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Abstract: The intensification of total phenolic compound (TPC) extraction from blood orange peels
was optimized using a novel green infrared-assisted extraction technique (IRAE, Ired-Irrad®) and
compared to the conventional extraction using a water bath (WB). Response surface methodology
(RSM) allowed for the optimization of ethanol concentration (E), time (t), and temperature (T) in terms
of extracted TPC and their antiradical activity, for both WB extraction and IRAE. Using WB extraction,
the multiple response optimums as obtained after 4 h at 73 ◦C and using 79% ethanol/water were
1.67 g GAE/100 g for TPC and 59% as DPPH inhibition percentage. IRAE increased the extraction
of TPC by 18% using 52% ethanol/water after less than 1 h at 79 ◦C. This novel technology has the
advantage of being easily scalable for industrial usage. HPLC analysis showed that IRAE enhanced
the recovery of gallic acid, resveratrol, quercetin, caffeic acid, and hesperidin. IR extracts exhibited
high bioactivity by inhibiting the production of Aflatoxin B1 by 98.9%.

Keywords: blood orange peels; phenolic compounds; infrared-assisted extraction; optimization;
Aflatoxin B1

1. Introduction

Phenolic compounds are plant secondary metabolites, known for their antioxidant,
antimicrobial, anticarcinogenic and anti-inflammatory activities [1,2]. In food industries,
they prevent the rancidity of oils and fats [3], and can inhibit fungal growth and subsequent
mycotoxin production in stored grains [4].

Aflatoxins are toxic secondary metabolites especially produced by two filamentous
fungi Aspergillus flavus and Aspergillus parasiticus [5,6]. Under favorable conditions of
humidity and temperature, these fungi grow on foods and feeds like corn, peanuts, cot-
tonseed and cereals, resulting in aflatoxins production [7]. Aflatoxin B1 (AFB1), the most
potent and toxic one, is a mutagenic, carcinogenic, teratogenic and immunodepressive
agent. Humans and animals are exposed to AFB1 through ingestion, skin contact and
inhalation [8]. Pesticides are usually used to protect crops from the development of fungi.
However synthetic fungicide residues also have toxic effects, and pathogens can develop
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resistance to it. For these reasons, interest in the use of natural antimicrobials such as
essential oils and phenolic compounds is growing [9].

Citrus (Rutaceae family) is an important world fruit crop [10]. Its health benefits are
mainly related to the presence of bioactive compounds, such as polyphenols, vitamin C
and carotenoids [11,12]. After consuming citrus fruits as fresh produce or juice, a large
number of peels are generated and generally discarded as waste [13], used as animal
feed or for fuel production [14]. The extraction of total phenolic compounds (TPC) from
citrus peels is attracting more and more attention due to their biological virtues as natural
antioxidants and antimicrobials [15]. Conventional methods such as water bath (WB)
extraction, were used for the valorization of citrus peels by the extraction of bioactive
compounds [16]. Nonetheless, researchers have been focusing on developing innovative
extraction techniques for industries that can be more efficient and energy-saving [17,18].
Extraction techniques such as ultrasound [19], microwave [20,21], instantaneous controlled
pressure drop [22,23], supercritical CO2 [24], pulsed electric field [25,26] and Intensification
of Vaporization by Decompression to the Vacuum (IVDV) [27] were previously used to
intensify the extraction of bioactive compounds from agro-industrial residues and by-
products. These extraction processes can improve mass transfer, decrease the extraction
time and temperature and reduce solvent use. They can also improve the recovery of
bioactive compounds from by-products with lower energy consumption.

The green extraction process is based on the discovery and the design of techniques
to reduce energy and solvent consumption [28]. In this sense, infrared-assisted extraction
(IRAE) technology is a novel, simple and low-cost extraction method that can be scalable to
industrial level. IR radiation is characterized by its high penetration ability and has found
many applications in health care and industrial treatment [29].

To the best of our knowledge, IR was not previously tested for the extraction of
polyphenols from blood orange peels. The objective of this work is to test the efficiency of
this novel green technology for the recovery of high TPC yields from blood orange peels and
to investigate the potential use of the obtained extracts as antifungal and anti-mycotoxigenic
agents. The optimization of TPC extraction was conducted by a conventional WB extraction
and a novel method of IRAE. The optimal ethanol concentration, time, and temperature
were determined by response surface methodology (RSM) for the two techniques. Chemical
characterization of the extracted TPC was also explored.

2. Results and Discussion

Time (t), temperature (T) and ethanol percentage (E) were optimized for WB and IR
extraction of TPC from blood orange peels using RSM. The latter is an effective statistical
optimization method. It allows the evaluation of multiple parameters and their interactions
with a reduced number of experiments. Tables 1 and 2 show the experimental design,
where factors are presented in their real and coded values, with their responses TPC and
inhibition % of DPPH, for the conventional WB extraction and IRAE. For WB extraction,
TPC ranged from 1.20 to 1.67 g GAE/100 g DM, and inhibition percentage from 37.6%
to 58.7%. While for IRAE, TPC ranged from 0.95 to 1.90 g GAE/100 g DM (14% increase
compared to WB) and inhibition percentage from 34.7% to 56.4%. The obtained results
are comparable to those obtained in a previous study where the yields of polyphenols
extracted from orange peels ranged between 0.30 and 1.70 g GAE/100 g DM with DPPH
inhibition percentages values between 30% and 50% [30].



Molecules 2022, 27, 8061 3 of 14

Table 1. RSM central composite design for three parameters (real and coded values) of five levels
and the experimental responses (TPC and inhibition % of DPPH) of WB extraction from blood
orange peels.

Run Ethanol (%)
Real [Coded] Value

Time (h)
Real [Coded] Value

Temperature (◦C)
Real [Coded] Value

TPC (g
GAE/100 g DM)

Inhibition %
of DPPH

1 50 [−1] 2 [−1] 40 [−1] 1.36 46.04
2 80 [+1] 2 [−1] 40 [−1] 1.20 42.45
3 50 [−1] 4 [+1] 40 [−1] 1.37 44.24
4 80 [+1] 4 [+1] 40 [−1] 1.33 43.50
5 50 [−1] 2 [−1] 70 [+1] 1.48 50.52
6 80 [+1] 2 [−1] 70 [+1] 1.55 55.01
7 5 0 [−1] 4 [+1] 70 [+1] 1.54 52.17Fa

ct
or

ia
lD

es
ig

n

8 80 [+1] 4 [+1] 70 [+1] 1.67 55.75
9 65 [0] 3 [0] 55 [0] 1.40 45.59
10 65 [0] 3 [0] 55 [0] 1.38 44.69
11 65 [0] 3 [0] 55 [0] 1.50 46.49
12 65 [0] 3 [0] 55 [0] 1.46 46.93
13 65 [0] 3 [0] 55 [0] 1.44 45.29

C
en

te
r

Po
in

ts

14 65 [0] 3 [0] 55 [0] 1.47 49.77
15 39.8 [−α] 3 [0] 55 [0] 1.33 48.88
16 90.2 [+α] 3 [0] 55 [0] 1.24 48.06
17 65 [0] 1.3 [−α] 55 [0] 1.48 51.27
18 65 [0] 4.7 [+α] 55 [0] 1.50 53.29
19 65 [0] 3 [0] 29.8 [−α] 1.28 37.64St

ar
Po

in
ts

20 65 [0] 3 [0] 80.2 [+α] 1.58 58.74

Table 2. RSM central composite design of three parameters (real and coded values) of five levels and
the experimental responses (TPC and inhibition % of DPPH) of IRAE from blood orange peels.

Run Ethanol (%)
Real [Coded] Value

Time (h)
Real [Coded] Value

Temperature (◦C)
Real [Coded] Value

TPC (g
GAE/100 g DM)

Inhibition %
of DPPH

1 15 [−1] 0.5 [−1] 40 [−1] 0.95 34.75
2 55 [+1] 0.5 [−1] 40 [−1] 1.22 36.06
3 15 [−1] 1.5 [+1] 40 [−1] 1.12 47.54
4 55 [+1] 1.5 [+1] 40 [−1] 1.30 42.95
5 15 [−1] 0.5 [−1] 70 [+1] 1.18 42.79
6 55 [+1] 0.5 [−1] 70 [+1] 1.79 54.10
7 15 [−1] 1.5 [+1] 70 [+1] 1.19 44.26Fa

ct
or

ia
lD

es
ig

n

8 55 [+1] 1.5 [+1] 70 [+1] 1.60 56.39
9 35 [0] 1 [0] 55 [0] 1.39 54.10
10 35 [0] 1 [0] 55 [0] 1.47 55.90
11 35 [0] 1 [0] 55 [0] 1.34 48.85
12 35 [0] 1 [0] 55 [0] 1.50 52.95
13 35 [0] 1 [0] 55 [0] 1.48 47.38

C
en

te
r

Po
in

ts

14 35 [0] 1 [0] 55 [0] 1.48 52.62
15 1.36 [−α] 1 [0] 55 [0] 1.17 39.34
16 68.6 [+α] 1 [0] 55 [0] 1.52 45.74
17 35 [0] 0.16 [−α] 55 [0] 1.27 46.39
18 35 [0] 1.84 [+α] 55 [0] 1.34 51.64
19 35 [0] 1 [0] 29.8 [−α] 1.21 36.39St

ar
Po

in
ts

20 35 [0] 1 [0] 80.2 [+α] 1.90 55.57

In both extraction techniques, the multivariate second-degree regression analysis
indicates high values for R2 coefficients (>90%) (Table 3). This means that all of the models
have low residual errors when trying to predict the values of either TPC or inhibition % of
DPPH, using the independent variables.



Molecules 2022, 27, 8061 4 of 14

Table 3. The second order regression equation for TPC and inhibition % of DPPH of each extraction
technique and the R-squared of each equation.

Extraction Technique R2 (Percent) Equation

WB

90.45
TPC = 1.55 + 0.01E − 0.24t −0.01T − 0.0002E2 +

0.002Et + 0.0002ET + 0.02t2 + 0.0002tT +
0.00002T2

93.26
Inhibition % of DPPH = 87.46 − 0.69E − 13.03t −

0.35T + 0.002E2 + 0.02Et + 0.007ET + 1.81t2 +
0.03tT + 0.002T2

IRAE

91.08
TPC = 0.22 + 0.01E + 1.12t + 0.002T − 0.0001E2 −

0.004Et + 0.0002ET − 0.28t2 − 0.007tT +
0.00007T2

92.24
Inhibition % of DPPH = −15.95 + 0.17E + 30.92t +

1.31T − 0.009E2 − 0.06Et + 0.01ET − 4.69t2 −
0.27tT − 0.01T2

2.1. Water Bath Extraction

Pareto charts (Figure 1a) show the positive or negative effects of temperature, time,
and ethanol concentration on the extraction of TPC from blood orange peels using WB.
The parameters that have the most significant effects (with a confidence level above 95%)
correspond to the histograms that cross the vertical line. According to Figure 1a, the temper-
ature had a significant linear positive effect on TPC extraction within the studied domain.
The estimated response surface plot, in its three-dimensional illustration, and considering
its shape, gives valuable data about the significance of each parameter (Figure 1c). The
increase in temperature permitted a higher diffusivity of TPC and improved their transfer
into the solvent [31]. Additionally, high temperatures weaken the membrane structure
of the cells, which improves the extraction of biomolecules from the peels [14]. TPC are
positively affected by the interaction between ethanol and temperature (ET). The increase
in ethanol percentage combined with the increase in temperature improved the diffusiv-
ity and solubility of TPC in their solvent. Thus, a synergetic effect between ethanol and
temperature enhanced the extraction of TPC. However, the TPC content was negatively
affected by the quadratic effect of ethanol (E2). The increase in ethanol percentage up to a
certain value, reduces the dielectric constant of the solvent, which enhances the solubility
of TPC and improves their extraction [32]. This is similar to a previous result concerning
the effect of ethanol on the extraction of phenolic compounds from flaxseed extracts where
the yield of TPC decreased for an ethanol percentage higher than 60% [33]. Higher ethanol
concentration may modify the polarity of the solvent and could dehydrate and collapse
the plant cells, making difficult the diffusion of biomolecules from the plant matrix to the
solvent [34]. In addition, some TPC are soluble in the aqueous phase, whereas others are
soluble in organic solvents, which explains the need to use a mixture of ethanol and water
to extract higher yields of TPC. The insert in Figure 1a presents the evolution of TPC as a
function of ethanol-water percentage and demonstrates that the optimum value of TPC is
reached with an intermediate ethanol-water percentage.

Figure 1b,d presents the Pareto chart and the estimated response surface plot for the
antiradical activity. The same as for TPC, the DPPH inhibition % was positively affected
by the temperature and by the interaction between ethanol percentage and temperature.
Studies have shown a correlation between the presence of TPC in extracts and the scaveng-
ing activity against the DPPH radical [35,36]. The insert in Figure 1b shows the effect of
ethanol percentage on the inhibition % of DPPH at 40 ◦C (dashed line) and 70 ◦C (solid
line). The observed difference is due to the interaction effect between temperature and
ethanol percentage. At 70 ◦C, a higher amount of TPC is extracted compared to 40 ◦C,
which explains the greater inhibition % of DPPH obtained at this temperature.
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2.2. Infrared-Assisted Extraction

Figure 2a shows the Pareto chart obtained by IRAE. As in WB extraction, TPC solubility
increased with temperature, thus facilitating TPC diffusion out of the cells. For the same
temperature of 80 ◦C, the extraction of TPC increased by 20% with IRAE (35% ethanol
for 1 h), compared to the conventional WB extraction (65% ethanol for 3 h). This could
be associated with cell bursting occurring during IR heating. Ethanol also had positive
linear effect on TPC extraction. It acts on the polarity of the medium, which permits to
solubilize lipophilic TPC. IR waves are efficiently absorbed by the solvent, which leads to
efficient heating and improves the cells rupture for a better extraction of TPC [29,37]. The
extraction of TPC with IR is negatively affected by the quadratic effect of time (t2). A short
period of time was not sufficient for the extraction of TPC. However, longer extraction
times could lead to the degradation and oxidation of the extracted TPC, which explains the
negative quadratic effect of this parameter [38]. The insert in Figure 2a shows the evolution
of TPC as a function of ethanol-water percentage. A maximum value of TPC was obtained
when 50% ethanol-water was used as a solvent. Therefore, the use of IR could lead to a
reduction in ethanol percentage. Figure 2c presents the evolution of TPC as a function of
ethanol percentage and time at a fixed temperature (80 ◦C). The optimum value of TPC
(2.1 g GAE/100 g DM) was obtained after 0.6 h of extraction with 55% ethanol-water. This
value was higher than that obtained after 4.7 h of WB extraction (1.78 g GAE/100 g DM)
using 78% ethanol-water at the same temperature.

Figure 2b,d shows that temperature, time, and ethanol had linear positive effects
on the inhibition percentage of DPPH. The inhibition percentage increased from 34% to
56% when the ethanol percentage, the treatment duration, and the temperature increased
from 15%, 0.5 h, and 40 ◦C to 55%, 1.5 h, and 70 ◦C, respectively. However, the quadratic
effects of ethanol (E2) and temperature (T2) had negative effects on the inhibition % of
DPPH. At high temperatures, the stability of TPC may be negatively affected. Moreover,
a possible thermal degradation of TPC already released at low temperatures may have
occurred [39]. The insert in Figure 2b presents the evolution of the inhibition % of DPPH
as function of ethanol percentage at two different temperatures. The maximum value of
58% inhibition of DPPH was obtained with 50% ethanol-water at 70 ◦C. A conjugated effect
between the increase in ethanol percentage and temperature was observed. The increase
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in ethanol percentage up to 50% at 70 ◦C significantly improved the inhibition % of the
free radical DPPH. Therefore, the interaction between ethanol and temperature positively
affects the antiradical activity of the extracted TPC. A similar behavior was observed with
WB (Figure 1b). However, a higher percentage of ethanol-water (80%) is required during
WB extraction to obtain only 53% of DPPH inhibition at the same temperature (70 ◦C).
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2.3. Multiple Response Optimization: Comparison between the Optimums Obtained with Water
Bath Extraction and Infrared-Assisted Extraction

The optimization of the TPC and the inhibition % of DPPH were conducted separately
and the parameters giving the highest quantity of TPC, and the highest inhibition levels
of the free radical DPPH were determined. It is important to keep a balance between
the concentrations of the TPC and their bioactivity. This is why it is necessary to show
the two responses (TPC and inhibition % of DPPH) simultaneously as affected by the
combination of the experimental parameters (E, t, T). The simultaneous optimums obtained
with the conventional WB extraction (Figure 3a), for both TPC and inhibition % were 1.78 g
GAE/100 g DM and 63.5%, respectively. These optimums were found with 83% of ethanol,
during 4.7 h at 80 ◦C. However, IRAE allowed the extraction of 18% more polyphenols
(2.1 g GAE/100 g DM) with an inhibition percentage of DPPH of 60%, with 57% of ethanol
at 80 ◦C and for a treatment duration (0.6 h) 7.8 times lower than the WB extraction
(Figure 3b).

It is noteworthy to mention that the optimums for TPC and DPPH inhibition converge
at the same point and are obtained at close conditions with IRAE, which was not the case
with WB. The exactitude of the model was confirmed by repeating the optimal conditions
for the optimization of TPC and inhibition percentage for both WB extraction and IRAE
(Table 4).

IRAE intensifies the extraction of TPC with shorter time and lower solvent consump-
tion. This result was already shown on the extraction of TPC from grape seeds [37], and
pomegranate peels [40]. The efficiency of IRAE compared to conventional extraction tech-
nique was also observed in olive leaves where the yield of TPC was improved by more than
30% using IRAE as compared to water bath extraction [41]. In IRAE, the solvent mixture is
heated directly, while in conventional WB extraction, a certain period of time is required
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to heat the container before the heat is transferred to the solution [42]. The efficiency of
IRAE can be due to the IR radiation that could stimulate the vibrations in molecules in
diverse modes like extending, bending, rocking, and rotating [43]. These vibrations lead to
the release of TPC molecules and to an increase in the interactions between the solvent and
the active compounds [44], allowing an efficient extraction of TPC from orange peels.
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Table 4. Predicted and experimental results for TPC and inhibition %, at the multiple optimum
conditions for WB extraction and IRAE.

Extraction Technique
(Optimal Conditions)

Multiple
Optimum

Predicted
Values

Experimental
Values

TPC g GAE/100 g DM 1.78 1.77 ± 0.040WB
(T = 80 ◦C t = 4.7 h E = 83%) Inhibition % 63.5 61.7 ± 0.32

TPC g GAE/100 g DM 2.1 2.2 ± 0.043IRAE
(T = 80 ◦C t = 0.6 h E = 57%) Inhibition % 60 61.5 ± 0.24

2.4. Concentrations and Diversity of Phenolic Compounds Extracted from Orange Peels

HPLC analysis were conducted on the multiple response optimums obtained with
WB and IRAE. Table 5 shows the concentration and diversity of the TPC at the optimal
points. IRAE selectively extracted caffeic acid and improved the extraction of gallic acid,
resveratrol, quercetin and hesperidin by 4.7, 22.6, 17.6, and 24%, respectively, compared
to WB extraction. The most remarkable improvement was observed in hesperidin, the
principal flavonoid found in orange peels [26], and has an inhibitory effect on food fungal
contaminants such as Aspergillus species and mycotoxin production [45]. However, the
bioactivity of the extracts could be attributed to the synergetic effects of the extracted
TPC. Phenolic quantity depends on the method of extraction and higher TPC yields were
obtained with IRAE, which seems to be a promising new technique that intensifies the
extraction of bioactive compounds with less time and solvent consumption.
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Table 5. TPC (mg/100 g DM) obtained in the simultaneous optimums after WB extraction and IRAE.

Phenolic Compound
(mg/100 g DM) WB IRAE

Gallic acid 2.33 ± 0.20 2.44 ± 0.042
Resveratrol 28.46 ± 2.16 34.89 ± 0.54
Quercetin 5.50 ± 0.79 6.47 ± 0.58

Caffeic acid nd 0.16 ± 0.050
Hesperidin 286.67 ± 0.60 355.60 ± 0.89

2.5. Antifungal Activity

The activities of the extracts obtained at the multiple optimums by WB extraction and
IRAE against the growth of A. flavus and the production of AFB1 were studied. Figure 4
shows that TPC extracts obtained from WB extraction and IRAE slightly inhibited the
growth of A. flavus by 11.8% and 15.8%, respectively. However, the inhibition of aflatoxin
production was greater than the inhibition of the growth of the fungus. Both TPC extracts
obtained from WB extraction and IRAE inhibited AFB1 production by 99.4% and 98.9%,
respectively.
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extracts obtained after WB extraction and IRAE.

AFB1 is synthetized by enzymes encoded within a large cluster of 27 genes. My-
cotoxin production is governed by complex environmental signals and different cellular
pathways [46]. TPC may inhibit the production of AFB1 by acting at one of the three
levels: altering the environmental and physiological signals perceived by the fungi, down
regulating the gene expression of the cluster or blocking the activity of certain enzymes
involved in the biosynthesis of AFB1 [47].

Extracts from plants or spices, including TPC and essential oils have demonstrated
fungicidal and/or anti-toxicogenic properties. In some cases, extracts inhibit the fungal
growth and the production of mycotoxin. In other cases, the growth of the fungi is not af-
fected but the production of mycotoxin is partially or totally halted. A variety of flavonoids
in tea leaves inhibited the production of AFB1 without affecting the mycelial growth of
A. flavus. They decreased the production of AFB1 by 99.6%. The inhibition of aflatoxin
was attributed to the down-regulations of transcription of genes involved in aflatoxin
biosynthesis [48]. Extracts of the plant Garcinia indica inhibited the growth of A. flavus and
the subsequent production of AFB1 [4]. Eugenol (0.5 mM), the active compound of many
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essential oils, slightly affected the fungal growth but totally inhibited the production of
AFB1. It has been demonstrated that all cluster genes were strongly down regulated in the
presence of eugenol. Nineteen out of 27 genes were completely inhibited and the others
had 10- to 20-fold reductions in their expression levels [46]. In our case, TPC from blood
orange peels are specific inhibitors of AFB1 biosynthesis rather than inhibitors of the fungal
growth. This is specifically interesting since the presence of A. flavus that cannot produce
AFB1 will avoid the contamination of foods with other microbial agents’ producers of other
toxins, and will not imbalance the fungal ecology in the field. TPC extracts from orange
peels have therefore shown their high potential in the development of anti-aflatoxin agents
for food preservation.

3. Materials and Methods
3.1. Raw Material

Blood orange (Citrus sinensis) peels were provided by Balkis Company (Ansariyeh,
South Lebanon) and stored at −20 ◦C until use. Orange peels were manually cut into equal
squares of 1 × 1 cm2. The moisture content, measured by drying fresh peels at 105 ◦C to
constant weight, was about 76% wet basis.

3.2. Extraction Techniques

Intervals of variation in the parameters, notably the percentage of ethanol and the
treatment time, were chosen differently for the WB and the IRAE, based on previous
studies [30,40,41]. These studies, along with preliminary trials, have proven that the
optimal intervals, in terms of TPC yield, for these two techniques are completely distinct.
In order to reach the optimal ranges for the WB technique, a higher percentage of ethanol
and a longer treatment time than IRAE are required. Within this perspective, the ranges of
variation in these two parameters have been established in the following paragraphs.

3.2.1. Water Bath Extraction

Water bath extraction of TPC from blood orange peels was performed with a liquid to
solid ratio of 8. Ethanol concentration varied between 40% and 90%, extraction time varied
between 1.3 h and 4.7 h, and temperature varied between 30 ◦C and 80 ◦C. These values
were selected based on preliminary studies, and were optimized by RSM.

3.2.2. Infrared-Assisted Extraction

The infrared-assisted-extraction apparatus, Ired-Irrad® (Patent 2017/11-11296L) was
used in this purpose. Orange peels were introduced in a round bottom flask with ethanol-
water (liquid to solid ratio 8). The flask was placed 1 cm from a ceramic infrared transmitter
with a power varying between 70 and 170 W for the irradiation/heating process, linked to
a PID control for temperature adjustment. Both the temperature and the voltage can be
monitored.

Ethanol concentration varied between 1% and 68%, treatment duration between 0.2 h
and 1.8 h and temperature between 29 ◦C and 80 ◦C for the IRAE. The optimal conditions for
extracting a maximal yield of TPC with the maximum antiradical activity were determined.
Extracts were obtained by centrifugation at 6000 rpm for 15 min using a Heraeus Primo R
Centrifuge (Thermo Scientific™ Heraeus™, Hanau, Germany). Supernatants were collected
and stored at −20 ◦C until use.

3.3. Experimental Designs

Response Surface Methodology (RSM) was used for the optimization of TPC extraction
from orange peels by two different techniques. Independent variables were ethanol-water
concentration (%), time (t) and temperature (T). The three variables were coded at 5 levels
{−α, −1, 0, +1, +α}. The central composite design (23 + star) resulted of twenty experimental
points including six repetitions at the central level. Considering three parameters and two
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responses, experimental data were fitted to obtain a second-degree regression Equation (1)
as follows:

Y = β1 + β2E + β3t + β4+T + β5E2 + β6t2 + β7+T2 + β8Et + β9ET + β10tT (1)

where Y is the predicted response parameter (TPC or DPPH); β1 is the mean value of re-
sponses at the central point of the experiment; β2, β3, and β4 are the linear coefficients; β5,
β6, and β7 are the quadratic coefficients; β8, β9, and β10 are the interaction coefficients; E is
the solvent mixture; t is the treatment time; and T is the treatment temperature. Experimen-
tal design and statistical analysis of the results were carried out using STATGRAPHICS®

Centurion XV for windows.
The experimental protocol is depicted in Figure 5.
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Figure 5. Optimization of TPC extraction from blood orange peels using WB and IRAE. The antifungal
activity of the extracts obtained was assessed at optimal conditions.

3.4. Analysis
3.4.1. Total Phenolic Compounds (TPC)

The amount of total TPC extracted from blood orange peels was determined by the
Folin-Ciocalteu colorimetrical method [49]. In this method, 1 mL of ten-fold diluted Folin–
Ciocalteu reagent (Scharlau, Spain) was added to 0.2 mL of extract. Then, 0.8 mL of sodium
carbonate (Na2CO3) (75 g/L) (BDH, England) were added. The mixture was incubated at
60 ◦C for 10 min, and then cooled to room temperature. The absorbance was measured
at 750 nm by the UV-Vis spectrophotometer (UV-9200, UK). Gallic acid (Sigma-Aldrich,
St-Quentin Fallavier, France) was used for the calibration curve. The results were expressed
as g of gallic acid equivalent (GAE) per 100 g of dry matter (g GAE/100 g DM).

3.4.2. Antiradical Activity

The free radical scavenging activity was determined by the capacity of the extracted
TPC to reduce the free radical, 2,2-diphenyl-1-picrylhydrazyl: DPPH [50]. This method
is based on the reduction of the free radical DPPH by phenolic extracts. First, 1.45 mL of
DPPH (0.06 mM) (Sigma-Aldrich, St-Quentin Fallavier, France) free radical were added
to 50 µL of orange peels extracts or Trolox (control) (Sigma-Aldrich, St-Quentin Fallavier,
France). After 30 min of incubation at room temperature, the absorbance was measured at
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515 nm. The inhibition percentage of the DPPH free radical was calculated according to
Equation (2):

Inhibition Percentage = [(absorbance of control − absorbance of sample)/absorbance of control] × 100 (2)

3.4.3. High Performance Liquid Chromatography Analyses

Gallic acid, resveratrol, quercetin, caffeic acid and hesperidin (Sigma-Aldrich, St-
Quentin Fallavier, France) were used as standards in high performance liquid chromatogra-
phy (HPLC) analyses, to identify the TPC in the simultaneous optimums obtained after
WB extraction and IRAE. Ultimate 3000 (Dionex, Idtsein, Germany) liquid chromatography
apparatus coupled to a diode array detector was used. Before analyses, the samples and
standards were filtered through 0.2 µm syringe filters (VWR, Rosny-sous-Bois, France).
The chromatography column C18 capillary column 100 × 4.6 mm (Hypersil Gold, Thermo
Scientific, MA, USA), was used for all experiments. The temperature of the column was
maintained at 40 ◦C. Water-formic acid solution (95:5) (solvent A) and acetonitrile (solvent
B) (HPLC grade, Sigma-Aldrich, St-Quentin Fallavier, France) were used as solvents. A
flow rate of 1 mL/min was applied. The HPLC applied method was as follows: 2%–6% of
solvent B in 25 min, 6%–15% of solvent B in 15 min, 15%–20% of solvent B in 12 min and
20%–40% of solvent B in 18 min. The injection volume of the sample was 20 µL.

3.4.4. Antifungal Activity

Simultaneous optimums of TPC extracts from orange peels obtained after WB extrac-
tion and IRAE were tested against the growth of a toxinogenic fungi A. flavus and the toxin
secretion of AFB1 from this fungus. A. flavus strain NRRL 62477 was used for this purpose.

After the growth of A. flavus strain on Czapek yeast extract agar medium (CYA) at
30 ◦C for 7 days, a spore suspension was prepared. The surface of the prepared culture
was scrapped with a sterile Pasteur pipette (Chase Scientific Glass, Inc., Rockwood, TN,
USA) and 8 mL of Tween 80 solution (0.005%) were added. A Neubauer hemocytometer
(Superior, Marienfeld, Lauda-Konigshofen, Germany) was used to count the spores. The
concentration of spores was adjusted to 106 spore/mL and spore suspension was then kept
at 4 ◦C for further use.

A rotavapor was used to evaporate ethanol and concentrate the TPC tested samples.
TPC (250 µg) obtained from each WB and IR extract were added to CYA medium. A final
volume of 20 mL was poured in petri dishes. For the control culture, 20 mL of CYA were
poured in the dish without TPC extracts. Then, 10 µL of the previously prepared spore
solution (106 spores/mL) were added in the center of each petri dish. The assays were
made in triplicate and all the dishes were left 4 days in the incubator at 28 ◦C. After this
incubation period, the growth inhibition of A. flavus was determined. The diameters of
the cultures were measured and compared to the negative control. The A. flavus inhibition
percentage was calculated according to Equation (3):

Inhibition Percentage = [(initial diameter − diameter after incubation)/initial diameter] × 100 (3)

3.4.5. AFB1 Extraction and HPLC Analysis

After 7 days of incubation at 28 ◦C on (CYA) medium, 3 agar plugs (0.5 cm diameter)
were removed from different points of the colony for each culture, weighted and placed
into 3 mL microtubes. One milliliter of HPLC grade methanol was added to each tube,
then the mixture was incubated and shaken for 60 min at room temperature. The mixture
was centrifugated for 15 min at 13,000 r.p.m (round per minute). Then, the supernatant
phase was recuperated and diluted with 11 mL phosphate buffer. The diluted extract was
injected into Aflaprep immunoaffinity columns (R-Biopharm, Glasgow, Scotland) using a
syringe for purification. An elution was done by adding 1.5 mL of methanol/acetic acid
(98:2, v/v) followed by 1.5 mL of HPLC grade water and the total volume was filtered
through 0.45 µm filters (Sartorius Stedim BiotechTM, PA, USA) then stored at 4 ◦C before
quantification. Aflatoxin B1 quantification was done with a Water Alliance HPLC system
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using an Utisphere ODB column, C18 (150 × 4.6 mm, 5 µm, 120 Å) (Interchim, Montluçon,
France) at 30 ◦C.

3.4.6. Statistical Analysis

All experiments and measurements were conducted in triplicates. Mean values were
calculated and standard deviations were expressed. Significance of the obtained results
was evaluated by p-value (p < 0.05; 95% of confidence level) using analysis of variance
(ANOVA) and LSD tests (Least Significant Difference). These statistical analysis and tests
were achieved using the software STATGRAPHICS® Centurion XV.

4. Conclusions

Our study aimed at valorizing blood orange peels using a simple and low-cost extrac-
tion method, Ired-Irrad®, that has the potential to improve the extraction of TPC. A central
composite design optimized the process. Based on the response surface methodology, the
optimal TPC extraction parameters were 79 ◦C for 37 min with an ethanol percentage of
64%. Under these optimized conditions, the experimental yield of TPC and their inhibition
percentage matched closely with the predicted results, and TPC yields were 18% higher
than those obtained with the conventional solid-liquid extraction. The bioactivity of the
extracted TPC was tested on the inhibition of the growth of A. flavus and the production of
Aflatoxin B1 by the same fungus. Extracted TPC have the potential to be used as natural
inhibitors of the carcinogenic Aflatoxin B1 production by A. flavus. IR blood orange peels
extracts represent an alternative strategy to the use of pesticides to control crop contamina-
tion. They can be commercially exploited and applied to food systems. It will be interesting
to study the molecular mechanism responsible for the inhibition of Aflatoxin B1 by TPC
extracted from blood orange peels.

5. Patent

The Ired-Irrad®, an infrared irradiation apparatus, was designed and patented in
collaboration between Faculty of Sciences at USJ and Faculty of Arts and Sciences at
University of Balamand. Lebanese patent 2017/11-11296L, granted on 29 November 2017.
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