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Abstract: Essential oils (EOs) obtained from the Citrus genus were reported to exhibit good antimi-
crobial activity. Therefore, they can potentially be applied in daily necessities such as textile sectors as
antibacterial functional fabric products. However, a packaging technique to retain such volatile and
labile active substances is compulsory. In particular, microencapsulation was found to be a common
coating technique employed to protect EOs from the effects of light, heat, humidity, stability, and
controlled release of active substances. Various microencapsulation techniques have been introduced,
but the most widely used method is complex coacervation, as it is simple, inexpensive, and capable
of snaring high essential oils. Hence, this review focused on the microencapsulation of the most
consumable citrus EOs with complex coacervation methods and their immobilization on commonly
carried-out fabrics. In addition, it also discusses the isolation methods of the EOs, their chemical
composition, and the mechanism of antibacterial action.

Keywords: microcapsules; essential oils; antibacterial; Citrus genus; immobilization

1. Introduction

Citrus is a genus of the Family Rutaceae [1], consisting of 16 species with many vari-
eties [2,3]. The citrus, known as one of the world’s main fruits produced in several countries
with tropical or subtropical climates, is a polyembryonic species cultivated throughout the
world, mostly in subtropical or hot tropical areas [4]. Countries such as Brazil, the United
States, Japan, China, Mexico, Pakistan, and the Mediterranean are the primary producers
of citrus fruits [5]. On the other hand, as a native plant of tropical Asia, citrus is also widely
used to treat various diseases [6–8]. Therefore, it has important implications in the world
of trade and health sciences [9,10].

Various parts of the Citrus plant, such as leaves, fruit, seeds, flowers, rhizomes, bark,
and even all plant parts, produce Essential Oils (EOs). However, most of them are obtained
from the peel of the fruit with a pungent taste and smell good according to their original
plant [11,12]. The EOs are obtained either using various conventional techniques such
as cold pressing, solvent extraction, hydrodistillation, or non-conventional methods such
as Supercritical Fluid Extraction (SFE), Microwave-Assisted Hydrodistillation (MAHD),
and Ultrasound-assisted extraction (UAE) with their advantages and disadvantages. EOs
are a complex natural mixture containing about 20–60 chemical components at very dif-
ferent concentrations. Two or three main components characterize EOs at relatively high
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concentrations (20–70%) compared to others. The main group consists of terpenes, ter-
penoids, and other aromatic and aliphatic constituents, characterized by a low molecular
weight [11]. The main component of this Citrus genus is δ-limonene, followed by β-pinene,
α-terpineol, and other components that vary qualitatively and quantitatively. Generally,
these significant components determine the biological properties of the EOs.

Citrus oil has an extensive industrial profile in beverages, household products, cos-
metics, fragrances, pharmaceuticals, and others [4,9,13,14]. In addition, citrus EOs have
attracted much interest from scientists because they have various bioactivities, i.e., antimy-
cotic, antiviral, antioxygenic, antiparasitic, antimicrobial, anti-inflammatory, antiseptic,
antidepressant, tonic, carminative, antispasmodic, diuretic, and insecticide [9,15–18].

The utilization of bioactivity is constrained by the instability and volatile nature of
EOs. Therefore, suitable packaging technologies such as microencapsulation are required
to cover their weaknesses by protecting the active ingredient with a coating. Several
microencapsulation methods have been introduced, including physical methods such as
spray drying, lyophilization, supercritical fluid precipitation, and solvent evaporation;
physicochemical methods include coacervation and ionic gelation; and chemical methods
include interfacial polymerization and molecular inclusion complexation [19–22]. In the
textile field, EOs encapsulation is used for functional fabric applications, i.e., antibacterial,
fragrance, mosquito repellent, aromatherapy [23–25], anti-UV [26], phase-change material,
flame-retardant, and cosmetotextile [27,28].

The development of encapsulation technology increased tremendously in the last
decade to stabilize an applicable biomolecule, in particular for antimicrobial functional
fabric. The necessity is relevant to the willingness of human beings to have a healthy and
comfortable living environment [23,29,30]. The availability of antimicrobial functional
fabric used for daily life, such as for cloths, bed sheets, underwear, or for medical purposes,
such as a mask or a wound plaster, are expected [31]. Thereby, the discovery of a highly
antimicrobial agent that remains stable in an applied environment is required [32]. Out of
16 species of citrus, there were only four (Citrus aurantifolia (C. aurantifolia), Citrus nobilis
(C. nobilis), Citrus sinensis (C. sinensis), and Citrus limon (C. limon)) that have been exploited
extensively for their EOs for an antibacterial cosmetotextile application in the form of
microcapsules. Therefore, the review focus was based on those four citrus species.

2. Potential of Citrus EOs as Antimicrobial Agents

Citrus fruit is in great demand because of its distinctive, refreshing, and high nutri-
tional value [33]. In addition, its peel is a source of EOs, which are formed from one of the
metabolic processes resulting in plants. The reaction of various chemical compounds and
water has physiological effects, one of which is antibacterial activity [17,34].

Antibacterial activity is interesting because bacterial infections in humans involving
mucosal surfaces and skin are a big problem, specifically in developing countries with
tropical and subtropical climates. Microorganisms often found on the skin include Staphy-
lococcus aureus (S. aureus), Escherichia coli (E. coli), Klebsiella pneumonia (K. pneumonia), and
Staphylococcus epidermidis (S. epidermidis) [35]. Citrus oil’s antimicrobial activity was ex-
ploited against medically important pathogens that occur in various infections [7]. The
characteristics obtained are related to the function in plants of these compounds [16], which
include terpenoids, alcohols, esters, aldehydes, ethers, and ketones [15].

Jafari et al. [36] observed the antimicrobial properties of C. aurantifolia EOs against food-
borne bacteria isolated from cream-filled cakes and pastries. The cake was contaminated
with bacteria that were dominated by S. aureus and Bacillus subtilis (B. subtilis). The EOs of
C. aurantifolia were able to reduce the growth of these bacteria and the risk of poisoning for
those that consume contaminated food. Costa et al. [9] reported the chemical composition
of the C. aurantifolia EOs and their antimicrobial activity against Gram-positive bacteria B.
subtilis, Enterococcus durans (E. durans), Enterococcus hirae (E. hirae), Listeria monocytogenes (L.
monocytogenes), S. aureus, and S. epidermidis. Gram-negative bacteria include Enterobacter
cloacae (E. cloacae), E. coli, Pseudomonas aeruginosa (P. aeruginosa), Proteus mirabilis (P. mirabilis),
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Serratia marcescens (S. marcescens), and Salmonella typhi (S. typhi) [9]. The results showed
that EOs possess good antimicrobial activity, specifically against S. aureus, B. subtilis, and
S. epidermidis bacteria. The other study reported by Al-Aamri et al. [15] showed that
the antimicrobial activity of EOs of C. aurantifolia leaves was higher against S. aureus than
against E. coli. Torimiro et al. [8] found that the EOs of C. aurantifolia obtained from fruit peel
showed excellent antibacterial activity with a broad spectrum against multidrug-resistant
bacteria. Similarly, previous studies proved the antibacterial properties of encapsulated
EOs of C. aurantifolia and limonene, and EOs against Gram-positive bacteria such as S.
aureus and S. epidermidis and Gram-negative, which include E. coli and K. pneumonia [37].
Furthermore, a synergistic action was discovered, as evidenced by higher EOs activity than
their pure major compound of limonene, and antibacterial activity could be maintained in
the microcapsules [38–41].

Obidi et al. [7] observed the antimicrobial activity of C. sinensis EOs against Gram-
positive bacteria S. aureus, E. feacalis, Gram-negative bacteria P. aeruginosa, E. coli, and the
fungus Candida albicans (C. albicans). It was reported that the C. sinensis EOs exhibited good
antimicrobial properties and was applicable in treating a disease caused by microorganisms.
Atolani et al. [42] also reported that EOs seeds of C. sinensis had potential antimicrobial activity
for cosmeceutical production. Sharma et al. [43] stated that EOs of C. sinensis inhibited the
growth of Aspergillus niger (A. niger), while Li et al. [38] stated that Gram-positive organisms
appeared more susceptible to EOs of C. sinensis than Gram-negative organisms.

Himed et al. [44] investigated the antibacterial properties of EOs against nine bacteria,
two of which were Gram-positive Bacillus cereus (B. cereus) and S. aureus, and seven of
which were Gram-negative: E. coli P. aeruginosa, Salmonella enterica (S. enterica), K. pneu-
moniae, Enterobacter aerogenes (E. aerogenes), Serratia marescens (S. marescens), and Proteus
mirabilis (P. mirabilis). The EOs of C. limon showed an antimicrobial effect against all tested
microorganisms. Furthermore, Hou et al. [45] stated that EOs from Citrus reticulate (C. retic-
ulate) peel were a perfect antibacterial against Cutibacterium acnes (C. acnes) and common
microorganisms such as S. aureus, B. subtilis, and E. coli. Antimicrobial activity against
the same bacteria was reported by Değirmenci & Erkurt [46] as one of the EOs from the
C. aurantium flower. Dănilă et al. [47] reported that a mixture of EOs containing terpene
alcohol (such as linalool) and δ-limonene could be an effective alternative to antibiotics
to treat an S. epidermidis infection. Other constituents, such as terpinene-4-ol, α-terpineol,
linalyl acetate, neryl acetate, geranyl acetate, and α-pinene were amplified in the presence
of limonene (or vice versa). Inhibition of S. aureus bacteria by EOs from C. lemon leaf was
also reported by Fancello et al. [48]. The reported EOs activities are shown in Figure 1.
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The numerous reports on EOs activity from the Citrus genus showed that they could
potentially be used as antimicrobial agents in the cosmetic textile field. Furthermore, the
development of textiles with microcapsules aimed to provide new properties of fabrics
with added value. Cosmetotextile is a skincare system that combines cosmetics and tex-
tiles through microencapsulation. This textile has cosmetic ingredients inserted into the
fabric fibers [23,49], such as aromatic/fragrance textile, cosmetic/dermal functional textile,
insect/mosquito-repellent textile, and medical/antimicrobial/antibacterial textiles [23]. Shi
& Xin [49] stated that cosmetic textiles act as moisturizing agents, whiteners, fragrances,
antioxidants, antimicrobials, energizers and refreshers, and absorbents of sunlight. When
the users perform daily activities, the dense microcapsules in the textile material will be
released slowly and provide benefits to the body and skin.

3. Isolation of the EOs

EOs isolation was conducted using the following conventional and non-conventional
methods. Conventional methods include Cold Pressing, Solvent Extraction, Soxhlet Extrac-
tion, and Hydrodistillation, while nonconventional methods include Supercritical Fluid
Extraction (SFE), Microwave-Assisted Hydrodistillation (MAHD), Solvent-Free Microwave
Extraction (SFME), Microwave Hydrodiffusion and Gravity (MHG) [50,51]. For EOs prepa-
ration, the most widely used method is hydrodistillation. Based on Table 1, 13 of 15 Citrus
samples use the hydrodistillation method for EOs isolation, while the others use MAHD
and SFME. The EOs isolation methods are shown in Figure 2.
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4. Chemical Composition of the Citrus EOs

EOs of the Citrus genus consist primarily of mono- and sesquiterpene hydrocarbons
and their oxygenated derivatives, such as alcohols, aldehydes, esters, ethers, and oxides,
as well as linear hydrocarbons, alcohols, aldehydes, esters, acids, phenolic compounds,
and their derivatives [11]. Terpenoid groups such as monoterpenes, sesquiterpenes, and
oxygenated terpene derivatives are EO’s largest group of chemical compounds [52]. The
amount of these oxygenated compounds affect the quality of EOs. However, the amount of
oxygenated compounds in oil varies and depends on several factors, such as geographic
location, climate, species, maturity level, and extraction method [53]. The most important
factors are plant genetics and several environmental stress factors (light, moisture content,
attack by predators, and pests) [52]. Terpene hydrocarbons do not contribute much to EOs
smells because this group of compounds is unstable under heat and light. On the other
hand, oxygenated terpenes, mainly consisting of alcohols, aldehydes, and ketones, give
a strong taste as a characteristic of EOs [54].

These volatile compounds have different ecological functions, including acting as
internal messengers, protecting from herbivorous disturbances, and pollinating insect



Molecules 2022, 27, 8090 5 of 18

attractors [55]. In addition, the composition of volatile compounds is the basis for the citrus
aroma [56]. The composition of compounds contained in Citrus peel EOs are δ-limonene,
β-pinene, α-terpineol, terpinene-4-ol, citronellal, o-cymene, geraniol, β-mirsen, geranyl
acetate, β-phellandrene, and citral [4,57–59]. The chemical compositions of the five Citrus
species are shown in Table 1.

Table 1 shows a summary of the chemical compositions of four Citrus species, such as
C. aurantifolia, C. nobilis, C. sinensis, and C. limon, with each of the three different recollection
places. The plant parts taken were the fruit peel. The methods used most are the hy-
drodistillation [44,60–64], microwave-assisted hydrodistillation (MAHD) [65], solvent-free
microwave extraction (SFME), and microwave-assisted hydrodistillation (MAHD) [66].
GC-MS analysis discovered 101 types of chemical components with varied compositions.
Differences in chemical components occur qualitatively and quantitatively, giving each
Citrus species a distinctive aroma and strength of activity. Various factors can affect these
concentrations, such as harvest time, geographic origin, and regional agro-climatic condi-
tions [38]. Almost all EOs have δ-limonene as the main component with a percentage range of
20–98%. The highest δ-limonene is found in the EOs of C. sinensis. Other components that are
common in these EOs of Citrus are β-pinene of 0.03–28.4%, β-myrcene of 0.9–4.0%, γ-terpinene
of 0.8–16.8%, α-terpineol of 0.1–8.3%, α-Pinene of 0.4–3.1%, terpinene-4-ol of 0.5–4.3%, and
Citronellal of 0.1–2.2%. The other components are in minor amounts and only present in a few
Citrus species. The chemical composition data in Table 1 prove that the same Citrus species
produce different chemical compositions when the recollection place is different.

Table 1. Terpenoid compounds make up EOs of several Citrus species.

No. Chemical Components
C. aurantifolia C. nobilis C. sinensis C. limon

[58] [15] [67] [58] [60] [61] [58] [62] [65] [58] [44] [63]

1. δ-Limonene 38.9 42.4 39.3 50.1 76.8 81.8 21.7 90.9 98.4 41.4 61.3 75.0

2. trans-Limonene oxide - - - - 0.3 - 0.01 - - 0.2 -

3. β-Myrcene 0.9 1.9 - 1.0 2.4 4.0 - 1.9 1.1 2.4 1.4 -

4. β-Pinene 26.7 12.6 28.4 3.7 0.8 - 15.4 - 0.03 14.2 9.7 -

5. α-Pinene - 3.1 1.5 - 1.1 2.1 0.8 - 0.4 - 1.5 -

6. α-Terpineol 8.3 1.6 2.4 4.1 - 0.2 5.4 0.1 - 1.7 0.4 -

7. 1-Terpinenol - 0.04 - - - - - - - - - -

8. 4-Terpineol - 0.4 - - - - - - - - - -

9. Terpinene-4-ol 4.3 - 2.0 1.5 0.7 0.5 1.8 - - - - -

10. Terpinolene - - - - 0.7 0.4 - 0.1 - - 0.2 -

11. α-Terpinene - 0.37 - - - - - - - - - -

12. γ-Terpinene - 15.4 0.8 - 8.2 6.1 - 1.2 - 16.8 3.8 -

13. Geranial - - 2.1 - - - - 0.1 - - - -

14. Geranyl acetate 2.6 0.6 0.6 - - 0.2 1.2 - - 1.7 - 0.3

15. Geraniol 1.3 0.6 7.5 0.8 - - - - - 1.3 - -

16. Citronellal - - - 2.2 - - 1.8 0.1 - - 0.3 -

17. β -Citronellal - 0.1 - - - - - - - - - -

18. Citronellol - - - 1.9 - - - - - - 0.6 -

20. Citral 3.6 - - 0.6 - - - - - 2.7 4.2 8.1

21. Z-Citral - 2.0 - - - - - - - - - -

22. E-Citral - 1.8 - - - - - - - - - 4.4

23. p-Cymene - - - - - - 1.4 - - - 0.1 -

24. β- Ocymene - 0.3 - - - - - - - - 0.1 -

25. o-Ocymene 1.9 1.3 - - - - - 0.3 - 2.3 - -

26. α-Phellandrene 0.9 0.1 - - - - - - - 1.4 - -
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Table 1. Cont.

No. Chemical Components
C. aurantifolia C. nobilis C. sinensis C. limon

[58] [15] [67] [58] [60] [61] [58] [62] [65] [58] [44] [63]

27. Neral - - 5.3 - - - - 0.1 - - - -

28. Nerol 0.9 - - - - - - - - - - -

29. Z-Nerodilol - - 0.6 - - - - - - - - -

30. Neryl acetate - 2.2 - - - - - 0.02 - - - 1.4

31. β-Bisabolen 1.0 - - - - - - - - 1.7 - 0.6

38. Linalool - 0.6 - - 0.3 0.9 - 0.9 - - 0.4 -

40. Linalool oxide - - - - - - - - - - - 0.4

41. Trans-linalool oxide - - - - - - - - - - - 0.4

43. 3-Carene - 0.5 0.5 - - - - 0.1 - - - -

44. Carvone - - - - - 0.3 - - - - - -

45. α-Farnesene - - - - 0.51 0.3 - - - - - -

46. (Z)-β-Farnesene - 0.1 0.4 - - - - - - - - -

47. (E)-β-Farnesene - - 1.5 - - - - - - - - -

48. α-Thujene - 1.0 - - 0.2 0.4 - - - - 0.2 -

49. Sabinene - 2.1 - - - 1.2 0.5 - 0.07 - - -

50. δ-elemene - 0.2 - - - - - - - - - -

51. β-Elemene - 0.3 - - - - - - - - - -

52. γ-Elemene - 0.1 - - 0.4 0.3 1.2 - - - - 2.2

53. Humulene - 0.1 0.1 - - - 1.2 - - - - -

54. trans-Carveol - - - 0.7 - - - - - - - -

63. Germacrene-B - 0.1 - - - - - - - - - -

64. Germacrene D - 0.2 - - - 0.1 - 0.1 - - - 0.2

67. Methyl chavicol - - - - 3.7 - - - - - - -

68. δ-Cadinene - - - - - 0.3 - - - - - -

70. Camphor - 0.01 - - - - - - - - - 0.26

71. Trans-carveol - - - - - - - - - - - 0.20

72. Camphene - 0.14 - - - - - - - - - -

73. Cis-Carveol - - - - - - - - - - - 0.20

77. α-caryophyllene - - - - - - - - - - - -

78. Trans-caryophyllene - 0.9 - - - - - - - - - -

79 Trans-α-bergamotene - 1.4 0.4 - - - - - - - - 0.4

81. Myristicin - - - - - - - - - - - 0.8

Isolation Method HD HD HD HD HD HD HD - MAHD HD HD HD

Recollection place (Country) IDN TWN MYS IDN TUR IRN IDN CHN VNM IDN DZA IDN

Most of the bioactivity from EOs is determined by one or more of its main components.
EOs of C. aurantifolia exhibit important antimicrobial activity against bacteria, specifically
Gram-positive and Candida sp. [9]. However, EOs activity sometimes cannot be attributed
to one of its main components but is a synergistic effect of several other chemical com-
pounds [67]. For example, Costa et al. [9] stated that limonene has antibacterial activity.
However, its antibacterial activity is lower than its antifungal activity. The presence of
linalool compounds can increase the antibacterial activity of limonene. The presence of
α-pinene, linalool, and β-pinene compounds in C. aurantifolia leaf EOs supports the syn-
ergistic performance of the limonene [15]. EOs activity of C. aurantifolia is higher than
limonene against Gram-positive S. aureus, S. epidermidis, and Gram-negative K. pneumoniae,
but in contrast, against E. coli [68].
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5. The Mechanism of Antimicrobial Action of the EOs

EOs act selectively on vital microbial functions with minimal or no effect on host
function. Different EOs act in different ways. The factors determining EOs activity are com-
position, functional groups in the active components, and their synergistic interactions [69].
An ideal antibacterial agent should have selective toxicity, meaning that a drug is harmful
to the parasite but not harmful to the host.

The antimicrobial action mechanism of EOs is explained using cell wall degradation
and disruption of the cytoplasmic membrane or membrane proteins, which causes cyto-
plasmic leakage, and cell lysis, and ultimately leads to cell death [38,69]. Furthermore,
Hu et al. [70] stated that the antibacterial mechanism of EOs occurs by disruption of the
membrane with low molecular weight and highly lipophilic components, which pass
quickly through cell membranes and cause interference with bacterial cells. EOs can also
significantly decrease ergosterol, a significant sterol component, and maintain cell function
and integrity [71].

The mechanism of bacterial inhibition by EOs was also presented by Salazar et al. [72]
and is suspected of damaging the cell membrane; hence, the cell experiences leakage
and changes in the morphology. Furthermore, the provision of these EOs can cause the
release of Ca2+ and K+ ions. The antimicrobial activity of EOs is due to the presence of
terpenoids. The aqueous phase is replaced by terpenoids, causing membrane expansion,
increased fluidity and permeability, protein disturbance, respiratory inhibition, and altered
ion transport processes. Due to the lipophilic nature of EOs, they interact by changing the
permeability of cell membranes in microorganisms, causing death [72,73]. The possible
antibacterial mechanism of EOs is shown in Figure 3.
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6. Complex Coacervation Methods

Several methods of bioactive agent encapsulation have been introduced, but choosing
the most appropriate method is not easy, because a variety of factors must be considered.
Jyothi et al. [74] and Martins et al. [75] also state that the method used for microencapsu-
lation of EOs depends on the source of the plant and the difference in characteristics of
each plant’s EOs causes the methods used to be different. Valle et al. [24] propose that
the selection of microencapsulation methods must pay attention to some of the following
factors: the nature of the core; the smoothing material of possible interactions that occur be-
tween the core, surfactant, and shell material; the size of the microcapsule; the mechanism
of transfer or release of the core to be achieved; toxicity; and economic factors.

Microencapsulation is a process that involves the formation of a thin layer arranged
from polymers [40]. This technology can package material in the form of solids, liquids,
or gases into small particles called microcapsules. Encapsulation of EOs in small capsules
can prevent oxidation usually triggered by moisture, metal ions, oxygen, and heat [76]. In
addition, encapsulation aims to increase the stability and soluble power of the material
and regulate the rate of release of active substances, thus contributing to the increase in the
shelf life of the product [77–79], immobilizing or limiting contact between certain parts of
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a system and protecting active compounds [79,80], preventing chemical reactions between
two active species, and modifying density, color, shape, or photosensitivity [81].

Table 2 is a summary of the results of research conducted by researchers for the
microencapsulation of EOs from several species of the genus Citrus using various mi-
croencapsulation methods. Some of them have immobilized the fabric for application into
a functional fabric. Campelo et al. [82], encapsulated LO using spray-drying methods and
evaluated the effect of different dextrose equivalent values on emulsion characteristics. The
results showed that maltodextrin with a higher dextrose-equivalent (DE) value had a lower
viscosity, resulting in a smaller droplet size. The bioactive compounds contained in LO can
maintain high antioxidant activity.

Table 2. Microencapsulation of essential oils of the genus Citrus and immobilization on textile
materials.

No.

Microencapsulation Immobilization

Activity Ref.Core
Material Shell Material Crosslinker Emulsifier Method Fabric Binder Method

1. Limonene
oil

Polyurethane-
urea

PEG 400,
EDTA

Hydrazine
Polyvinylalcohol Interfacial

polymerization
Wool/

polyester
Baypret

USV Foulard - [83]

2. Limonene
oil ethyl cellulose - - Simple

coacervation Cotton

1,2,3,4-
butanet-
etracarb-

oxylicacid
(BTCA)

grafting - [84]

3. Sweet
orange oil

Soybean protein
isolate-gum

Arabic
-

PEG 2000 PEG
4000

Maltodextrin
Sucrose

Complex
coacervation - - - - [85]

4. Sweet
orange oil

Chitosan-
sodium alginate CaCl2 - Complex

coacervation - - - - [86]

5. Lemon
fragrance - - - Commercial

microcapsules

60% wool,
38%

poly-ester,
and 2%

elastane.

polyacrylate Pad-Dry-
Cure - [87]

6. Limonene
oil Chitosan - Lutensol ON 30

(BASF)
Simple

coacervation
Cellulose

non-woven - Padding - [88]

7.
Limonene

and
vanillin

Chitosan-gum
Arabic Tannic acid PGPR 4150

Span 85
Complex

coacervation Cotton Citric acid Grafting S. aureus E.
coli [32]

8. Lime oil Whey protein-
maltodextrin - - Orifice - - - Antioxidant [82]

9. Citrus oil Chitosan

Tween 20,
40,60 Tween
20/Span 80
(1:1) Tween

20/SDBS (1:1)
Span 80

- Emulsion-ionic
gelation - - - - [89]

10. Lime oil Chitosan-gum
arabic - - Complex

coacervation Cotton Succinic
acid Dipped

E. coli, B.
cereus, S. ty-
phimurium,

and S.
aureus

[90]

11.
Sweet

orange oil
(C. sinensis)

β-cyclodextrin - - Inclusion
encapsulation - - -

diet-
induced

obese
[91]

12. Lemon oil
(C. limon)

melamine-
formaldehyde - - Complex

coacervation woven silk acrylic pad-dry-
cure - [92]

13. Lime oil Gelatin-sodium
alginate Glutaraldehyde Tween 80 Complex

coacervation Cotton Citric acid Pad-Dry-
Cure

S. aureus S.
epidermidis

E. coli K.
pneumoniae

[37]

14. Orange oil
Maltodextrin-

modified
starch

- -

Vacuum spray
drying

Conventional
spray drying,

- - - - [93]
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Liu et al. [86] used the orifice method to encapsulate sweet orange EOs using a chitosan-
alginate and CaCl2 cross-linker. Previously, terpenes in specific limonenes were removed
using molecular distillation, since terpenes are easily oxidized to carvol and carveol in
the presence of heat and light. The evaluation results showed efficient encapsulation
with good morphology and microstructure up to 87.34% yield, when the concentration
of CaCl2, sodium alginate and ratio of the shell to the core were 2.0%, 2.5%, and 5:1. The
release profile of terpeneless sweet orange oil from microcapsules can be well explained by
Higuchi’s equations.

Lin et al. [33] conducted a feasibility study on the use of chitosan-based citrus oil
microcapsule with different emulsifiers like Tween 20, Tween 40, Tween 60, Tween 20/Span
80 (1:1), Tween 20/SDBS (1:1), and Span 80. This type of emulsifier affects the insertion
rate, release rate, and size of microcapsule droplets. Tween 60 shows the best embedding
rate and minimum particle size. The rheological properties of the microcapsule and the
mechanical and physical properties of stand-alone coatings are also affected by emulsifiers.
Emulsifiers with the right HLB tend to have lower nano-level droplet sizes.

Ramos et al. [93] compared two methods of encapsulation in particles containing EOs
from orange, namely vacuum spray drying and conventional spray drying, taking into
account the physical aspects and storage conditions. The polymers used were maltodextrin
24% (w/w) and modified starch 8% (w/w). The results showed that the particle produced
by the vacuum spray dryer had lower porosity and lower water adsorption than the spray-
dried particles. Particles produced by both processes exhibited amorphous characteristics
and no interaction between the wall material and encapsulation oil was observed.

Souza et al. [88] demonstrated encapsulation of limonene by the method of coacer-
vation using fixed concentrations of chitosan and surfactant Lutensol ON 30 (BASF) of
0.50, and three different NaOH concentrations of 0.50, 1.00, 1.45 wt%. Microcapsules with
dimensional character, microcapsule shape, and volatility are best generated at NaOH
concentration of 1.45 wt%. However, microcapsules produced at a concentration of 1%
of NaOH weight were produced in higher amounts and showed very similar results in
terms of volatility. The microcapsule is compressed in non-woven fabric cellulose by the
padding method, and NaOH concentration stabilization efficiently controls the rate of
release of encapsulated active substances, which shows great potential for application in
anti-mosquito fabrics.

Li et al. [89] investigated the microcapsule sweet orange essential oil (SOEO) in
body weight and colon microbiota in obese mice induced by a high-fat diet. The results
showed the SOEO microcapsule loses weight and increases the relative abundance of
Bifidobacterium (genus level) in the colon microbiota, protecting the intestinal barrier and
lowering colon endotoxin levels by increasing the content of Bifidobacterium.

Rodrigues et al. [83] successfully produced polyurethane-urea microcapsules using
the interfacial polymerization method, with limonene as the active substance for textile
applications. SEM micrographs showed effective adhesion between microcapsules and
textile fibers and also confirmed the morphology and size of caterpillars. Upon dry cleaning
test, the impregnated microcapsules lose their core up to 24% in the first cycle and 97% in
the fifth cycle. Further abrasion test toward the fibers, reduce their encapsulated limonene
up to 40 and 60% at 3000 and 9000 cycles respectively.

Out of the 14 studies in Table 2, the most widely used method is coacervation [32,68,85,86,88,90],
ahead of interfacial polymerization [83], orifice [83], emulsion-ionic gelation [91], and spray
drying [93]. This is because the method is simple and inexpensive [24], does not require
high temperatures [40] and can snare oil up to 99% [76]. However, the deficiency of this
preservation is that it only occurs with a certain pH range, colloidal concentration, and lim-
ited electrolyte concentration, so the process must be under optimum conditions [30,94–96].
Therefore, many researchers study factors that influence the success of microencapsula-
tion with this method. Coacervation is a technique that involves hardening the polymers
around the nucleus by changing physicochemical characteristics, such as temperature, ionic
strength, pH, and polarity. Complex coacervation occurs through interactions between
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two opposingly charged polymers, usually proteins and polysaccharides. During the
complex coacervation process, the carboxyl groups in polysaccharides and amino groups
of proteins will interact to form amide groups [77,97].

There are three basic steps in complex coacervation. The first is the dispersion of
the core material (EOs) into an aqueous polymer solution, followed by deposition of
the tapping material into the core particles. The second step is the addition of salt or
adjusting the variable of pH, temperature, or dilution of the medium. The third step is
stabilization of the microcapsule through process of cross-binding, destruction, or thermal
treatment [83,98]. This complex coacervation method is influenced by several factors and
parameters including pH, temperature, comparison of the shell and capsule core [85], and
cross-binding agent [32]. An illustration of a complex coacervation procedure as shown in
Figure 4.
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7. Microcapsule Shell

The type of shell used in microencapsulation processes must have characteristics such
as being non-toxic, not reacting with protected substances, having the ability to enclose
and hold active materials, providing maximum protection to coating materials [90,99],
being chemically compatible, strong (not fragile), flexibility (soft and plastic), impermeability
(as a release control under certain conditions), tasteless, non-hygroscopic, low-viscosity,
economical, dissolvable in aqueous media or in suitable and stable solvents. In addition,
a microcapsule shell must be widely usable in microcapsule manufacturing methods [83,100].

As shown in Table 2, the widely used polysaccharides are alginate and arabic gum,
while the proteins are gelatin and chitosan. Alginate, which is obtained commercially
from brown seaweed, can cross-link under mild conditions with divalent cations, such as
Ca2+, inducing a resistant gel formation [24]. This biopolymer is widely used because of its
good solubility in water and low viscosity at high concentrations [101], biocompatibility,
and non-toxicity, making it widely used for applications in the fields of food, cosmetics,
veterinary medicine, pharmacy, and medicine [75].

Gum arabic is a natural resin derived from the exudate of Acacia Senegal and Acacia
seyal trees. This polymer consists of polysaccharides and glycoproteins that have an aver-
age molecular weight between 300 and 800 kDa. Its composition is 95% polysaccharide on
a dry base and 1–2% of different protein species [24]. Arabic gum is a negatively charged
polyelectrolyte widely used in industry due to its high solubility and low viscosity at high
concentrations and its good emulsification and microencapsulation properties [102]. The
polymer is extensively applied in various types of industries, such as food, drinks, confec-
tionery, and in pigments, either as a stabilizer or coagulant, or to avoid such crystallization
and agglomeration processes [85,103].

Gelatin is a protein derived from denatured collagen consisting of 18 amino acids,
which have functional characteristics in terms of biocompatibility, biodegradability, emulsi-
fier capacity and good hardening ability, water-solubility, high stability, and non-
carcinogenicity [9,24]. The disadvantage of gelatin is the need for the use of cross-binding
agents such as formaldehyde or glutaraldehyde, where such ingredients are toxic and
harmful to humans [101].

Chitosan obtained by the alkaline deacetylation of chitin N is a hydrophilic, biocom-
patible, and biodegradable polysaccharide, with low toxicity. Chitosan is widely used
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as an encapsulation agent for several applications, such as food processing, biomedicine
and pharmaceutical, wastewater treatment, and textiles, alone or in combination with
polysaccharides or other proteins to improve the properties of the shell [24].

Alginate and gelatin are excellent at coacervation methods due to their slight aggre-
gation, small particle size, and easy dispersibility [101]. In textile applications, chitosan
alginate microcapsule has been used to encapsulate antimicrobial peptides for applications
of cotton coatings [24].

8. Cross-Binder

Cross-bonding is a chemical bond formed between polymer chains. Cross-bonding
is one way to control the process of releasing active compounds where these cross-bonds
serve to harden and stabilize polymers. There are several methods for cross-binding:
(i) High-temperature heating, a physical cross-binding method in which the polymer is
heated at a temperature of >90 ◦C and under vacuum. When it is heated, the water is
removed and causes a condensation reaction between the carboxyl group and the amine
group, resulting in an intermolecular cross-bond. This process has the disadvantage of
being able to denaturize polymers made of proteins; (ii) Ultraviolet radiation, which causes
the formation of free radicals. When adjacent radicals react, covalent bonds, or cross-bonds,
are formed between two polymer molecules; (iii) Crosslink agents: cross-bonding between
polymers causing microcapsule structures to become sturdy [75,104].

Cross-bonding consists of chemical modifications aimed at binding polymer chains
through reactions between specific reactive sites present in polymer structural units and
some cross-binding reagents [24]. A good cross-binding agent should contain a reactive end
to the specific functional group (primary amine, sulfhydryl, etc.) in the polymer. Examples
of cross-linking agents that are often used include formaldehyde, glutaraldehyde, calcium
chloride [105], and tannic acid. Properties such as mechanical resistance, swelling, permeabil-
ity, chemistry, and thermal stability as well as the rate of release of encapsulated substances
are strongly influenced by cross-bonding. Depending on the nature of the cross-binding, the
main interactions involved in tissue formation are covalent or ionic [24,106,107].

Glutaraldehyde and formaldehyde are the cross-binding agents most commonly used
to form covalent bonds between aldehyde groups and amines. During the cross-binding
process, the aldehyde group of glutaraldehyde/formaldehyde forms an amine covalent
bond (Schiff base) with the gelatin/chitosan amino group and an acetal bond with the
hydroxyl group. Glutaraldehyde and formaldehyde have drawbacks, i.e., toxicity, making
it necessary to develop new cross-binders that are more environmentally friendly [24].

Tannic acid (C76H52O46), is a naturally occurring plant polyphenol. Tannic acid is
a gallic ester of D-glucose in which the hydroxyl group of carbohydrates is sterilized
with a gallic dimer. Some of its phenolic hydroxyl groups can interact with biological
macromolecules through hydrogen bonding and hydrophobic interactions. Therefore,
tannic acid has been used as a hardening substance [24].

Dong et al. [108], compared the use of formaldehyde and transglutaminase cross-
binders in the manufacture of the microcapsule, with gelatin and arabic gum, and nuclei
in the form of peppermint oil. The results showed formaldehyde was a better cross-
binding agent than transglutaminase. Alvim & Grosso [106] made microcapsules using
the cross-binder of glutaraldehyde and transglutaminase, gelatin, and arabic gum, with
oleoresin nuclei. The results showed that glutaraldehyde cross-binders were better than
transglutaminase. Noppakundilograt et al. [109] succeeded in making microcapsules with
CaCl2 as a cross-binder, with an alginate and eucalyptus oil as the core.

9. Emulsifier

Emulsifiers are one of the factors that affect the successful formation of microencapsu-
lation. Emulsifiers serve to affect the formation of microcapsules especially the average
diameter and stability of the dispersion. HLB (Hydrophilic-Lipophilic Balance) is the value
for measuring the efficiency of the emulsifier used.
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The higher the number of HLB the more hydrophile a surfactant and the lower the
number of HLB the lipophile of a surfactant. Emulsifiers with HLB numbers greater than 10
have a higher affinity for water (hydrophilic), while those with HLB numbers greater than
10 have a higher relative affinity for oil (lipophilic) [110]. The most widely used emulsifiers
are tween 80 and span 80.

Tween-80 (Polyoxyethylene sorbitan monooleate) is a nonionic surfactant, non-toxic, en-
vironmentally friendly, biocompatible, and low commercial price [101]. Produces oil
and water emulsions with a smooth texture, stable at high electrolyte concentrations and
changes in pH. Soluble in water, ethanol, and ethyl acetate, it is insoluble in liquid paraffin
and polyhydric alcohols.

Span-80 (Sorbitan monooleate) is a nonionic surfactant with characteristics of ivory
yellow, a liquid like a viscous oil, and a distinctively sharp smell. Its solubility is insoluble
but dispersed in water, mixed with alcohol, insoluble in propylene glycol, soluble in almost
all mineral and vegetable oils, and slightly in ether. Span-80 hydrophobic is a surfactant
commonly used in the formation of emulsions/microemulsions and shows good results in
improving fuel properties and having a low toxicity [24].

10. Microcapsules Immobilization onto Textile Materials

Microcapsules can be applied to woven, non-woven, knitting, or garment fabrics.
Substrates can be wool, silk, cotton, hemp, or synthetic fibers such as polyamide or polyester,
or its mixture [111]. The widely used textile material is cotton fabric as shown in Table 2,
this type of fabric comes from natural fibers that are a comfortable place for microorganisms
to grow and develop. This is because natural fiber textile materials can retain moisture.
Cotton fabric has very comfortable properties because it can absorb sweat, while human
sweat itself is a suitable shelter for bacterial growth. The presence of carbohydrates in
cotton fiber acts as an intake of nutrients and energy sources for microorganisms. These
microorganisms can cause damage to fabrics and are also a source of pathogens. The
process of finishing fabrics with antimicrobial microcapsules can better protect the wearer
against the spread of microbes, bacteria, and diseases than protect the quality and durability
of textile materials.

Several methods of applying microcapsules on textile substrates such as bath exhaus-
tion, padding, dry curing pad, dipping, chemical grafting [24,111], printing, coating, spray-
ing, or immersion [23]. For all these methods, a cross-binder, such as acrylic, polyurethane,
or silicone, is required to bind the microcapsules to the fabric and hold it during washing.
Microcapsules on fabric using cross-binding substances must be prepared under appropri-
ate reaction conditions and have high heat-resistance performance, slow-release rates, and
good morphology [23].

According to Valle et al. [24], the method of microcapsule application in fabric depends
on the chemical and fabric used, as well as the available machinery. Chemicals that have
a strong affinity with the surface of the fiber can use the batch process with exhaustion after
the dyeing process of the fabric is complete. As for chemicals that do not have an affinity
with fiber, the method uses a variety of continuous processes by passing the fabric into
a microcapsule solution and continuing with certain mechanical processes that involve
either soaking the textile in a final chemical solution or applying the final solution to the
fabric in some mechanical way. The most widely performed microcapsule fixation on
fabrics is pad-dry-cure, with the following steps: In the padding process, textile fabrics
are continuously passed into microcapsule liquor. After the coating of the fabric by the
liquor, the textile fabric is then dried and cured (heated to cause chemical reactions) in
each machine separately. The drying process can be done by heat convection, contact with
heated metal surfaces, infrared radiation, microwave or high-frequency waves, combustion,
and vacuum. The cure or microparticle fixation process is done at a higher temperature
than the drying process [37]. An illustration of the immobilization of microcapsules on
cloth by the pad-dry method is shown in Figure 5.
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Applications for antibacterial functional fabrics of the core material of species C.
aurantifolia have been made by Sharkawy et al. [32] with limonene nuclei as the main
components of C. aurantifolia EOs, with synthetic lime oil cores [90], and with EOs of C.
aurantifolia cores [68]. Sharkawy et al. [32] applied the antibacterial properties of limonene
and vanilla to cotton fabric. Limonene and vanillin were encapsulated by a complex
coacervation method using chitosan/gum Arabic shells with a cross-binder of tannic acid.
Microcapsules were immobilized on the fabric by esterification reactions of citric acid and
monobasic sodium phosphate monohydrate (as a catalyst) followed by thermofixation and
curing. Antibacterial properties were tested on S. aureus and E. coli. The results showed
free microcapsules and that processed cotton fabrics can maintain antibacterial activity.
Wijesirigunawardana & Perera [90] encapsulated synthetic lime oil with chitosan and
arabic gum. Microcapsules were immobilized on cotton fabric by a grafting method using
succinic acid binder and the antibacterial properties were tested against E. coli, B. cereus, S.
typhimurium, and S. aureus. It was concluded that the lime oil’s antibacterial activity can be
maintained in the microcapsule [90]. Julaeha et al. [37] encapsulated EOs of C. aurantifolia
using gelatin alginate shells. Microcapsules were immobilized on a cotton fabric by a pad-
dry-cure method using citric acid binder followed by an antibacterial activity assay against
Gram-positive bacteria S. aureus and S. epidermidis as well as Gram-negative E. coli and K.
pneumoniae. In addition, microcapsule activity was compared to the EOs of C. aurantifolia
and limonene. The results showed the synergistic effect of the components contained in C.
aurantifolia EOs. The activity of C. aurantifolia EOs matched the positive control of ampicillin
and limonene, while the microcapsule was able to maintain its antibacterial activity [37].

11. Future Prospects

Research into the potential of essential oils of the Citrus genus as antibacterial agents
has shown good potential for applications in the textile field, for example for medi-
cal/antimicrobial/antibacterial textiles [23]. As was mentioned by Gokarneshan et al. [31],
the antibacterial properties of natural materials can open up opportunities for antimicrobial
coating applications in the medical field. Valle et al. [24] also stated that new interests
are needed to develop antibacterial and antiviral properties for technical applications in
the fields of medicine, agriculture, geology, architecture, and others. In textile materials,
Personal Protective Equipment (APD) is indispensable not only in a hospital environment
but also for a public pandemic situation.

The choice of antimicrobial agents depends on the end-use, requirements, and how
the antimicrobials work. There are two ways an antimicrobial agent can work: the first is
through chemical binding to the surface of a fabric. Microbes are killed by encapsulated
agents when they come into contact with the fabrics. Second, an antimicrobial agent is
only physically attached to a fiber and dissolves or diffuses. Application of antibacterial
properties of EOs can be used in various products, as shown in Figure 6.
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12. Conclusions

Essential oils from citrus plants have the potential to be used as antibacterial agents
that have a great opportunity to be applied in an encapsulated form overlaid on textile
materials. Such products can be produced for medical textiles, such as antibacterial masks,
antibacterial plasters, antibacterial sanitary napkins, for Personal Protective Equipment,
and for household and functional clothing, including antibacterial bed linen, antibacterial
underwear, antibacterial clothing, and others. This challenges researchers to develop and
maximize the work of antibacterial microcapsules made from essential oil cores, especially
from the genus Citrus; such work includes improving the yield and quality of essential oils,
increasing microcapsule yield, controlled release of essential oils, improving microcapsule
stability, the effectiveness of microcapsule immobilization in textile materials, etc.
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