumor cells. As an example, it was discovered that: (i) polymers with
specific molecular weight can be preferentially accumulated in the solid tumor issues [155],
(ii) macromolecules (i.e., nanoparticles) cannot permeate through the blood vessel pores of
normal tissues with a regular structure, and (iii) it is difficult for polymer particles which
have entered in the tumor tissue to be drained off, as they are not present in the lymphatic
vessel [156].

In this frame, polyphosphazenes represent an excellent resource to develop newly
designed drug carriers for tumor targeting, tailored to meet various requirements such
as water solubility, chemical stability, biodegradability, compatibility with the drug, and
targeting properties forming micelles or microspheres, which, upon diffusion and degrada-
tion, can release the targeted drug [15]. One-pot synthesis of crosslinked POPs dopamine
microspheres for controlled drug delivery has been reported by reacting in acetonitrile
HCCP, triethylamine, and dopamine at 50 ◦C for 3 h under ultrasonic irradiation (53 kHz,
150 W). Cyclomatrix polyphosphazene microspheres have been achieved which are able to
absorb acriflavine (19.5 mg acriflavine/gram of microsphere), as a model drug, and which
release the drug for a long time depending on the pH (29% released in acidic medium; 47%
at neutral pH) for up to 7 days [157]. A new class of tripodal amphiphiles for self-assembly
to bilayered polymersomes, based on cyclotriphosphazenes bearing equimolar amounts of
hydrophilic polyethylene glycol and a hydrophobic oligopeptide, have been proposed, for
which the shape (micelles or polymersomes) resulted depended on the hydrophobicity of
the oligopeptide [158]. The reaction of HCCP and 4,4′-sulphonyldiphenol in the presence of
triethylamine in acetone at 30 ◦C in an ultrasonic bath (100 W, 80 kHz) for 4 h gave hollow
microspheres via a self-assembly process [159].

Cyclomatrix polymers with quercetin as bridging moieties have been used to prepare
nanospheres to study the release of acriflavine as a model drug, which can be stored in the
nanosphere at 37 ◦C up to 41% and released in 11 days at a pH of 7.4. The hydrogen-bonding
interaction between acriflavine molecules and quercetin nanospheres may also contribute
to the steady release rate (Scheme 10) [160]. Radical-containing microspheres based on a
cyclophosphazene core and phloretin polymeric arms have been prepared by reaction with
(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) and used as drug loading (camptothecin)
while investigating the drug release at different pH levels: it was reported that 41% of
camptothecin was released at a pH of 4.0 and 32.6% at a pH of 7.4 from microspheres
after 350 h, respectively (Scheme 10) [161].
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A related strategy has been used to prepare biodegradable and antioxidant phosp-
hazene tannic acid nanospheres [162]. Polymersomes present unique structural architec-
tures with an interior aqueous core surrounded by a typical bilayer membrane formed by
the association of hydrophobic parts. The bilayer membrane is the characteristic of polymer-
somes, which allows to separate the inside and outside aqueous environments with different
compositions and concentrations based on the selective permeability of the membrane. A
wide variety of polymersomes have been developed and their stimuli-responsive properties
have been investigated, thus allowing drug release. The hydrodynamic diameter ranges be-
tween 150 and 250 nm. Cancer cells have reductive and acidic environments as compared to
normal body cells, thus reductive/acidic-responsive polymersomes may play a crucial role
in cancer therapy to release the loaded drug. Three different reductive/acidic-responsive
polyphosphazene bearing mPEG-SS-amino and N,N-diisopropylethylenediamine arms
in different amounts have been prepared which self-assembled in polymersomes. Hy-
drophilic/hydrophobic drugs (Doxorubicin/HCl and Doxorubicin) have been encapsu-
lated into polymersomes with high-loading and high-encapsulation efficacy due to the
strong intermolecular interaction. The drug release rates were observed to depend on the
acidity/reductive properties of the medium (Figure 14) [163].
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Colic acid has a high-binding affinity to the foresaid X receptor (FXR, which is
overexpressed in most of the cancer cells), thus colic acid has been grafted to poly(bis-
carboxyphenoxy phosphazene)poly diallyl dimethylammonium chloride to prepare na-
nomicelles with a hydrodynamic diameter of around 218 nm. Colic-acid-conjugated hybrid
polymeric micelles targeted the FXR with paclitaxel loading have been shown to im-
prove the therapeutic efficiency without systemic toxicity [164,165]. Thermoresponsive
nanoparticles based on poly[bis(carboxyphenoxy)phosphazene]-polylactic acid polymers
demonstrated the capacity to encapsulate the hydrophobic drug paclitaxel with a pH-
dependent release capability due to the pH-responsive quenching of the polymers. [151]
The kinetics of the encapsulated probe release of 8-hydroxypyrene-1,3,6-trisulfonic acid has
been studied to improve the lifetime as can be achieved by introducing PEGilated chains
acting as sterical barriers between opsonin and other siero-proteins [166].

Cyclophosphazenes bearing and oligopeptide arms of the type [NP(mPEG350)
(GlyPheLeuAspEt2)]3 have been used to prepare very stable micelles due to their ability to
self-assemble, where the hydrophobic blocks of the copolymers form the core of the micelle
and the hydrophobic block the coronas or outer shell of the micelle [167]. These micelles,
used as new drug systems, offer many advantages: they have a very low critical micelle
concentration (about 0.1 mg/L), are thermoresponsive, biodegradable, and allow high
solubilization of hydrophobic drugs. Furthermore, the trimer backbone is monodispersed,
thus showing control of the molecular weight, and the variety of functionalization allows a
design for specific drugs. Some preliminary intriguing results have been reported [168].

Microspheres based on cyclophosphazenes have also been proposed as ibuprofen [169]
and antibiotic (trimethoprime) carriers and their controlled release (Figure 15) [170].
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Microspheres for application in periodontal disease and implant surgery have been
prepared by dissolving succinylsulfathiazole or naproxen and a polyphosphazene-bearing
phenylalanine ethyl ester and imidazole as side groups. In vivo release studies and surgical
trials (on male rabbits) have been carried out observing no signs of inflammation, but no
reparative bone or osteoid tissue was found [81].

3.1.5. Nanoparticles

An intriguing aspect of this biochemistry is represented by the hydrodynamic diam-
eters of the nanoparticles: if higher than 200 nm, they are considerably bigger than the
renal filtration clearance limit (about 5.5 nm), thus leading to a long circulation time in the
bloodstream; if they are of smaller size than 400 nm, their possible retention in the vascular
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regions after intravenous administration in close contact to tumor sites can be achieved [155].
Nanoparticles (NPs) of poly[(ethylamino benzoate)(ethylglycinate)]phosphazene have been
prepared and loaded with camptothecin: the in vitro drug release behaviors were studied
at a pH of 7.4 and 5.6. The ability of the nanoparticles to interact with the hydrophobic
drug has been explained by a π–π interaction between the aromatic ring of camptothecin
and the polymer, modulating the drug loading and release depending on the benzoate
amount along the polymeric chain (Figure 16) [155].
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Nanohybrid systems based on gold-poly(carboxyphenoxy)phosphazene have been
prepared and investigated as a stimuli-responsive drug delivery of AuNPs: it was observed
that the drug loss is low at a neutral pH, whereas rapid drug release was noticed after the
internalization of nanoparticles by the cancer cells. Recently, the designed preparation of
polymer-functionalized AuNPs has attracted increasing interest either for improving the
stability of NPs or to tailor the chemical/physical/surface properties of NPs [108,171].

Poly[bis(carboxy phenoxy)phosphazenes] nanohybrid systems exhibited excellent
dispersity and stability, reducing the loss of drugs in normal tissues with an efficient inter-
nalization of AuNPs into tested cells (MDA-MB-231) with a strong cytotoxic effect through
the induction of apoptosis. Moreover, pH- and thermoresponsive-NPs composed via
choli acid poly(biscarboxyphenyl)phosphazene-polylactic acid have been reported which
showed reversible gelation behavior in the temperature range 20–37 ◦C and a drug-release
capability at an acidic pH due to the pH-responsive quenching effect of the hybrid polymer.
The release of paclitaxel was observed over 12 days. It is noted that the drug release from
the NPs was effectively controlled by the mechanical strength of the polymer [165]. Multi-
layered NPs have been prepared by poly[di(sodium carboxyphenoxy)phosphazene] and
poly(diallyldimethyl ammonium chloride) deposited on the CaCO3 nanoparticles’ surface
of a diameter of 237 nm, exhibiting a high-drug-loading content with enhanced cellular
uptake. Under acidic conditions, the multilayer structure controls burst release, providing
sustained drug release for a long period. Chrysin (an angiogenesis-inhibitor-activating ROS
species) and cisplatin have been incorporated and have been tested against oral carcinoma
cells, observing a 92% regression volume as compared to cisplatin alone loaded in the same
nanoparticle. The work provided a simple method to formulate multiple drugs in single
nanosystems [172]. Nanocarriers with sizes ranging from 200 to 240 nm have been prepared
by dissolving POPs substituted with 2-propoxy, 4-acetamidophenoxy, 4-formylphenoxy,
or 4-ethoxycarbonylanilino arms in dichloromethane together with the antimalarial drugs
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primaquine and Dihydroartemisinin (Figure 17) by emulsioning in the presence of a sur-
factant under mechanical stirring. In vivo (mice) antimalarial efficacy was tested: it was
shown that nanoparticle formulations were effective in eradicating completely the parasites
after 14 days, but at a lower dose than standard drug combinations [173].
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3.1.6. Nanofibers

Electrospinning methodology has been reported to prepare nanofibers, membranes,
and scaffolds in view of different applications [36,174]. A core sheath nanofiber mem-
brane with poly[bis(p-methylphenoxy)phosphazene] and polyacrylonitrile has been pre-
pared and studied for enzyme (lipase) immobilization [175]. Coelectrospun composite
nanofibers (with a diameter ranging from 240 to 430 nm) of blends of poly[(amino acid
ester)phosphazene] (alanino ethyl and glycinoethyl) and gelatin have been studied as
scaffolds for cells adhesion and growth [176]. Eletrospun fibers have been prepared using
polyphosphazene bearing l-proline methyl ester and 4-hydroxy-l-proline methyl ester as
side arms to achieve a new bioactive material for bone repair. The biomimetic mineraliza-
tion was tested on the fibers and on the bulk polymer, observing in both cases bioactivity
with the formation of an abundant calcium phosphate layer after 24 h and the adhesion of
calcium phosphate crystals to the fiber mimicking the hydroxyapatite growth in collagen
fibers [177]. Poly[(ethyl alanato)(p-methyl-phenoxy)phosphazene] has been used to modify
the surface of the electrospun fibers of poly(ε-caprolactame) for tendon tissue engineer-
ing, to improve the hydrophobicity of the matrix, and to enhance the protein synthesis
by seeded Human Mesenchymal Cells (hMSCs). The work demonstrated the enhanced
cellular response with cell adhesion and long-term cell infiltration through the matrices
with the phosphazene-modified surface [178].

3.2. Phosphazenes as Immunoadjuvants

Some reviews on polymeric genomics stimulated the investigation on the role of
polymers in the induction of specifically genetically controlled responses to antigens, fo-
cusing on the cooperative interactions of polymers with plasma cell membranes and the
trafficking of polymers to intracellular organelles [179]. In this frame, POPs can exploit
a significant role to investigate a possible structure–activity relationship with the aim
to design suitable controlled supramolecular assemblies, forming nanospheres or micro-
spheres [15,180]. Thanks to chemical versatility, POPs have been proposed as immune
adjuvants, having a flexible backbone, hydrophobic spacers, a high molecule weight, and a
partially dissociated ionic group of molecules able to form water-soluble complexes with
many biological targets, including proteins, which are essential for their immunostimulat-
ing activity through a long-lasting immune response with high-antibody titers [181,182].
The immune adjuvant polymers must be water soluble and usually contain carboxylic acid
groups. Poly[di(carboxylatophenoxy)phosphazene] can form noncovalent interactions with
protein antigens and demonstrate activity in animal and human clinical trials. Examples are
the complexation with group-specific antigen (Gag antigen), for which the presence of the
polymer induced the maintenance of the immunostimulation and facilitated the effective
delivery of the antigen to the target cells [183]. Combination with H5N1 influenza vaccine,
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of which thermal stability resulted enhanced in solution, provided for a dose-sparing effect
in vivo [184].

Polyphosphazene adjuvant technology evolves through the discovery of new and more
potent derivatives and the investigation of alternative delivery routes, such as mucosal and
intradermal. It was reported that formulations based on poly[(sodium carboxylate ethyl
phenoxy)phosphazene] containing different doses of the influenza X-31 antigen or bovine
serum albumin were shown in mice to enhance the antibody responses up to 1000-fold.
Even if the detailed immunological mechanism deserves further investigation, some em-
pirical evidence has shown to have a relevant role: the molecular weight of POPs linked
to complex stability, the degree of complex compaction linked to antigen presentation
and antigen loading, together with the ability of the antigen–POP complexes to adsorb on
the cell surface, stimulating intracellular ionic fluxes. Some results of clinical trials have
been published. A phase I clinical study on the A/Johannesburg/33/94(H3N2) strain
with a 500 µg dose of poly[di(carboxylatophenoxy)phosphazene] showed to be very effi-
cient. The adjuvanted vaccine produced a 14.7-fold increase in antibody titers compared to
a 3.1-fold increase for the nonadjuvanted one, with no serious adverse events [185]. The
role of the POPs was also investigated in clinical trials with 100 mg of oligomeric HW-1
Gp 160 mm/LAI-2-vaccine in HIV-seronegative volunteers, observing a higher immuniza-
tion without serious adverse vaccine-related events [186].

Intradermal administration of the vaccine is an intriguing objective, as the skin acts
as a natural barrier against infections and has a high density of dendritic cells (such
as Langerhans cells) whose formation is to recognize foreign pathogens. To overcome
the stratum corneum barrier and increase skin permeability, different approaches have
been explored:

(i) The use of microneedles, submillimeter structures capable of penetrating the stratum
corneum and releasing the vaccine in the appropriate skin compartment: hollow mi-
croneedles which allow infusion of liquids formulation into the skin or microneedles
with solid state vaccine formulation [15,187];

(ii) Nanoscale constructs [188], as in the case of the spontaneous self-assembly of Re-
siquimod with a water-soluble poly[di(carboxylatophenoxy)phosphazene] forming
an ionically paired system and a ternary one, including the Hepatitis C virus antigen.
It was demonstrated that the supramolecular assembly enabled high immunostim-
ulation in cellular assays (mouse macrophage reporter cell line) and in vitro hemo-
compatibility (human erythrocytes). Moreover, in vivo studies gave quite promising
results (Scheme 11) [189].
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The adjuvant platform based on water-soluble poly[di(sodiumcarboxylatoethylphenoxy)
phosphazene] for the needle-free intradermal subunit vaccine, the Bovine Viral Diarrhea
Virus (BVDV) type-2 E2 protein/TriAdj against bovine viral diarrhea virus, which is
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one of the most serious pathogens in cattle, has been developed. It was observed that
the intradermal vaccine induced robust humoral and cell-mediated immune responses
equivalent to the 1M delivery, indicating that the intradermal route is very suitable and
practical for vaccination in cattle, being less painful and with the possibility to reduce the
antigen dose [190]. A similar strategy has been proposed for intradermal immunization
with inactivated Suine Influenza Virus (SIV) H1N1 coadministrated with poly[di(sodium
carboxylatoethylphenoxy)phosphazene]. A stimulated significant anti-SIV antibody titer,
an increment of neutralizing antibodies, and a significant reduction of lung virus load with
the limited reduction of gross lung lesions after a challenge with virulent SIV-H1N1 relative
to control animals was observed [191,192].

Cancer immunotherapy is one of the most attractive innovative approaches, having
identified some specific tumor antigens. TSA/TAA soluble proteins must be presented by
antigen-presenting cells (APCs) but are generally weak in immunogenicity, thus requir-
ing a delivery vehicle that can improve cellular uptake, reducing the elimination from
circulation. Various nanosystems have been used for protein delivery, such as liposomes,
nanogels, micelles, and solid nanoparticles, even if some problems still remain in their
application, such as poor loading due to high water solubility and the big bulk size of
proteins. Polymersomes containing an aqueous interior could offer protein high-loading
but it is more stable than liposomes: polymers responsive to various stimulations (pH,
temperature, redox conditions, light) must be used to form polymersomes. Once these
stimuli have been applied, they will provide the disintegration of polymersomes or the
“breathing” vesicles with enhanced permeability to release small drugs, even if they have
been rarely reported for antigen delivery [193–195]. POPs with N,N-diisopropylethylene
diamine as hydrophobic side groups and water-soluble polyethylene glycol have been
used to achieve polymersomes to deliver ovalbumin, a model antigen for immunological
studies [196].

Human respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV3) are
major causes of serious lower respiratory tract disease in infants: currently, no licensed
vaccines against RSV and PIV3 are known. Mice, cotton rats, and hamsters were immu-
nized intramuscularly with a formulated chimeric glycoprotein based on poly[di(sodium
carboxylatoethoxyphenoxy)phosphazene], thus representing a safe, effective, potential
bivalent vaccine against both RSV and PIV3 [197].

Recently, poly[di(carboxylatomethylphenoxy)phosphazene] and poly[di(carboxylatoethy-
lphenoxy)phosphazene] have been proposed as immunoadjuvants for in vivo experiments
with human papillomavirus-like particles based on the RG1-VLPs vaccine. Stabilization of
the antigenic particles was observed and immunization in mice demonstrated increased
immune responses (Scheme 12) [198,199].

The multifunctionality of polyphosphazenes has also been exploited in the preparation
of layered liposomes based on poly[di(carboxyphenoxy)phosphazene] functionalized with
arginine able to encapsulate rifampicin and isoniazid drugs against tuberculosis, observing
a controlled intracellular release and an immunomodulation effect with the activation of
macrophages (Figure 18) [200].

3.3. Phosphazenes in Tissue Engineering

One of the most intriguing applications of polyphosphazenes materials is represented
by tissue engineering as scaffolding materials. Materials resembling natural bone must
display inductive effects in stimulating bone repair. Biodegradable polyphosphazenes
have demonstrated advantages over polyesters in inducing bone regeneration due to the
PN backbone and the organic side groups designed to confer the physicochemical and
biological properties of the resulting materials. It was shown that the osteogenic differ-
entiation of osteoblasts and bone mesenchymal stromal cells is significantly enhanced on
polyphosphazenes both in vivo and in vitro in comparison with biodegradable polyesters.
Polyphosphazenes with hydrolytically labile side groups (i.e., glycolyl, glycerol, imidazolyl,
glycolide, and amino acids) can be used as biomaterials in both tissue engineering and drug
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delivery, with degradation rates dependent on the combination of the side groups [201].
Amino-acid-ester-substituted polyphosphazenes can hydrolyze into nontoxic compounds
such as amino acids, phosphate, and ammonium ions. Polyphosphazenes bearing smaller
amino acids such as glycine or alanine are mechanically soft and fast degrading, while
bulkier groups such as lysine result in slow degrading. Cosubstituted polyphosphazenes
were developed to achieve polymers with designed and tunable mechanical and degrada-
tion properties [88]. The additional properties exhibited by these materials, such as the glass
transition temperature in a large range (from −40 to +42 ◦C), the tensile modulus from 30
to 450 GPa, and the lower surface energy, render polyphosphazenes versatile materials
for tissue engineering applications. Furthermore, biodegradable polyphosphazenes have
been processed into different porous scaffolds via salt leaching, microsphere sintering, and
electrospinning, or blended with other biodegradable polymers such as poly(lactic acid-
gluconic acid) [202].
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3.3.1. Bone Tissue Engineering

Polyphosphazenes are good choices for the objective of developing multifunctional
materials with antibacterial and antioxidant activity, electroactivity, and osteoinductivity
for the efficient regeneration of infected bone defects, owing to the chemical flexibility
and biodegradable alternate phosphorus and nitrogen atoms backbone, which can be
easily functionalized with amino acid esters, giving rise to biocompatible materials for
in vivo implementation with the inherent capacity to provide osteogenesis. Among all the
biodegradable polymers developed for bone regeneration, polyphosphazene is especially
worth mentioning, as it is easily modified and tailored to the physicochemical properties of
bone regeneration.

Bone tissue consists of mineral, collagen, and noncollagenous proteins, where hydrox-
yapatite [Ca10(PO4)6(OH)2] represents about 70% by weight. Phosphazene–hydroxyapatite
composites (Figure 19) have been produced via a reaction of calcium phosphates with
poly[(ethyloxybenzoate)phosphazene], poly[(propyloxybenzoate)]phosphazene, and
poly[bis(sodium or potassium carboxylatophenoxy)phosphazene] [203–205], whose chem-
ical, physical, and morphological properties have been investigated to match the struc-
ture of bone and to propose these materials as bone cement. Polyphosphazene/nano-
hydroxyapatite composite microspheres have been reported which showed good osteoblast
cell adhesion.
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Different strategies have been explored within the time to achieve the most suitable
polyphosphazene system for bone regeneration (Figure 20).
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The first generation of biodegradable polyphosphazenes was designed with an im-
idazole side group (a biocompatible group able to confer hydrolytic instability to the
backbone and nontoxic degradation products): they showed significant enhancement in
alkaline phosphate activity when compared to poly(lactic-acid-co-glycolic-acid)(PLAGA),
but a decrease of cell attachment and growth with the increase in the content of imida-
zolyl groups [206]. Histological studies demonstrated that poly[(50% p-methylphenoxy)-
(50% ethylglycinato)phosphazene] and poly[bis(ethylglycinato)phosphazene] appeared to
support bone growth to a comparable extent to the control PLAGA [207]. The second gen-
eration amino-acid-ester-containing polyphosphazenes were developed to achieve a higher
biocompatibility. An increase in the content of the ethyl glycinate groups favored increased
cell attachment and growth, with a controlled degradation rate depending on the hydropho-
bic and steric hindrance side groups [208]. Some inflammatory responses for the PLAGA
materials used for bone regeneration and the unexpected structure failure have been
observed and partially solved by blends with polyphosphazenes. Poly[(glycineethylester-
co-alanine ethyl)phosphazene] gave honeycomb-patterned films with enhanced protein
adsorption and apatite deposition in simulated body fluid and showed great advantages
in promoting osteogeneous differentiation [209]. It was demonstrated that the nature
and the ratio of the pendent groups bonded to the P=N backbone play a relevant role in
determining the mechanical properties of the resulting polymers and the cell adhesion
(Figure 21) [210]. The third generation of dipeptide-substituted polyphosphazenes was
developed to achieve more miscible blends with poly(lactic acid-glycolic acid), PLAGA, by
substituting the ethylglycinate side groups with glycylglycine ethyl ester side groups, thus
achieving PLAGA blends with intermolecular H-bonds. It was observed that this material
was self-assembled into interconnected microspheres (Figure 22) [211].

To improve the osteoblast activity, choline chloride and glycine, alanine, valine, and
phenylalanine ethyl ester were bonded to the P=N backbone in cyclic trimers and polymer
phosphazenes were blended with PLAGA, achieving materials with osteoblast proliferation
with high osteoblast phenotype expression (Figure 22 and Scheme 13) [212,213]. Injectable
hydrogels based on polyphosphazenes able to promote osteogenesis were also prepared
for a bone regeneration effect by bone morphogenetic protein-2 release [214] and sys-
tems bearing l-isoleucineethylesters, α-amino-ω-methoxy PEG750, and 4-(2-aminoethoxy)4-
oxobutanoic acid as side-chains were tested on three young male beagle dogs with mandibu-
lar defects to induce bone augmentation in the alveolar bone for the successful placement
of dental implants. Twelve weeks after the treatment, significant bone generation occurred
with high-osseointegration levels [215].
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A key point to understand the role of phosphazenes in bone tissue engineering is
the mechanism of stimulation of osteogenesis and osteogenic differentiation. Compara-
tive cell (mesenchymal stromal cells) culture experiments were performed by culturing
on poly(ethylalanate)0.3(ethylglycinate)0.7]phosphazenes and poly[(ethylphenylalanate)0.3
(ethylglycinate)0.7]phosphazenes by adding quantitative inorganic phosphate as polyphos-
phazene degradation products into trans good chambers. The results revealed that both
the films and the degradation products play a significant role in regulating cell behaviors,
with poly[phenylglycinate]phosphazene (PPGP) films able to give great promotion in
osteogenic differentiation via the contact effect [216], likely due to the slower degradation
rate (Scheme 14).
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A further aspect to consider for designing bone tissue engineering materials is to
imitate the composition, morphology, and physiological characteristics of natural bone
tissue, including sensitivity to electrical stimulation, originated by the structural arrange-
ment of collagen fibers and hydroxyapatite nanocrystals. This feature suggested the use of
electrical stimulation to accelerate bone regeneration and some intriguing and promising
results upon seeding mesenchymal stromal cells on polymeric conductive substrates on
polypyrrole and polyaniline [217–219] and in conductive composites based on polylac-
tic acid incorporating carbon nanotubes [220]. Carbon nanotubes (CNT) have also been
dispersed in solutions of alanine ethyl ester and glycine ethyl ester cosubstituted poly-
organophosphazenes, thus preparing conductive composite films on which assays on
cell attachment, proliferation, and differentiation were conducted. It was observed that
appropriate electrostimulation (1.5 V, 2 h per day) improved the increment in the expres-
sion of osteogenic markers as alkaline phosphatase. Collagen I and calcium deposition
occurred, likely due to the higher amounts of ions attracted together with the activation of
voltage-gated Ca2+ channels on cell membranes, thus increasing the level of intracellular
Ca2+ and thus promoting osteogenesis [221]. A biocompatible composite able to induce
cell proliferation and osteoblastic differentiation has been achieved by the hydrothermal
crosslinking of water-soluble phosphazene containing hydroxy groups and Ti(OBu)4, as
seen in Scheme 15 [222].
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New porous scaffolds based on polyphosphazene bearing dimethyalminoethane/calcium
phosphate containing chitosan microspheres showed a very good osteogenic potential of
cells, thus suggesting that they can be successfully utilized in bone tissue engineering [223].
Scaffold materials based on electrospun polydopamine-modified polyphosphazene have
been reported to exhibit a higher osteocompatibility than aliphatic polyesters, with signifi-
cant enhancement in MC3T3-E1 cell attachment and proliferation [224].

Also in vivo, tests have been carried out by using glycylglycine ethyl-ester-substituted
polyphosphazene and poly(lactic-co-glycolic acid)blends in a rabbit critical-sized bone
defect model. Based on radiological and histological analyses, bone regeneration and
a mild inflammatory response were observed, proving these materials to be viable for
matrix-based bone regenerative engineering [225].

A recent improvement in this topic is the preparation of AgNPs loaded with poly[(aniline
tetramer)(ethyl glycyl)]phosphazene, followed by polydopamine (PDA) modification,
forming PATGP@PDA+Ag microspheres, which demonstrated strong antibacterial activity
against S. aureus and the most abundant neobone formation after coimplantation of these
microspheres with S. aureus into rat calvarian defects. The data revealed that AgNP-loaded
scaffolds made of conductive polyphosphazene were promising for the regeneration of
infected bone defects [226].

3.3.2. Polyphosphazenes in Nerve and Cardiac Tissue Engineering

The ability of polyphosphazenes to yield materials able to promote cell adhesion,
proliferation, and differentiation, depending on the nature of the substituents bonded
to the P=N backbone, allowed us to design systems suitable for restoring or replacing
damaged tissues [227]. Electrospun nanofibers (0.1–2.3 µm diameter) based on poly[(ethyl
phenylalanato)1.4(ethylglycinato)0.6phosphazene] have been prepared and characterized.
The degree of the endothelial cell proliferation after 4 days on the scaffolds prepared with
these fibers was higher than that on the polystyrene tissue-culture plates [228]. Three-
dimensional porous scaffolds for tissue regeneration with tuneable degradability and mor-
phology have been also prepared through the photopolymerization of glycine-substituted
polyphosphazenes bearing thiol moieties. Adipose-derived stem cells, with high potential
for tissue engineering, have been successfully tested both for adhesion and prolifera-
tion [229].

Electrospun polycaprolactone nanofiber (400–4000 nm diameter) matrices function-
alized with poly[(ethyl alanato(p-methyl phenoxy)phosphazene] have been reported to
improve adhesion, proliferation, and differentiation of osteogenic and chondrogenic cell
lines BMP-2 and BMP-7, respectively, in a higher extent with respect nonfunctionalized
polycaprolactone, thus being promising materials for tendon/tear repair [230]. Amino-acid-
ester-substituted POPs have been studied and considered good candidates for ligament
and tendon engineering due to the tendency to form films, a tuneable hydrolysis rate, and
designed mechanical properties depending on the steric hindrance of amino acid esters
and the presence of UV-curable citronellol [231].

Tubular matrices of poly[bis(ethylalanato)phosphazene] have been tested as guides
for nerve regeneration [232]. The insertion on the P=N backbone of electroactive moieties
suggested the possibility to design suitable POPs for nerve tissue engineering [233].

The fibers of poly[bis(ethylalanato)] and poly[(ethylphenylalanato)0.8(ethylalanato)0.8
(ethyl glycinato)0.4phosphazene] have been shown to possess high cell adhesion and
proliferation: their capacity to improve rat neuromicrovascular endothelial cell growth has
been tested [234].

Fluoroalkoxy-substituted polyphosphazenes have been prepared and their elastomeric,
hydrophobic, and antimicrobial properties have been explored for a possible application in
cardiac tissue engineering [235].
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3.4. Other Biomedical Applications

Polyphosphazenes bearing octafluoropentoxy chains blended with polyurethane or
crosslinked gave textured films which showed the inhibition of adhesion and biofilm forma-
tion [236], thus representing a good biomaterial to prevent pathogenic infections and thrombo-
sis in the application of blood-contacting medicinal devices [237–239]. Poly[bis(trifluoroethoxy)
phosphazene nanocoated-stainless-steel stents were implanted in the renal and iliac arteries
of minipigs. Reduced stent stenosis and lower inflammation response have been observed
(Scheme 16) [240].
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Nontoxic, superhydrophobic hybrid nanowires composed of poly[bis(2,2,2-trifluoroe-
thoxy)phosphazene]-Al2O3 (PTFEP/Al2O3) have been reported to show a topographic
feature with a dual-scale roughness (micro and nano), forming a stable air cushion able
to reduce the contact area between the surface and blood in contact below the liquid. A
study is in progress to achieve 3D geometries for new coatings for cardiovascular devices
(Scheme 17) [241,242].
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113. Asmafiliz, N.; Berberoğlu, İ.; Özgür, M.; Kılıç, Z.; Kayalak, H.; Açık, L.; Türk, M.; Hökelek, T. Phosphorus-Nitrogen Compounds:
Part 46. The Reactions of N3P3Cl6 with Bidentate and Monodentate Ligands: The Syntheses, Structural Characterizations,
Antimicrobial and Cytotoxic Activities, and DNA Interactions of (N/N)Spirocyclotriphosphazenes with 4-Chlorobenzyl Pendant
Arm. Inorg. Chim. Acta 2019, 495, 118949. [CrossRef]
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