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Abstract: Due to population growth, instability of climatic conditions, and reduction of the areas of
natural ecosystems, it becomes necessary to involve modern biotechnological approaches to obtain
highly productive plant material. This statement applies both to the creation of plant varieties and
the production of new pharmaceutical raw materials. Genetic transformation of valuable medicinal
plants using Agrobacterium rhizogenes ensures the production of stable and rapidly growing hairy roots
cultures that have a number of advantages compared with cell culture and, above all, can synthesize
root-specific substances at the level of the roots of the intact plant. In this regard, special attention
should be paid to the collection of hairy roots of the Institute of Plant Physiology RAS, Russian
Academy of Sciences, the founder of which was Dr. Kuzovkina I.N. Currently, the collection contains
38 hairy roots lines of valuable medicinal and forage plants. The review discusses the prospects of
creating a hairy roots collection as a basis for fundamental research and commercial purposes.
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1. Introduction

Plants produce a wide range of substances useful to mankind which are used in the
food industry as biologically active additives, feed additives, medicines, as well as flavor-
ings and food colorings [1–4]. Approximately 25% of the world pharmaceutical market
is products obtained from plants [4]. However, often high-value secondary metabolites
are synthesized by plants in small amounts under natural conditions. For example, about
10,000 kg of dry bark of Taxus sp. is required to obtain 1 kg of taxol [5]. Taxol (paclitaxel)
is the first drug from the taxan group, which entered clinical practice and firmly took
the leading position in the treatment of the most frequent malignant tumors—breast can-
cer, ovarian cancer, and non-small-cell lung cancer [6–9]. In addition, Taxol has shown
promising results in the treatment of Kaposi sarcoma [10]. Taxol is also being studied for
non-cancerous diseases that require microtubule stabilization to avoid cell proliferation
and angiogenesis, such as psoriasis, and for the treatment of Alzheimer’s or Parkinson’s
disease [11,12]. Taxol’s annual turnover by 2000 was $1.5 billion [13]. To obtain 1 kg of
vinblastine and 1 g of vincristine, which are also widely used anticancer drugs, 530 kg of
fresh Catharanthus roseus (L.) G. Don. leaves is needed [14]. Vinblastine and vincristine
are recommended for the treatment of rapidly proliferating neoplasms (hematosarcoma,
myeloma, acute leukemia, etc.), breast cancer, neuroblastoma, chorionepithelioma, and
lymphogranulomatosis [15].

Due to the global problem of instability of climatic conditions and the shortage of
plant raw materials, it is necessary to use biotechnological approaches to obtain it in
sufficient quantities, namely, the cultivation of plant cells and plant organs in vitro. In
this regard, special attention is drawn to biotechnological approaches associated with the
cultivation of cultures in vitro: undifferentiated—callus and cell suspension cultures and
differentiated—adventitious and hairy roots.
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The biotechnology of higher plants developed in the middle of the last century. Biotech-
nology in most cases is understood as an application of callus and suspension cultures,
which, as a rule, are combined under the general name “tissue culture”. The first patent
for the production of substances using plant tissue culture was obtained in 1956 [16]. Even
today, the greatest number of publications is devoted to the direction associated with
the use of in vitro cultured cells, namely, undifferentiated cultures. Numerous reviews
discuss the production of metabolites important for humans from suspension and callus
cultures [1,17–19]. Some authors have noted that the content of secondary metabolites in the
resulting suspension and callus cultures was higher than in intact plants [4,19,20]. However,
the opposite result was obtained in most cases [21–26]. Difficulties arise during large-scale
cultivation due to the instability of the synthesis of substances by undifferentiated cultures
in a liquid medium [19,27]. In addition, the synthesis of some pharmacologically important
substances may not be possible in undifferentiated cultures [17,27]. In this regard, attention
is drawn to differentiated cultures: shoots, adventitious, and hairy roots (transformed
roots). Adventitious roots are induced on media with high auxin and low cytokinin con-
tent. However, despite the studies that showed the promise of using adventitious [28–30]
(untransformed) roots, most studies noted the disadvantages of their use, primarily slow
growth and termination of the synthesis of target substances [27,31]. On the contrary, hairy
roots have rapid growth on a hormone-free medium and a high and stable synthesis of
essential substances, which has been repeatedly shown [31–38]. Therefore, the technology
of hairy roots is very promising.

In our group of specialized root metabolism at the Institute of Plant Physiology, the first
studies were carried out with non-transformed adventitious roots, but with the appearance
of the possibility of obtaining hairy roots, these studies were discontinued [39]. Thus, the
technology of hairy roots in Russia, as well as in other countries, arose later than cellular
biotechnology and the culture of isolated roots. Nevertheless, the number of works related
to hairy roots is steadily increasing.

This review discusses obtaining hairy roots as producers of valuable metabolites, as
well as the prospects of creating a collection of hairy roots consisting of different types of
crops for fundamental and commercial purposes.

2. The History of the Development of the Hairy Roots Trend in the World

The history of the emergence of hairy roots as an object of scientific research began
in the late 19th to early 20th century and is associated primarily with the American phy-
topathologist Smith, who studied the formation of crown galls and hairy roots in a number
of fruit plants [40]. In November 1908, cultures of bacteria capable of infecting new plants
were isolated from the hairy roots of an apple tree, which is described in detail in a large-
scale 215-page work by American authors, accompanied by many high-quality photos to
document the experimental material obtained [40]. The same paper describes numerous
experiments in which bacteria isolated from one plant species successfully infected another
and formed similar hairy roots in that one. However, the original causes of the modification
of plant organisms under the influence of crown gall bacteria in some and hairy roots in
others remained unclear.

The first work that showed that the formation of hairy roots is caused by the transfer of
genetic material from Agrobacterium rhizogenes dates back to 1982 [41]. Agrobacterium rhizogenes
is a Gram-negative bacillus, a symbiotic bacterium that currently has been renamed (also
named Rhizobium rhizogenes). The article drew a parallel between two types of pathogenic
bacteria—Agrobacterium tumefaciens and Agrobacterium rhizogenes and concluded that the Ri-
plasmid of A. rhizogenes, as well as the Ti-plasmid of A. tumefaciens, can be a vector for
the transfer of genetic material. Starting from this date, researchers began to consider hairy
roots not just as a neoplasm resulting from the attack of a pathogenic bacterium, but also
as a promising model for studying the features of secondary metabolism and, ultimately, as
producers of natural products.
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In 1997, the monograph “Hairy Roots: Culture and Applications” (Doran P.M., Har-
wood Academic) was published on the status of research activities in the field of hairy
root biotechnology at that time [42]. The monograph outlined laboratory protocols for the
initiation and cultivation of hairy roots; described the use of hairy roots as producers of
secondary metabolites; as an expression system for the production of antibodies; considera-
tions are given for their large-scale cultivation in bioreactors. Studies on phytoremediation
were also presented. The monograph combines the work of scientists from many fields,
from genetics and molecular biology to horticulture, medicine, environmental research,
and biotechnology.

According to 2006 data since the time of the first publications, the roots of more
than 140 plant species belonging to 40 families have been introduced into in vitro cul-
ture using methods of genetic transformation of roots [43]. The number of introduced
species is only presently increasing [34]. However, hairy roots are mainly induced in
dicotyledonous plants. Obtaining hairy roots in monocotyledonous plants is difficult since
the infection of such plants with A. rhizogenes is a very rare event in nature. One of the
reasons for this may be the lack of production of wounder phenolic compounds, such
as acetosyringone [44]. It acts as a chemotactic agent at very low concentrations and ac-
tivates vir-genes on Ri-plasmids, which initiate the infection process for the transfer of
T-DNA [45,46]. Nevertheless, there are works on obtaining hairy roots in representatives
of the monocotyledonous class, such as Alstroemeria [47], Chlorophytum borivilianum [48],
Zea mays [49], Crocus sativus [44], etc. These works are of great interest since a significant
number of medicinal plants are monocotyledonous. One of the ways to overcome the
difficulty of agrobacterial transformation for monocotyledonous plants is to use the mi-
croparticle bombardment method, since there is no limitation to the range of hosts with this
method. It was developed in 1990 by Sanford and coworkers [50]. Indeed, in some cases,
the microparticle bombardment method has been successful enough to produce hairy roots
in both monocotyledonous and dicotyledonous plants [51–53]. Despite this, most authors
tend to use Agrobacterium even in the case of monocotyledonous plants, since this method
is simpler and does not require expensive equipment. The advantage of agrobacterial
transformation over the microparticle bombardment method is the integration of one copy
of the transgene in most cases, the low incident of transgene silencing, and the ability for
long DNA segment transfer [47,52,54].

For 40 years since the publication of the first works, hairy roots have been used as
producers of secondary metabolites, such as alkaloids, anthocyanins [37,55], flavonoids, gin-
senosides, stilbenes, lignans, terpenoids, and shikonin [56]; as well as recombinant proteins
such as vaccine [57,58], monoclonal antibodies [59], and therapeutic proteins [60]. Studies
on the possibility of using hairy roots in phytoremediation are being conducted [61,62].
However, to the greatest extent, the hairy roots are used as a source of pharmacologically
valuable secondary metabolites. It should be noted that, in most cases, the content of
medicinal substances in hairy roots is at the level or higher than their content in the roots
of intact plants (Table 1). One of the reasons for the high synthesis of various secondary
metabolites is the presence of rol-genes, primarily rolB and rolC [63,64]. Bulgakov et al.
showed that rolB affects the expression patterns of MYB factors controlling the early steps
of flavonoid biosynthesis [64].

Hairy roots can synthesize a number of secondary metabolites that are not typical
for the intact roots of plants [65]. It has been shown that naphthochinon lawson, which
accumulated in the aerial parts of Lawsonia inermis L., was not found in plant roots and ad-
ventitious roots cultivated in vitro, but was presented in hairy roots [66]. It was considered
that only artemisin accumulates in the aboveground part of the Artemisia annua plant [67],
but it was shown later that hairy roots can also produce artemisin [68].

In the case of an insufficient level of synthesis of secondary metabolites in root cultures,
either elicitors or genetic engineering methods are used to increase their content [69]. The
use of elicitors is well highlighted in a recently published review covering the period from
2010–2022 [21]. According to this review, methyl jasmonate acts as the main elicitor and
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the content of secondary metabolites in the hairy roots of various families was signifi-
cantly increased with it, but the greatest effect was shown in representatives of the genus
Lamiaceae [21].

The introduction of genes controlling the synthesis of valuable secondary metabolites
makes it possible to obtain hairy roots with a stable synthesis of substances regardless
of the action of external factors. For example, the introduction of transcription factors
WRKY1,2 [70,71], MYB98 [72], key genes involved in the tanshinone biosynthetic pathway
HMGH and DXR [73], GGPPS and DXSII [20] increased the synthesis of tanshinones in
the hairy roots of Salvia miltiorrhiza by 1.4–21 times [74]; overexpressing CrORCA4 in
Catharanthus roseus increased tabersonine synthesis by 40 times [75]. The introduction of
the maize transcription factor ZmLc and Arabidopsis transcription factor AtPAP1 made it
possible to increase the content of three main flavones (baicalin, baicalein, and wogonin) in
hairy roots of Scutellaria baicalensis by 322% and 532%, respectively, by a comprehensively
upregulating flavonoid biosynthesis of pathway genes [76]. Through the introduction of
curcumin biosynthetic pathway genes, it was possible to increase the level of curcumin and
its glycosides in Atropa belladonna hairy roots [77]. The number of such works is steadily
increasing.

All of the aforementioned makes hairy roots technology a powerful tool for both
fundamental and applied research.
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Table 1. The benefits of using hairy roots. The examples of studies in which the content of secondary metabolites in hairy roots is at the level or higher than in
untransformed tissues.

Species Analyzed Metabolites Metabolites Content in Hairy Roots Metabolites in Plants Metabolites in Callus
Suspension Reference

Atropa belladonna Total alkaloids contents 1.1–8 mg/gDW Intact roots—0.3 mg/g DW [78]

Atropa belladonna Total alkaloids contents 1.32% In untransformed roots—0.8% [79]

Artemisia dubui Artemisin 0.603–0.753%. In untransformed roots—0.001% [80]

Artemisia sp. Artemisinin and its co-products 1.02 mg/g DW In untransformed roots—up to
0.687 mg/g DW [81]

Panax ginseng Ginsenoside Total content 5.44 mg/g DW Total content in untransformed
roots—4.55 mg/g DW [82]

Panax ginseng Saponins 2–2.4 times higher compared with
native root [83]

Panax ginseng Ginsenoside 2.88% of dry weight when cultured in
1/8 MS medium for 8 weeks

2.56% of dry weight (cultivated roots
were 5 years old) [84]

Rubia yunnanensis Rubiaceae-type cyclopeptides (RAs) Amount of (RAs) in 1/2 MS liquid
medium—4.611 µg/g DW

In plants in vitro—0.331 µg/g and
4.096 µg/g DW for shoots and roots,

respectively. Amount of RAs in
seed-borne plants—80.296 µg/g,

quinones—7409 µg/g DW

In calli—1.082 µg/g DW [85]

Rubia yunnanensis Quinones 5067 µg/g DW 24–132 µg/g DW in plants in vitro; in
seed-borne plants 7409 µg/g DW In calli—338 µg/g DW [85]

Rubia cordifolia Linn Total phenolic contents 139.7 mg/g DW 41.02 mg/g DW of field grown roots - [86]

Rubia cordifolia Linn Alizarin In 5.16-fold than normal roots of field
grown plants

5.16 times lower in the roots of the
field-grown plants compared with the

hairy roots
[86]

Withania sominifera Withanolide A 157.4 µg/g DW 57.9 µg/g DW - [87]
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3. The Collection of Hairy Roots of the Institute of Plant Physiology

In Russia, the technology of obtaining hairy roots is associated with the name of
Kuzovkina I.N. The first object was the hairy roots of Peganum harmala L. obtained in
1987 [88,89] (Table 2).

Peganum harmala L. (Zygophyllaceae) is a perennial herbaceous plant common in
the Mediterranean region of Europe, Central Asia, and southern South America [90,91].
It refers to medicinal plants widely used in folk and traditional Chinese medicine for
the treatment of various human diseases [90–94]. The therapeutic effect of extracts from
seeds and vegetative parts of the plant is explained by the presence of two classes of
alkaloids—quinazoline and indole β-carboline type. Alkaloids of the first class (peganine
and its derivatives) are found only in the aerial part, and β-carboline (the main ones are
harmine and harmaline) are found only in the roots (Figure 1).
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Figure 1. The main β-carboline alkaloids in roots of Peganum harmala.

According to the literature, Peganum harmala has antibacterial [95], anti-inflammatory [96],
anti-fungal [97], and antitumor effects [92], and is used to treat hypertension [98], cough [99],
diabetes [100], jaundice [94], malaria [101], tremor paralysis, Parkinson’s disease, and
Alzheimer’s disease [92,102]. Despite the wide spectrum of action, the medicine uses pe-
ganin hydrochloride (ampoules and tablets) for the treatment of myopathy and myasthenia
gravis and harmine hydrochloride for the treatment of encephalitis, tremor paralysis, and
Parkinson’s disease [103].

It was shown by our group that the content of harmine and harmalol (β-carboline
alkaloids) in the transformed roots was 30 and 4.3 times higher than in callus, respectively,
which indicates the promise of the obtained roots [89]. Calli and hairy roots of P. harmala are
still maintained in the collection of the IPP RAS (Figure 2). Because the content of harmine
in the hairy roots was predominant and only slightly inferior to its content in the roots of
intact plants, the resulting hairy roots of Peganum harmala can be a source for obtaining an
important group of pharmacologically valuable alkaloids which include harmine.
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Figure 2. Calli (left) and hairy roots (right) of Peganum harmala obtained in 1987. The photos were
taken in 2021.

After, hairy roots of Ruta graveolens L. (Rutaceae) were obtained (Figure 3). Ruta graveolens
(common rue, rue) is a plant with a very rich composition of secondary metabolites (about 200)
belonging to various groups of low molecular weight compounds [104]. Ruta graveolens
contains coumarins, alkaloids, volatile oils, flavonoids, and phenolic acids [104]. Rue has
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been known as a medicinal plant since ancient times. It has already been used to treat
various diseases since the time of Hippocrates [105]. There are numerous reports on the
use of rue herbs in the folk medicine of various countries, namely, in Indian and Chinese
medicine. Rue has been used for a long time as an analgesic, to eliminate eye problems, and
to improve the condition of patients with rheumatism and dermatitis [104,106]. In Russian
folk medicine, it was used for heart diseases, disorders of the nervous system, and as an
effective abortifacient [107]. Currently, the antiviral, antibacterial, and fungicidal effects of
rue have been proven [106]. Along with pronounced pharmacological properties, rue is also
used as an essential oil plant. Rue essential oil finds application in the perfumery and food
industry [108].
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rue is geijarene (right).

The peculiarity of this plant is that the synthesis of these substances is organ-specific,
i.e., the root and aerial parts of the plant form various secondary metabolites, and the main
part of them is characterized by a kind of fluorescence. With in vitro cultures at its disposal,
it is possible to study the spatial distribution of metabolites. From 1969 to 1976, calli of
obtained Ruta graveolens were obtained by Kuzovkina (Figure 4) to study the biogenesis of
furocoumarins and acridone alkaloids. However, it became possible to study the spatial
organization of low molecular weight metabolites only with the production of hairy roots
of Ruta graveolens in 1991 [109,110].
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Intensively branching genetically transformed roots forming a large number of root
apexes turned out to be a convenient object for studying the function of the so-called border
cells, which are root cap cells that separate from the root tip during its growth. They
are the first to come into direct contact with various representatives of the rhizosphere.
Hairy roots of common rue retain the ability to synthesize the essential oil typical of intact
plant roots, the main component of which is sesquiterpene geijerene [110]. Interestingly,
geijerene (Figure 3) belongs to the number of root-specific volatile metabolites that attract
entomopathogenic nematodes eating the larvae of a dangerous root pest of young citrus
plants (Rutaceae), the weevil Diaprepes abbreviate [111].

Thus, hairy roots can be a model not only for the spatial study of secondary metabolites
but also for the study of allelopathic relationships between roots and soil micro- and macrobiota.

When creating the collection, the main attention was paid to those plants in which
the roots were found to contain low molecular weight metabolites that are of practical
interest and are used in the medical and food industries. For this purpose, hairy roots of
Glycyrrhiza uralensis, Rauwolfia serpentina, Rubia tinctorum, Rhodiola rosea, various species of
the genus Scutellaria, and other most important medicinal plants were obtained [112].

Rauwolfia serpentina Benth. (Apocynaceae) has pronounced pharmacological proper-
ties. The main use of R. serpentina was for snake and insect bites, fever, cholera, diarrhea, as
a mild sedative for children, and in Java, it was used as an anthelmintic [113–115]. To date,
it has been shown that Rauwolfia serpentina has antibacterial [116], antifungal [117], anti-
inflammatory [118], antidiabetic, mosquito larvicidal, antihistamine, antidiarrheal [119],
hypoglycemic and hypolipidemic, anticancer, as well as sedative [120] and hepatopro-
tective activities [113,121]. Currently, more than 80 alkaloids have been isolated from
this plant [122]. However, reserpine is a pharmacologically more potent alkaloid [122].
On the basis of Rauwolfia serpentina alkaloids, the drug “Reserpine” against arterial hy-
pertension and “Ajmalin”—an antiarrhythmic agent was released. The hairy roots of
Rauwolfia serpentina were obtained in 1990 and are cultivated to the present (Figure 5).
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Figure 5. The hairy roots of Rauwolfia serpentina (left) and the main alkaloid (right).

Rubia tinctorum L. (Rubiaceae) is also a medicinal plant, according to modern stud-
ies, containing about 250 compounds with different chemical classes [123]. The main
components are anthraquinones and their derivatives such as alizarin and purpurin,
which have a diuretic, antispasmodic, and laxative effect [124]. At present, the antitu-
mor, hepatoprotective and antidiabetic properties of the roots of common madder have
been shown [123,125,126]. Besides that, the roots of common madder have been used as a
dye for dyeing fabrics and applying patterns since ancient times [127,128].

The hairy roots of Rubia tinctorum were obtained in 1991 and are cultivated to the
present in the collection of hairy roots of the Institute of Plant Physiology (Figure 6).
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Figure 6. Hairy roots of Glycyrrhiza uralensis (left) and Rubia tinctorum (right). The photo was taken
in 2021.

Glycyrrhiza uralensis (licorice) (Fabaceae) is a plant that has found its application both in
the food and pharmaceutical industries. Licorice contains many different substances, among
which glycyrrhizin and glycyrrhetic acid can be considered the main ones. The plant has
been known since ancient times. Licorice was considered a panacea for many diseases in
oriental medicine. The Egyptians, Greeks, and Romans recommended licorice as a remedy
to help fight physical stress and fatigue [129]. In our country (Russia), licorice has always
been the largest harvesting object, as well as the subject of raw material exports. Biologically
active constituents of licorice have antiviral and anti-inflammatory effects; it has recently
been shown that it can also be used to treat alcoholic liver damage [130–132]. Licorice root is
also used in the food industry as a sweetener, flavor, and aroma enhancer [129,133].

The hairy roots of Glycyrrhiza uralensis were obtained in 1990 and are cultivated to the
present in the collection of hairy roots of the Institute of Plant Physiology (Figure 6).

The genetic stability of hairy roots and their ability to maintain the synthesis of low
molecular weight metabolites under in vitro conditions at the level of the roots of the whole
plant formed the basis for studies conducted with the roots of valuable medicinal plants of
the genus Scutellaria. The roots of Baikal skullcap, which have been steadily growing for
more than 25 years, synthesize flavones typical of the roots of this plant—glucuronides:
baicalin and wogonoside, and aglycones: baicalein and wogonin [134–138] (Figure 7).
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Although the content of major metabolites in hairy roots is three times lower than in the
roots of intact plants, this disadvantage is compensated by the rapid growth and year-round
cultivation of hairy roots. However, if the dominant metabolite of the Scutellaria baicalensis
roots of intact plants is the glucuronide baicalin and, accordingly, its aglycone baicalein,
then the main flavone in hairy roots is the mono-O-methylated glucuronide wogonoside
and its aglycone wogonin [134,135,138]. Later it was suggested that the increase in the
content of monomethylated flavones is associated with the climatic features of the region
(Dauria, Russia), where the plants were taken for transformation [139]. Nevertheless, when
obtaining other members of the genus Scutellaria (Scutellaria andrachnoides (together with
Kyrgyz colleagues), Scutellaria przewalskii, Scutellaria pycnoclada, and Scutellaria lateriflora
taken from different climatic zones, increased content of mono-O-methylated flavones was
also shown [136,140]. This suggests more subtle regulatory mechanisms that are currently
being investigated. The practical significance of such a ratio of flavones in skullcap hairy
roots was assessed after the publication of Japanese researchers in 2009, who showed
that the aglycone wogonin selectively induces apoptosis only in cancer cells, while not
affecting normal cells [141]. Its antitumor activity was confirmed by in vivo studies, which
opened up the possibility of the clinical application of wogonin [142–144]. Wogonin has
been confirmed to be effective against neurodegenerative diseases, including Alzheimer’s
disease [145]. The anti-coronavirus properties of wogonin have also been recently discov-
ered [146–148]. Because the aglycone wogonin has a pronounced therapeutic effect, but the
main methylated flavone in the hairy roots of S. baicalensis obtained by us is wogonoside
glucuronide, the latter must be hydrolyzed. Some publications propose different ways
of obtaining aglycones from glucuronides, one is hydrolysis using β-glucuronidase from
various microorganisms. For instance, 90% of glucuronides were hydrolyzed to aglycones
within 3 h with the help of β-glucuronidase from Lactobacillus delbruecki [149]. At the same
time, it is known that the Baikal skullcap contains its own β-glucuronidase (sGUS) [150,151].
We have conducted a number of studies of the relationship between the content of basic
flavones and the activity of the sGUS both in the maintained S. baicalensis hairy roots strain
and in the undifferentiated callus and suspension cultures obtained from it [26,77]. As a
result, it was shown that the activity of sGUS during the cultivation cycle of S. baicalensis
hairy roots correlated with the content of wogonin more than with the content of baicalein.
We have also demonstrated that the content of wogonin increases in response to mechanical
stress and is presumably associated with the protection of plants from biotic stress, in
particular, from insect pests. It should be noted that undifferentiated cultures (calli and
suspensions) of S. baicalensis had a different ratio of flavones with a predominance of the
baicalin/baicalein pair, in contrast to hairy roots. Interestingly, sGUS activity in hairy
roots was 10 times higher than in undifferentiated cultures [137]. In the future, we plan to
study the possibilities of sGUS activation and an increase in the level of biologically active
flavones-aglycones.

Thus, in our studies conducted on the hairy roots of members of the genus Scutellaria
from the collection of hairy roots of the Institute of Plant Physiology, it was shown that
they contain the same set of flavones as the intact roots. However, the roots of intact plants
and hairy roots differ in the ratio of flavones.

This makes our objects unique both for research and commercial use.
Another rare medicinal plant from which both hairy roots and undifferentiated cells

were obtained was Rhodiola quadrifida Pall. (Crassulaceae), known for its medicinal proper-
ties [152–154]. It belongs to the alpine species and its range is rapidly shrinking [155]. It
should be pointed out that the content of the main metabolites (salidroside and rosavin)
was higher in undifferentiated callus cultures than in hairy roots [156]. The results are of
considerable interest for further research.

At present, the collection of hairy roots includes 38 hairy roots strains belonging to
25 plant species and 16 lines of callus cultures (Table 2).

The collection mainly maintains hairy roots of medicinal plant species (84%), and the
two families that are predominantly represented are Fabaceae and Lamiaceae (Figure 8).
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Table 2. Some strains in the hairy roots collection of Institute of Plant Physiology.

Family Species Name Number of
Lines

Type of the
Culture

The Year
Obtained

Origin of the
Culture

Secondary
Metabolites Note Possible Use

Literature
References in
Which This

Strain Is
Mentioned

Apocynaceae
Rauwolfia

serpentina L.
(Benth.)

1 Hairy roots 1990 Leaves of
juvenile plants

Contain indole
alkaloids

(vomilenine,
vinorine,

perakine) higher
than in

suspension
culture.

The total alkaloid
content was

3 times lower
compared with
the suspension

culture. There is
no raucaffricine
alkaloid, which
predominates in

suspension
culture.

Pharmacology,
medicine [112]

Caryophyllaceae Silene vulgaris L. 1 Hairy roots 2002 - - -
Phytoremediation
(accumulation of

heavy metals)
-

Crassulaceae Rhodiola
quadrifida Pall 2 Hairy roots 2017 Cotyledons and

hypocotyls

Contain
salidroside,

rosavin

Tyrosol and
rosarin are

missing.
The content is

significantly lower
than in callus

tissue.

Pharmacology,
preserving of rare
and endangered

species

[156]

Rhodiola
quadrifida Pall 4 Calli 2019 Hairy roots

Contain
salidroside,

rosavin, rosin

Thyrosol and
rosarin are absent

Fabaceae Hedysarum sp. 5 Hairy roots 2001–2019 Juvenile
seedlings

Isoflavones
(ononine) - Pharmacology,

medicine [157]
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Table 2. Cont.

Family Species Name Number of
Lines

Type of the
Culture

The Year
Obtained

Origin of the
Culture

Secondary
Metabolites Note Possible Use

Literature
References in
Which This

Strain Is
Mentioned

Glycyrrhiza
uralensis L. 1 Hairy roots 1990 Hypocotyle of

juvenile plant
Phenolic

derivatives - Pharmacology,
medicine -

Lupinus
polyphyllus L. 1 Hairy roots 1990 Hypocotyle of

juvenile plant
Isoflavone
glycoside

Biotechnology,
feed additives

Ononis sp. L. 4 Hairy roots 1993–1994 Hypocotyle of
juvenile plant isoflavonoids

Sophora korolkovii
Koehne 1 Hairy roots 2004 Hypocotyle of

juvenile plant
Phenolic

compounds

Trifolium repens L. 1 Hairy roots 1991 Hypocotyle of
juvenile plant

A model object for
studying

arbuscular
mycorrhizae

Medicago sativa L. 2 Hairy roots 2013 Hypocotyle of
juvenile plant Phytoremediation

Lamiaceae Scutellaria
baicalensis Georgi 3 Hairy roots 1993, 2018,

2021
Leaves of

juvenile plant

Contains flavones
(baicalin,
baicalein,
wogonin,

wogonoside)

The content of
methylated

flavones is higher
than in the roots
of intact plants

Pharmacology,
medicine, food

industry
[135–138,158]

Scutellaria
baicalensis Georgi 2 Calli Hairy roots

Contains flavones
(baicalin,
baicalein,
wogonin,

wogonoside)

The main flavones
are baicalin and

baicalein, as in the
roots of intact

plants.
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Table 2. Cont.

Family Species Name Number of
Lines

Type of the
Culture

The Year
Obtained

Origin of the
Culture

Secondary
Metabolites Note Possible Use

Literature
References in
Which This

Strain Is
Mentioned

Scutellaria
androchnoides 1 Hairy roots 2006 Cotyledon and

hypocotyl

The dominant
compounds are

acteoside
(phenylethanoids)
and the four main

flavones of
representatives of

Scutellaria sp.:
baicalin,

wogonoside,
wogonin and

baicalein

The content of
acteoside is 10

times higher, and
the content of

methylated
flavone

wogonoside is
3 times higher
compared with

the roots of intact
plants

Pharmacology,
medicine [140]

Scutellaria
androchnoides 1 Calli 2006 Hairy roots

The dominant
metabolites are

acteoside and the
methylated flavones

wogonoside and
wogonin

The content of
acteoside is

2.5 times,
wogonoside

1.5 times higher
than in the roots
of intact plants

Pharmacology,
medicine

Scutellaria
przewalskii 1 Hairy roots 2014, 2020

Cotyledons,
hypocotyls of
sterile-grown

plants

Based on HPLC
data, 17 flavones

were found, among
which the main
metabolites are

baicalin and
wogonoside
glucuronides

The content of the
main metabolites
is higher than in
all of the above

representatives of
Scutellaria

Pharmacology,
medicine [136]



Molecules 2022, 27, 8040 14 of 23

Table 2. Cont.

Family Species Name Number of
Lines

Type of the
Culture

The Year
Obtained

Origin of the
Culture

Secondary
Metabolites Note Possible Use

Literature
References in
Which This

Strain Is
Mentioned

Scutellaria
lateriflora 2 Hairy roots 2020

Hypocotyls of
sterile-grown

plants

Contains flavones
(baicalin,
baicalein,
wogonin,

wogonoside)

The content of
flavones is

4.57 mg/g DW,
that is lower than
in all the species

of hairy roots
studied by us

Pharmacology,
medicine [136]

Scutellaria
pycnoclada 8 Hairy roots 2020

Hypocotyls of
sterile-grown

plants

In contrast to
other lines of
skullcaps, the
ratio of main

flavones is close to
that of the roots of

intact plants

Pharmacology,
medicine [136]

Linaceae Linum
usitatissimum L. 1 Hairy roots 1995

Cotyledons of
sterile-grown

seedlings

Cyanogenic
glycosides, lignan

Pharmacology,
medicine

Rubiaceae Rubia tictorum L. 1 Hairy roots 1991 Anthraquinones

The content of
anthraquinones is

2.5% by dry
weight. In the

roots and
rhizomes of an

intact plant—5.2%

Pharmacology,
medicine [159]

Rutaceae Ruta graveolens L. 1 Hairy roots 1991 Hypocotyle of a
juvenile plant Acridon alkaloids

Study of the
spatial

distribution of
acridone alkaloids

[109]
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Table 2. Cont.

Family Species Name Number of
Lines

Type of the
Culture

The Year
Obtained

Origin of the
Culture Secondary Metabolites Note Possible Use

Literature
References in
Which This

Strain Is
Mentioned

Ruta graveolens L. 8 Calli
1969, 1970,
1978, 1980,

1999

Stem of whole
plants,

hypocotyle of
juvenile

seedlings, roots
of juvenile
seedling

Acridonalkaloids
Study of the

biosynthesis of
acridone alkaloids

[160,161]

Zygophyllaceae Peganum harmala L. 1 Hairy roots 1988 Stem of a
juvenile plant

β-carbolinealkaloids
(harmine, harmalol,

harmaline), serotonin

Study of the
distribution of

secondary
metabolites in

plant roots.
Pharmacology

[52]

Peganum harmala L. 1 Calli 1988

Spontaneous
callus formation

on a juvenile
plant stem

β-carboline alkaloids,
serotonin
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The hairy roots are continuously cultivated in our collection. Surely, the permanent 
cultivation of hairy roots is laborious, but cryopreservation of hairy roots is not an easy 
task, requiring the development of an individual protocol for each line of hairy root cul-
tures [26]. Nevertheless, due to the genetic stability of hairy roots, permanent transplants 
do not affect the level of synthesis of metabolites. 

Figure 8. The percentage of plant families represented in the collection of hairy roots.

The collection contains 14 genera of plants of the Fabaceae family including both forage
plants (Lupinus polyphyllus L., Medicago sativa L., and Trifolium repens) and medicinal plants
(Sophora korolkovii Koehne, Glycyrrhiza uralensis L., Ononis sp., and Hedysarum sp.). The
Lamiaceae family is only represented in the collection by the genus Scutellaria, which is widely
known for its medicinal properties. The number of lines obtained from each species of the
genus Scutellaria is from 1 to 8, so the total number of lines of hairy roots belonging to the
Lamiaceae family is equal to the number of lines of the Fabaceae family. The remaining families
are represented by single species, each of which is maintained by one line of hairy roots.

For comparative studies, undifferentiated callus cultures are maintained in the collec-
tion (Table 2), however, they grow much slower than hairy roots (Figure 9).
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Figure 9. Growth index of the Scutellaria baicalensis Georgi in in vitro cultures.

The hairy roots are continuously cultivated in our collection. Surely, the permanent
cultivation of hairy roots is laborious, but cryopreservation of hairy roots is not an easy task,
requiring the development of an individual protocol for each line of hairy root cultures [26].
Nevertheless, due to the genetic stability of hairy roots, permanent transplants do not affect
the level of synthesis of metabolites.
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It should be noted that the presence of the collection makes it possible to conduct
a wide range of studies that cannot be done with one or more lines at one’s disposal
(Table 2). The results obtained can be used in practical activities for the production of
biologically active substances in the pharmaceutical industry. The use of hairy roots is
becoming increasingly important due to the reduction of the areas of medicinal plants and
the production of new strains of hairy roots.

4. Conclusions

Hairy roots are a unique in vitro system capable of rapid growth on hormone-free me-
dia and significant synthesis of secondary metabolites characteristic of both underground
and aboveground parts of plants. Since they are differentiated structures, they can be
used as a model to study the spatial distribution of secondary metabolites in plant roots.
The collection of hairy roots can be not only a tool for conducting various fundamental
and applied research but also a way to preserve rare and endangered species. It is also
extremely interesting to reveal the features of the synthesis of secondary metabolites in
differentiated and undifferentiated cultures obtained from them, as well as on media of
different compositions. The latter can be of great practical importance. The prospects
for the development of the collection of hairy roots include the expansion of the range
of plant families, from which they will be obtained, including at the expense of “stable”
monocotyledonous species.

Author Contributions: Conceptualization, A.Y.S. and M.V.M.; writing and editing, A.Y.S., A.I.S.,
E.A.G., D.V.T. and S.V.E. All authors have read and agreed to the published version of the manuscript.
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Data Availability Statement: The data presented in this study are available on request from the
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Acharya, K.; et al. Peganum spp.: A Comprehensive Review on Bioactivities and Health-Enhancing Effects and Their Potential for
the Formulation of Functional Foods and Pharmaceutical Drugs. Oxid. Med. Cell. Longev. 2021, 2021, 1–20. [CrossRef] [PubMed]

91. Cheng, X.-M.; Zhao, T.; Yang, T.; Wang, C.-H.; Bligh, S.W.A.; Wang, Z.-T.; Key, M. HPLC Fingerprints Combined with Principal
Component Analysis, Hierarchical Cluster Analysis and Linear Discriminant Analysis for the Classifi cation and Diff erentiation
of Peganum sp. Indigenous to China. Phytochem. Anal 2010, 21, 279–289. [CrossRef]

92. Zhang, Y.; Shi, X.; Xie, X.; Laster, K.V.; Pang, M.; Liu, K.; Hwang, J.; Kim, D.J. Harmaline isolated from Peganum harmala suppresses
growth of esophageal squamous cell carcinoma through targeting mTOR. Phyther. Res. 2021, 35, 6377–6388. [CrossRef]

93. Zhu, Z.; Zhao, S.; Wang, C. Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients:
A Review. Molecules 2022, 27, 4161. [CrossRef]

94. Li, S.; Cheng, X.; Wang, C. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the
genus Peganum. J. Ethnopharmacol. 2017, 203, 127–162. [CrossRef]

95. Khadraoui, N.; Essid, R.; Jallouli, S.; Damergi, B.; Ben Takfa, I.; Abid, G.; Jedidi, I.; Bachali, A.; Ayed, A.; Limam, F.; et al.
Antibacterial and antibiofilm activity of Peganum harmala seed extract against multidrug-resistant Pseudomonas aeruginosa
pathogenic isolates and molecular mechanism of action. Arch. Microbiol. 2022, 204, 133. [CrossRef]

96. Abbas, M.W.; Hussain, M.; Qamar, M.; Ali, S.; Shafiq, Z.; Wilairatana, P.; Mubarak, M.S. Antioxidant and Anti-Inflammatory
Effects of Peganum harmala Extracts: An In Vitro and In Vivo Study. Molecules 2021, 26, 6084. [CrossRef]

http://doi.org/10.1016/j.jare.2020.01.012
http://doi.org/10.1007/s10142-014-0385-0
http://doi.org/10.1021/acs.jafc.5b04697
http://doi.org/10.1111/nph.14252
http://doi.org/10.1016/j.ymben.2021.01.003
http://doi.org/10.1016/j.jbiotec.2020.12.022
http://doi.org/10.1016/S0168-1656(00)00287-X
http://doi.org/10.1016/0168-9452(87)90151-8
http://doi.org/10.4314/ajb.v7i18.59272
http://doi.org/10.1080/10826068.2017.1342262
http://doi.org/10.1016/S0031-9422(01)00062-0
http://doi.org/10.1007/BF00272780
http://doi.org/10.1016/S0031-9422(98)00308-2
http://doi.org/10.1016/j.jbiotec.2021.09.004
http://doi.org/10.1111/j.1744-7909.2008.00680.x
http://www.ncbi.nlm.nih.gov/pubmed/18713347
http://doi.org/10.1016/0031-9422(93)85453-X
http://doi.org/10.1515/znc-1990-0626
http://doi.org/10.1155/2021/5900422
http://www.ncbi.nlm.nih.gov/pubmed/34257813
http://doi.org/10.1002/pca.1198
http://doi.org/10.1002/ptr.7289
http://doi.org/10.3390/molecules27134161
http://doi.org/10.1016/j.jep.2017.03.049
http://doi.org/10.1007/s00203-021-02747-z
http://doi.org/10.3390/molecules26196084


Molecules 2022, 27, 8040 21 of 23

97. Sarpeleh, A.; Sharifi, K.; Sonbolkar, A. Evidence of antifungal activity of wild rue (Peganum harmala L.) on phytopathogenic fungi.
J. Plant Dis. Prot. 2009, 116, 208–213. [CrossRef]

98. Samaha, A.A.; Fawaz, M.; Salami, A.; Baydoun, S.; Eid, A.H. Antihypertensive Indigenous Lebanese Plants: Ethnopharmacology
and a Clinical Trial. Biomolecules 2019, 9, 292. [CrossRef]

99. Liu, W.; Cheng, X.; Wang, Y.; Li, S.; Zheng, T.; Gao, Y.; Wang, G.; Qi, S.; Wang, J.; Ni, J.; et al. In vivo evaluation of the antitussive,
expectorant and bronchodilating effects of extract and fractions from aerial parts of Peganum harmala linn. J. Ethnopharmacol. 2015,
162, 79–86. [CrossRef]

100. Abd El Baky, H.H.; Ahemd, A.A.; Mekawi, E.M.; Ibrahem, E.A.; Shalapy, N.M. The anti-diabetic and anti-lipidemic effects of
Peganum harmala seeds in diabetic rats. Der Pharm. Lett. 2016, 8, 1–10.

101. Astulla, A.; Zaima, K.; Matsuno, Y.; Hirasawa, Y.; Ekasari, W.; Widyawaruyanti, A.; Zaini, N.C.; Morita, H. Alkaloids from the
seeds of Peganum harmala showing antiplasmodial and vasorelaxant activities. J. Nat. Med. 2008, 62, 470–472. [CrossRef]

102. Nasibova, T.; Garaev, E. Potential anti-Alzheimer alkaloids of Peganum harmala. Alzheimer’s Dement. 2021, 17, e056722. [CrossRef]
103. Kempster, P.; Ma, A. Parkinson’s disease, dopaminergic drugs and the plant world. Front. Pharmacol. 2022, 13, 3216. [CrossRef]
104. Malik, S.; Moraes, D.F.C.; do Amaral, F.M.M.; Ribeiro, M.N.S. Ruta graveolens: Phytochemistry, Pharmacology, and Biotechnology.

Ref. Ser. Phytochem. 2017, 4, 177–204. [CrossRef]
105. Pollio, A.; De Natale, A.; Appetiti, E.; Aliotta, G.; Touwaide, A. Continuity and change in the Mediterranean medical tradition:

Ruta spp. (rutaceae) in Hippocratic medicine and present practices. J. Ethnopharmacol. 2008, 116, 469–482. [CrossRef]
106. Jinous Asgarpanah Phytochemistry and pharmacological properties of Ruta graveolens L. J. Med. Plants Res. 2012, 6, 3942–3949.

[CrossRef]
107. Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Wagner, H.; Verpoorte, R.; Heinrich, M. Medicinal Plants of the Russian

Pharmacopoeia; their history and applications. J. Ethnopharmacol. 2014, 154, 481–536. [CrossRef] [PubMed]
108. Semerdjieva, I.B.; Burducea, M.; Astatkie, T.; Zheljazkov, V.D.; Dincheva, I. Essential oil composition of ruta graveolens l. fruits

and hyssopus officinalis subsp. aristatus (godr.) nyman biomass as a function of hydrodistillation time. Molecules 2019, 24, 4047.
[CrossRef] [PubMed]

109. Kuzovkina, I.; Al’terman, I.; Schneider, B. Specific accumulation and revised structures of acridone alkaloid glucosides in the tips
of transformed roots of Ruta graveolens. Phytochemistry 2004, 65, 1095–1100. [CrossRef] [PubMed]

110. Kuzovkina, I.N.; Szarka, S.; Héthelyi, É.; Lemberkovics, E.; Szöke, É. Composition of essential oil in genetically transformed roots
of Ruta graveolens. Russ. J. Plant Physiol. 2009, 56, 846–851. [CrossRef]

111. Ali, J.G.; Alborn, H.T.; Stelinski, L.L. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and
plant parasitic nematodes. J. Ecol. 2011, 99, 26–35. [CrossRef]

112. Falkenhagen, H.; Stockigt, J.; Kuzovkina, I.N.; Alterman, I.E.; Kolshorn, H. Indole alkaloids from “hairy roots” of Rauwolfia
serpentina. Can. J. Chem. 1993, 71, 2201–2203. [CrossRef]

113. Lobay, D. Rauwolfia in the Treatment of Hypertension. Integr. Med. A Clin. J. 2015, 14, 40.
114. Sourabh, P. Ethnomedicinal Uses and Cultivation of Rauvolfia serpentina. Recent Adv. Med. Plants Their Cultiv. 2012, 40, 153–159.
115. Arjariya, A.; Chaurasia, K. Some Medicinal Plants among the Tribes of Chhatarpur District (M.P.) India. Ecoprint An Int. J. Ecol.

1970, 16, 43–50. [CrossRef]
116. Alshahrani, M.Y.; Rafi, Z.; Alabdallah, N.M.; Shoaib, A.; Ahmad, I.; Asiri, M.; Zaman, G.S.; Wahab, S.; Saeed, M.; Khan, S. A

Comparative Antibacterial, Antioxidant, and Antineoplastic Potential of Rauwolfia serpentina (L.) Leaf Extract with Its Biologically
Synthesized Gold Nanoparticles (R-AuNPs). Plants 2021, 10, 2278. [CrossRef]

117. Singh, H.K.; Charan, A.A.; Charan, A.I.; Prasad, S.M. Antifungal and antibacterial activity of methanolic, ethanolic and acetonic
leaf extracts of sarpagandha (Rauwolfia serpentina). J. Pharmacogn. Phytochem. 2017, 6, 152–156.

118. Rao, B.G.; Rao, P.U.; Rao, E.S.; Rao, T.M.; Praneeth, D.V.S. Evaluation of in-vitro antibacterial activity and anti-inflammatory
activity for different extracts of Rauvolfia tetraphylla L. root bark. Asian Pac. J. Trop. Biomed. 2012, 2, 818–821. [CrossRef]

119. Ezeigbo, I.I.; Ezeja, M.I.; Madubuike, K.G.; Ifenkwe, D.C.; Ukweni, I.A.; Udeh, N.E.; Akomas, S.C. Antidiarrhoeal activity of leaf
methanolic extract of Rauwolfia serpentina. Asian Pac. J. Trop. Biomed. 2012, 2, 430. [CrossRef]

120. Weerakoon, S.W.; Arambewela, L.S.R.; Premakumara, G.A.S.; Ratnasooriya, W.D. Sedative activity of the crude extract of
Rauvolfia densiflora. Pharm. Biol. 1998, 36, 360–361. [CrossRef]

121. Gupta, A.K.; Chitme, H.; Dass, S.K.; Misra, N. Hepatoprotective Activity of Rauwolfia serpentina Rhizome in Paracetamol
Intoxicated Rats. J. of Pharmacol. Toxicol. 2006, 1, 82–88. [CrossRef]

122. Kaur, J.; Gulati, S. Therapeutic potential of Rauwolfia serpentina. Indian J. Adv. 2017, 2, 99–104.
123. Eltamany, E.E.; Nafie, M.S.; Khodeer, D.M.; El-Tanahy, A.H.H.; Abdel-Kader, M.S.; Badr, J.M.; Abdelhameed, R.F.A.

Rubia tinctorum root extracts: Chemical profile and management of type II diabetes mellitus. RSC Adv. 2020, 10, 24159–24168.
[CrossRef]

124. Taha, K.; Abu, M. A Natural Anthraquinone Plants with Multi-Pharmacological Activities. Texas J. Med. Sci. 2022; 10, 23–32.
125. Kalyoncu, F.; Cetin, B.; Saglam, H. Antimicrobial activity of common madder (Rubia tinctorum L.). Phyther. Res. 2006, 20, 490–492.

[CrossRef]
126. Wang, W.; Zhang, J.; Qi, W.; Su, R.; He, Z.; Peng, X. Alizarin and Purpurin from Rubia tinctorum L. Suppress Insulin Fibrillation

and Reduce the Amyloid-Induced Cytotoxicity. ACS Chem. Neurosci. 2021, 12, 2182–2193. [CrossRef]

http://doi.org/10.1007/BF03356312
http://doi.org/10.3390/biom9070292
http://doi.org/10.1016/j.jep.2014.12.046
http://doi.org/10.1007/s11418-008-0259-7
http://doi.org/10.1002/alz.056722
http://doi.org/10.3389/fphar.2022.970714
http://doi.org/10.1007/978-3-319-28669-3_4
http://doi.org/10.1016/j.jep.2007.12.013
http://doi.org/10.5897/JMPR12.040
http://doi.org/10.1016/j.jep.2014.04.007
http://www.ncbi.nlm.nih.gov/pubmed/24742754
http://doi.org/10.3390/molecules24224047
http://www.ncbi.nlm.nih.gov/pubmed/31717325
http://doi.org/10.1016/j.phytochem.2004.03.003
http://www.ncbi.nlm.nih.gov/pubmed/15110689
http://doi.org/10.1134/S1021443709060156
http://doi.org/10.1111/j.1365-2745.2010.01758.x
http://doi.org/10.1139/v93-276
http://doi.org/10.3126/eco.v16i0.3472
http://doi.org/10.3390/plants10112278
http://doi.org/10.1016/S2221-1691(12)60235-4
http://doi.org/10.1016/S2221-1691(12)60070-7
http://doi.org/10.1076/phbi.36.5.360.4655
http://doi.org/10.3923/jpt.2006.82.88
http://doi.org/10.1039/D0RA03442H
http://doi.org/10.1002/ptr.1884
http://doi.org/10.1021/acschemneuro.1c00177


Molecules 2022, 27, 8040 22 of 23

127. Ahmed, H.E.; Tahoun, I.F.; Elkholy, I.; Shehata, A.B.; Ziddan, Y. Identification of natural dyes in rare Coptic textile using
HPLC- DAD and mass spectroscopy in museum of Faculty of Arts, Alexandria University, Egypt. Dye. Pigment. 2017, 145,
486–492. [CrossRef]

128. Karapanagiotis, I.; Abdel-kareem, O.; Kamaterou, P.; Mantzouris, D. Identification of dyes in coptic textiles from the museum of
faculty of archaeology, cairo university. Heritage 2021, 4, 3147–3156. [CrossRef]

129. Palagina, M.V.; Abramova, G.A. Solodka ural’skaya i ee ispol’zovanie v pishchevoj i farmacevticheskoj promyshlennosti. Nov. v
Pishchevyh Tekhnologiyah 2005, 1, 77–87.

130. Zhu, L.; Xie, S.; Geng, Z.; Yang, X.; Zhang, Q. Evaluating the Potential of Glycyrrhiza uralensis (Licorice) in Treating Alcoholic
Liver Injury: A Network Pharmacology and Molecular Docking Analysis Approach. Processes 2022, 10, 1808. [CrossRef]

131. Chen, H.; Zhang, X.; Feng, Y.; Rui, W.; Shi, Z.; Wu, L. Bioactive components of Glycyrrhiza uralensis mediate drug functions and
properties through regulation of CYP450 enzymes. Mol. Med. Rep. 2014, 10, 1355–1362. [CrossRef] [PubMed]

132. Zhang, Q.; Ye, M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J. Chromatogr. A 2009, 1216, 1954–1969.
[CrossRef]

133. Deutch, M.R.; Grimm, D.; Wehland, M.; Infanger, M.; Krüger, M. Bioactive Candy: Effects of Licorice on the Cardiovascular
System. Foods 2019, 8, 495. [CrossRef]

134. Kuzovkina, I.N.; Guseva, A.V.; Kovács, D.; Szöke, É.; Vdovitchenko, M.Y. Flavones in genetically transformed Scutellaria baicalensis
roots and induction of their synthesis by elicitation with methyl jasmonate. Russ. J. Plant Physiol. 2005, 52, 77–82. [CrossRef]

135. Olina, A.V.; Solovyova, A.I.; Solovchenko, A.E.; Orlova, A.V.; Stepanova, A.Y. Physiologically active flavones contentin
Scutellaria baicalensis georgiinvitro cultures. Biotekhnologiya 2017, 33, 29–37. [CrossRef]

136. Stepanova, A.Y.; Solov’eva, A.I.; Malunova, M.V.; Salamaikina, S.A.; Panov, Y.M.; Lelishentsev, A.A. Hairy roots scutellaria spp.
(lamiaceae) as promising producers of antiviral flavones. Molecules 2021, 26, 3927. [CrossRef]

137. Solov’eva, A.I.; Evsyukov, S.V.; Sidorov, R.A.; Stepanova, A.Y. Correlation of endogenous β-glucuronidase activity with differenti-
ation of in vitro cultures of Scutellaria baicalensis. Acta Physiol. Plant. 2020, 42, 106. [CrossRef]

138. Dikaya, V.S.; Solovyeva, A.I.; Sidorov, R.A.; Solovyev, P.A.; Stepanova, A.Y. The Relationship Between Endogenous
β-Glucuronidase Activity and Biologically Active Flavones-Aglycone Contents in Hairy Roots of Baikal Skullcap. Chem. Biodivers.
2018, 15, e1700409. [CrossRef]

139. Elkin, Y.N.; Kulesh, N.I.; Stepanova, A.Y.; Solovieva, A.I.; Kargin, V.M.; Manyakhin, A.Y. Methylated flavones of the hairy root
culture Scutellaria baicalensis. J. Plant Physiol. 2018, 231, 277–280. [CrossRef]

140. Kuzovkina, I.N.; Prokof’eva, M.Y.; Umralina, A.R.; Chernysheva, T.P. Morphological and biochemical characteristics of genetically
transformed roots of Scutellaria andrachnoides. Russ. J. Plant Physiol. 2014, 61, 697–706. [CrossRef]

141. Li-Weber, M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents
Wogonin, Baicalein and Baicalin. Cancer Treat. Rev. 2009, 35, 57–68. [CrossRef]

142. Sharifi-Rad, J.; Herrera-Bravo, J.; Salazar, L.A.; Shaheen, S.; Abdulmajid Ayatollahi, S.; Kobarfard, F.; Imran, M.; Imran, A.;
Custódio, L.; Dolores López, M.; et al. The Therapeutic Potential of Wogonin Observed in Preclinical Studies. Evid.-Based
Complement. Altern. Med. 2021, 2021, 9935451. [CrossRef]

143. Lin, C.C.; Lin, J.J.; Wu, P.P.; Lu, C.C.; Chiang, J.H.; Kuo, C.L.; Ji, B.C.; Lee, M.H.; Huang, A.C.; Chung, J.G. Wogonin, a natural and
biologically-active flavonoid, influences a murine WEHI-3 leukemia model in vivo through enhancing populations of T-And
B-cells. Vivo 2013, 27, 733–738.

144. Qi, Q.; Peng, J.; Liu, W.; You, Q.; Yang, Y.; Lu, N.; Wang, G.; Guo, Q. Toxicological studies of wogonin in experimental animals.
Phyther. Res. 2009, 23, 417–422. [CrossRef]

145. Huang, D.S.; Yu, Y.C.; Wu, C.H.; Lin, J.Y. Protective Effects of Wogonin against Alzheimer’s Disease by Inhibition of Amyloidogenic
Pathway. Evid. Based. Complement. Alternat. Med. 2017, 2017, 3545169. [CrossRef]
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