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Abstract: The incidence of nosocomial infections, as well as the high mortality and drug resistance
expressed by nosocomial pathogens, especially in immunocompromised patients, poses significant
medical challenges. Currently, the efficacy of plant compounds with antimicrobial potential has
been reported as a promising alternative therapy to traditional methods. Isoespintanol (ISO) is a
monoterpene with high biological activity. Using the broth microdilution method, the antibacterial
activity of ISO was examined in 90 clinical isolates, which included 14 different species: (Escherichia coli
(38), Pseudomonas aeruginosa (12), Klebsiella pneumoniae (13), Acinetobacter baumannii (3), Proteus mirabilis
(7), Staphylococcus epidermidis (3), Staphylococcus aureus (5), Enterococcus faecium (1), Enterococcus faecalis
(1), Stenotrophomonas maltophilia (2), Citrobacter koseri (2), Serratia marcescens (1), Aeromonas hydrophila
(1), and Providencia rettgeri (1). MIC90 minimum inhibitory concentration values ranged from 694.3 to
916.5 µg/mL and MIC50 values from 154.2 to 457.3 µg/mL. The eradication of mature biofilms in
P. aeruginosa after 1 h of exposure to ISO was between 6.6 and 77.4%, being higher in all cases than
the percentage of biofilm eradication in cells treated with ciprofloxacin, which was between 4.3 and
67.5%. ISO has antibacterial and antibiofilm potential against nosocomial bacteria and could serve as
an adjuvant in the control of these pathogens.

Keywords: nosocomial infection; isoespintanol; Oxandra xylopioides; antibacterial activity; antibiofilms;
Pseudomonas aeruginosa

1. Introduction

The incidence of health care-acquired infections, or nosocomial infections (NIs), is a
challenging problem in medical practice. The high mortality rates and financial costs of
these infections represent a serious problem for health services around the world [1–4].
Physicians currently face pathogens with resistance determinants that severely restrict
therapeutic options; the genetic plasticity of microbes allows them to adapt to stres-
sors through mutations, the acquisition or exchange of genetic material, and the mod-
ulation of gene expression, making them resistant to any antimicrobial used in clinical
practice [5–8]. The evolution of hypervirulent strains [9–13], as well as the transmission of
and increase in microorganisms with resistance genes, including New Delhi strains [1,14,15]
and ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.), increase the burden
of disease and mortality rates due to treatment failure, representing a global threat to
human health [16,17]. According to the World Health Organization (WHO), the global
burden of NIs ranges between 7% and 12% [4]. In the United States, these infections are
an important factor in patient morbidity, constituting the sixth leading cause of death,
surpassing deaths from AIDS, cancer and traffic accidents [18]; Each year, it is estimated
that more than 2 million infections are caused by antimicrobial-resistant pathogens, with
29,000 deaths [16]. The European Center for Disease Control and Prevention reported that
more than 81,000 patients suffer from NIs daily, while these infections cause approximately
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150,000 deaths per year [19]. In 2017, a study of the global burden of disease estimated
there to be 48.9 million cases of sepsis worldwide, causing 11 million deaths that same
year. The highest burden of sepsis was seen in low- and middle-income countries and
accounted for 85% of all sepsis-related deaths worldwide; sepsis cases in India alone
were estimated at 11.3 million, with 2.9 million deaths, which is equivalent to 297.7 per
100,000 population [20]. ESKAPE pathogens are responsible for the main cases of NIs
worldwide; therefore, the WHO has placed them on the list of bacteria against which the
development of new antibiotics is vital [21].

Gram-negative bacteria represent the main driver of NIs; some of these bacteria
are naturally resistant to certain families of antibiotics, while others, when subjected to
prolonged use, eventually develop resistance, worsening the prognosis of patients [22].
People who are immunocompromised or who are undergoing invasive medical treatment
are more vulnerable to infections by this type of pathogen. This growing threat to human
health stimulates our interest in the search for new compounds with antimicrobial potential,
which are effective and safe for the host and can lead to innovative strategies and allow the
development of new options and/or antimicrobial therapies for their control.

In this scenario, natural products and their structural analogs have historically made
significant contribution to pharmacotherapy, especially in infectious diseases and can-
cer [23], moving around USD 20 billion in the global pharmaceutical market each
year [24,25]. As a source of specialized metabolites with recognized medicinal proper-
ties, compounds of plant origin represent an excellent alternative [26]. They can be directly
used as bioactive compounds, drug prototypes and/or as pharmacological tools for differ-
ent targets [27]. The clinical relevance of monoterpenes has been extensively studied; its
wide spectrum of biological and therapeutic activity [28–31], especially the antimicrobial
potential of thymol, linalool, citral and carvacrol has been demonstrated [32–42]. Various
studies have related the antimicrobial activity of monoterpenes with their chemical struc-
ture, indicating that their lipophilicity facilitates the penetration of pathogens into the cell
membrane [38], and their broad spectrum of action has been attributed to the hydroxyl
substituent present in their structure [43,44].

ISO (2-isopropyl-3,6-dimethoxy-5-methylphenol), a monoterpene first obtained from
the aerial parts of Eupatorium saltense (Asteraceae) [45], whose synthesis has also been
carried out [46], has also been extracted from leaves of Oxandra xylopioides (Annonaceae).
This compound has been shown to have important biological activities that include: antioxi-
dant [47], anti-inflammatory [48], and antispasmodic [49] effects; vasodilator properties [50];
cryoprotectant effects in canine semen [51]; insecticide activities [52]; and antifungal effects
against phytopathogens [53] and human pathogenic yeasts [54,55]. However, despite its
significant biological activity, antibacterial potential against human pathogens has not
been reported. Therefore, we hypothesize that ISO could have activity against human
pathogenic bacteria that cause NIs. This study aimed to evaluate the antibacterial activity
of ISO extracted from the leaves of O. xylopioides, via a screening of 90 bacterial clinical
isolates that included 14 different species, as well as estimating their ability to eradicate
mature biofilms of P. aeruginosa. The results of this study contribute to the knowledge
of the biological potential of this natural compound and further research of novel plant
compounds that can be used as adjuvants in the control and treatment of these pathogens.

2. Results
2.1. Obtaining and Identification of Isoespintanol

ISO was obtained as a crystalline amorphous solid from the petroleum benzine extract
of O. xylopioides leaves, and its structural identification was performed by GC-MS, 1H-NMR,
13C-NMR, DEPT, COSY 1H-1H, HMQC and HMBC. Information related to obtaining and
identifying the ISO was reported in our previous study (Supplementary Materials) [54].
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2.2. Antibacterial Susceptibility Testing

ISO showed antibacterial activity against the clinical isolates tested in this study. We
observed an inhibition of the growth of bacteria treated with the ISO in comparison with the
untreated isolates used as control. Table 1 shows the percentages of inhibition of bacterial
growth in the presence of the different concentrations of ISO and commercial antibiotics
(ATBs) used as positive controls. The inhibitory effect observed in the clinical isolates was
shown to be dependent on ISO concentration; at a higher ISO concentration, we observed a
higher percentage of growth inhibition in all clinical isolates. We emphasize that the effect
of ISO was different for all isolates, even those belonging of the same species.

Table 1. Percentages of growth inhibition of clinical isolates at different ISO concentrations.

Isolates
ISO Concentrations (µg/mL)

19.5 39.1 78.1 156.2 312.5 625 1000 ATBs

E. coli
A017 * 4.5 ± 1.3 14.6 ± 0.8 24.9 ± 3.0 49.5 ± 9.8 82.0 ± 8.6 90.2 ± 5.9 98.1 ± 0.9 96.0 ± 3.5
A018 * 1.4 ± 0.9 13.8 ± 1.6 17.0 ± 7.4 47.3 ± 5.1 60.1 ± 1.3 80.2 ± 5.5 98.3 ± 1.8 92.0 ± 2.6
A019 * 1.4 ± 2.0 13.8 ± 4.0 17.0 ± 4.0 47.3 ± 6.2 60.1 ± 8.4 80.2 ± 3.1 98.3 ± 0.9 92.0 ± 2.3
A020 * 6.4 ± 1.3 14.5 ± 1.2 25.5 ± 3.2 32.8 ± 4.5 48.0 ± 3.3 80.8 ± 4.2 97.5 ± 1.9 98.6 ± 3.0
A021 * 2.9 ± 1.6 7.2 ± 2.4 17.5 ± 2.5 36.3 ± 4.1 45.6 ± 5.2 75.8 ± 7.7 96.7 ± 2.3 98.7 ± 1.9
A022 6.4 ± 1.7 14.4 ± 7.1 21.6 ± 3.2 39.2 ± 2.0 66.3 ± 9.5 79.1 ± 2.3 95.5 ± 3.6 97.7 ± 1.9
A023 5.3 ± 2.3 19.7 ± 1.8 28.7 ± 3.9 33.4 ± 8.0 60.5 ± 3.5 73.7 ± 2.1 96.3 ± 3.3 95.9 ± 1.1
A031 6.4 ± 2.4 15.8 ± 4.3 37.5 ± 3.1 48.7 ± 4.1 74.8 ± 1.7 83.6 ± 3.7 95.2 ± 2.0 95.5 ± 0.5
A035 6.3 ± 2.8 16.6 ± 5.2 32.1 ± 4.5 47.7 ± 2.2 72.7 ± 3.9 87.3 ± 3.8 99.6 ± 0.3 98.9 ± 1.2
A036 2.7 ± 1.8 17.5 ± 4.8 27.7 ± 7.0 38.7 ± 6.0 56.7 ± 8.2 77.2 ± 6.5 99.7 ± 0.3 99.5 ± 0.6
A037 * 2.8 ± 0.2 18.5 ± 3.6 39.8 ± 3.1 48.9 ± 2.9 64.3 ± 1.2 79.7 ± 3.6 99.1 ± 4.5 96.4 ± 2.0
A038 2.5 ± 0.8 16.7 ± 4.1 35.2 ± 4.1 48.9 ± 3.8 67.0 ± 5.1 80.1 ± 1.8 96.7 ± 3.3 97.0 ± 1.1
A007 1.1 ± 1.3 10.7 ± 3.6 19.6 ± 6.6 32.3 ± 8.9 55.0 ± 5.1 84.6 ± 3.1 98.1 ± 0.5 97.8 ± 1.7
A006 * 2.7 ± 1.7 10.4 ± 2.1 15.9 ± 5.8 29.5 ± 3.7 44.8 ± 1.6 76.0 ± 4.3 91.9 ± 6.0 96.7 ± 2.0
A009 6.9 ± 1.2 16.3 ± 6.9 32.3 ± 8.7 46.2 ± 1.3 68.9 ± 4.8 82.7 ± 3.2 97.8 ± 1.5 94.8 ± 2.3
A016 3.5 ± 1.2 15.9 ± 2.4 35.2 ± 8.6 49.8 ± 4.8 63.5 ± 3.0 79.1 ± 4.6 99.1 ± 0.9 98.1 ± 1.0
A087 5.7 ± 3.4 15.1 ± 2.3 33.5 ± 4.3 49.9 ± 4.4 69.5 ± 3.4 82.9 ± 7.0 99.2 ± 0.5 98.8 ± 0.7
A091 * 7.0 ± 2.2 16.6 ± 6.5 30.6 ± 6.5 49.6 ± 2.8 69.9 ± 6.7 80.9 ± 2.9 97.5 ± 2.1 98.7 ± 1.6
A093 5.4 ± 2.7 16.1 ± 1.5 25.4 ± 1.7 43.2 ± 5.1 79.1 ± 5.7 86.9 ± 1.5 93.8 ± 3.3 94.1 ± 3.8
A094 * 3.8 ± 1.3 14.2 ± 0.7 24.5 ± 1.9 37.3 ± 6.2 77.6 ± 4.3 88.9 ± 8.3 96.2 ± 2.6 98.2 ± 2.1
A099 1.2 ± 0.5 22.2 ± 6.0 39.9 ± 4.8 46.0 ± 1.4 77.6 ± 1.0 85.2 ± 2.9 98.8 ± 1.8 98.3 ± 1.3
A0101 2.2 ± 0.1 15.9 ± 3.5 28.1 ± 1.7 49.9 ± 5.8 75.0 ± 3.8 89.8 ± 2.1 98.0 ± 2.2 98.8 ± 1.3
A0103 * 1.0 ± 0.5 16.1 ± 0.5 39.2 ± 1.9 47.4 ± 2.6 68.5 ± 1.8 85.9 ± 5.7 97.3 ± 2.5 98.9 ± 2.6
A0106 * 3.3 ± 1.4 14.8 ± 2.5 37.3 ± 3.4 49.0 ± 2.8 76.0 ± 2.1 86.7 ± 2.3 98.9 ± 2.5 98.9 ± 1.3
A024 3.6 ± 1.5 19.3 ± 4.5 28.9 ± 2.5 42.9 ± 3.9 63.7 ± 5.3 81.4 ± 3.7 97.3 ± 2.4 99.9 ± 1.7
A025 * 1.6 ± 1.1 13.4 ± 7.7 20.5 ± 4.2 30.3 ± 4.4 60.2 ± 4.5 88.2 ± 1.8 98.1 ± 1.1 98.1 ± 1.1
A026 5.3 ± 1.7 16.3 ± 2.5 29.6 ± 4.0 49.6 ± 5.0 68.9 ± 4.5 75.3 ± 1.1 97.1 ± 1.8 97.2 ± 1.5
A027 * 4.8 ± 1.0 19.2 ± 0.8 34.4 ± 1.9 48.8 ± 3.1 76.0 ± 3.9 83.5 ± 2.5 99.2 ± 0.7 99.8 ± 0.5
A028 4.7 ± 0.9 16.7 ± 1.7 33.7 ± 7.4 47.1 ± 3.2 68.0 ± 2.1 83.2 ± 3.8 97.7 ± 1.2 99.4 ± 0.4
A029 * 5.8 ± 1.4 11.6 ± 3.3 33.7 ± 4.5 47.7 ± 3.8 71.5 ± 2.8 84.1 ± 4.4 99.3 ± 0.2 99.2 ± 0.5
A030 0.6 ± 0.5 17.7 ± 1.5 28.5 ± 0.9 47.6 ± 1.9 69.8 ± 2.5 81.1 ± 4.0 98.7 ± 1.6 98.7 ± 1.0
A032 * 12.0 ± 2.4 24.1 ± 3.2 37.7 ± 2.6 49.5 ± 4.4 64.7 ± 4.5 84.6 ± 4.5 99.0 ± 1.2 99.1 ± 2.5
A033 * 4.6 ± 1.1 19.9 ± 5.5 30.9 ± 1.5 49.9 ± 5.5 60.0 ± 3.7 78.2 ± 2.2 96.7 ± 2.6 99.6 ± 3.3
A034 7.3 ± 1.1 15.4 ± 2.1 21.4 ± 5.7 37.3 ± 1.1 55.4 ± 3.4 80.1 ± 3.1 98.5 ± 1.7 97.8 ± 2.1
A005 6.1 ± 0.9 16.4 ± 0.8 25.5 ± 2.0 46.1 ± 0.9 59.7 ± 3.9 81.1 ± 1.7 95.7 ± 1.3 98.1 ± 2.1
A011 8.4 ± 1.5 16.2 ± 1.4 16.9 ± 2.0 28.3 ± 0.5 47.9 ± 0.9 82.9 ± 4.0 97.6 ± 1.1 98.5 ± 2.1
A013 17.2 ± 0.5 29.5 ± 2.2 38.9 ± 3.6 50.0 ± 6.9 68.7 ± 5.0 82.8 ± 4.7 97.9 ± 2.5 98.9 ± 1.3
A014 20.7 ± 4.3 30.1 ± 2.0 35.0 ± 6.8 49.7 ± 1.2 65.1 ± 2.7 79.6 ± 2.5 98.1 ± 3.8 98.7 ± 1.1
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Table 1. Cont.

Isolates
ISO Concentrations (µg/mL)

19.5 39.1 78.1 156.2 312.5 625 1000 ATBs

P. aeruginosa
A012 7.9 ± 2.5 11.5 ± 0.8 16.6 ± 4.7 27.2 ± 2.2 38.9 ± 5.2 70.0 ± 8.6 93.0 ± 6.3 99.4 ± 0.4
A015 16.9 ± 4.9 21.0 ± 6.7 37.9 ± 10.7 58.8 ± 4.7 69.2 ± 4.9 88.1 ± 4.2 96.3 ± 2.6 98.9 ± 0.7
A050 13.3 ± 4.5 26.4 ± 2.3 33.5 ± 8.6 47.8 ± 1.9 54.1 ± 1.6 78.1 ± 6.0 98.3 ± 2.0 97.7 ± 2.7
A051 27.4 ± 5.2 40.8 ± 5.4 50.8 ± 3.7 67.7 ± 4.9 79.8 ± 1.4 87.4 ± 1.6 98.1 ± 3.0 96.8 ± 1.1
A052 11.9 ± 5.5 25.3 ± 2.7 33.8 ± 3.3 46.3 ± 5.0 75.3 ± 7.1 83.6 ± 5.6 98.2 ± 2.0 99.3 ± 1.4
A053 8.9 ± 2.9 23.9 ± 5.7 35.7 ± 5.2 47.5 ± 5.7 74.7 ± 1.3 86.2 ± 6.9 99.4 ± 1.0 98.5 ± 3.2
A054 18.4 ± 3.3 24.2 ± 3.3 36.7 ± 0.8 50.3 ± 6.0 60.4 ± 3.2 81.0 ± 2.9 99.2 ± 0.3 100.2 ± 1.4
A055 14.3 ± 4.1 29.4 ± 1.2 37.1 ± 6.0 54.4 ± 1.0 75.7 ± 2.5 85.0 ± 2.6 99.3 ± 2.7 98.6 ± 3.2
A056 22.4 ± 1.4 33.7 ± 6.7 42.0 ± 8.3 56.2 ± 8.2 76.4 ± 3.5 86.9 ± 3.6 99.2 ± 5.1 99.9 ± 0.6
A057 9.3 ± 1.6 19.5 ± 1.0 27.4 ± 3.0 42.0 ± 1.3 64.6 ± 3.6 83.9 ± 4.2 99.6 ± 1.2 94.3 ± 0.7
A058 13.5 ± 2.8 30.7 ± 3.4 42.6 ± 5.9 53.1 ± 2.1 68.8 ± 2.9 85.7 ± 4.6 98.2 ± 1.5 96.2 ± 2.1
A097 7.9 ± 4.8 17.3 ± 3.1 28.8 ± 0.9 50.1 ± 0.7 69.7 ± 1.6 87.5 ± 1.7 96.9 ± 4.0 95.1 ± 0.9

P. mirabilis
A059 23.7 ± 4.4 32.0 ± 1.1 42.8 ± 1.1 49.3 ± 7.7 75.9 ± 4.1 88.0 ± 5.0 99.6 ± 2.1 98.1 ± 2.7
A060 21.1 ± 2.5 30.1 ± 2.6 40.9 ± 5.7 50.4 ± 2.0 75.1 ± 3.6 85.0 ± 2.7 99.7 ± 1.3 99.3 ± 1.5
A061 20.0 ± 1.9 32.0 ± 3.4 38.3 ± 1.7 51.7 ± 1.2 82.8 ± 5.8 95.4 ± 1.6 98.7 ± 3.2 95.5 ± 3.7
A062 19.1 ± 4.2 29.7 ± 2.6 35.7 ± 3.8 41.5 ± 3.3 73.7 ± 2.5 82.9 ± 2.4 99.7 ± 0.3 94.8 ± 2.2
A063 18.3 ± 0.9 26.7 ± 2.1 36.2 ± 1.5 49.8 ± 1.7 65.1 ± 1.8 81.0 ± 4.9 99.0 ± 3.9 100.0 ± 2.9
A064 16.2 ± 2.8 30.1 ± 2.8 38.8 ± 2.6 49.3 ± 5.4 63.5 ± 4.5 79.3 ± 3.7 93.6 ± 10.0 99.4 ± 1.0
A090 18.7 ± 1.7 33.3 ± 3.9 44.6 ± 1.2 48.6 ± 2.6 61.5 ± 5.6 86.9 ± 7.5 99.7 ± 1.7 100.1 ± 1.7

S. epidermidis
A065 18.5 ± 0.7 33.3 ± 2.5 43.1 ± 3.7 63.4 ± 3.3 85.4 ± 2.0 91.4 ± 4.2 99.9 ± 0.3 99.7 ± 1.4
A066 18.7 ± 1.2 30.4 ± 1.9 41.3 ± 1.7 46.2 ± 1.8 73.6 ± 2.2 89.6 ± 3.4 97.0 ± 0.5 98.4 ± 0.4
A067 16.0 ± 2.0 27.2 ± 5.3 38.4 ± 5.8 59.9 ± 1.4 71.8 ± 2.2 84.7 ± 6.7 95.0 ± 2.4 96.8 ± 1.6

A. baumannii
A001 5.0 ± 2.0 14.0 ± 0.6 26.5 ± 1.7 38.6 ± 3.0 55.0 ± 1.9 75.2 ± 0.7 91.4 ± 0.6 98.5 ± 1.0
A070 13.2 ± 2.2 29.5 ± 3.6 35.4 ± 1.2 48.4 ± 1.8 65.5 ± 5.7 89.2 ± 4.2 95.7 ± 1.8 94.8 ± 1.2
A089 17.8 ± 1.5 27.9 ± 2.5 35.9 ± 0.8 46.6 ± 2.5 63.5 ± 2.1 81.1 ± 7.0 98.4 ± 2.5 96.8 ± 2.8

K. pneumoniae
A008 25.7 ± 6.0 38.7 ± 2.1 43.1 ± 1.8 51.7 ± 1.2 67.3 ± 1.7 72.8 ± 3.0 96.9 ± 1.0 99.0 ± 1.6
A039 24.3 ± 2.6 31.4 ± 4.8 43.3 ± 4.5 55.3 ± 5.6 68.8 ± 2.7 79.7 ± 6.3 93.9 ± 3.6 99.9 ± 0.5
A040 17.2 ± 3.1 26.4 ± 1.9 34.1 ± 5.8 42.8 ± 7.1 73.4 ± 3.9 80.0 ± 0.8 90.3 ± 4.8 100.5 ± 1.5
A041 16.9 ± 2.4 24.1 ± 8.4 39.6 ± 5.5 48.8 ± 2.3 78.2 ± 1.6 89.2 ± 4.4 99.7 ± 2.5 97.8 ± 4.2
A042 18.7 ± 0.8 27.3 ± 5.7 33.3 ± 4.6 47.6 ± 6.5 80.5 ± 2.7 87.2 ± 3.4 91.0 ± 1.9 97.4 ± 3.2
A043+ 10.8 ± 3.7 21.4 ± 2.8 36.3 ± 4.2 49.6 ± 7.9 79.8 ± 2.8 82.8 ± 4.5 98.9 ± 4.3 95.8 ± 0.7
A044 16.9 ± 1.6 27.6 ± 8.3 41.7 ± 2.7 48.9 ± 1.3 74.1 ± 2.6 85.8 ± 3.0 98.2 ± 3.2 97.6 ± 4.4
A045 16.2 ± 1.2 20.1 ± 2.6 34.0 ± 3.4 55.1 ± 7.7 69.4 ± 6.7 85.3 ± 6.7 99.4 ± 1.2 97.1 ± 0.6
A046 13.7 ± 2.3 16.7 ± 1.5 28.6 ± 5.8 45.3 ± 7.1 72.7 ± 5.8 89.6 ± 3.2 97.6 ± 7.5 99.9 ± 1.1
A047 24.1 ± 3.6 26.6 ± 4.4 38.2 ± 0.7 50.5 ± 0.9 67.8 ± 8.3 74.3 ± 3.9 90.7 ± 3.0 99.3 ± 2.2
A048 19.9 ± 4.8 30.1 ± 1.6 40.0 ± 1.3 47.7 ± 5.5 66.3 ± 10.8 79.7 ± 2.0 92.1 ± 1.8 99.2 ± 0.7
A049 17.5 ± 3.5 28.1 ± 4.8 35.3 ± 3.8 46.7 ± 3.3 74.5 ± 3.9 89.0 ± 5.4 91.6 ± 4.9 99.1 ± 0.8
A0104+ 12.4 ± 3.1 26.5 ± 1.4 33.4 ± 6.0 49.8 ± 5.1 68.1 ± 4.4 81.4 ± 2.5 98.6 ± 2.9 100.3 ± 1.7

S. aureus
A004 17.6 ± 4.9 25.8 ± 1.7 40.7 ± 0.8 48.8 ± 2.5 67.3 ± 6.9 77.9 ± 4.5 98.9 ± 2.0 99.3 ± 2.1
A010 21.2 ± 0.2 29.3 ± 3.1 41.4 ± 8.5 58.8 ± 3.5 69.4 ± 3.2 84.2 ± 1.9 98.6 ± 1.2 94.4 ± 7.0
A072 22.7 ± 1.2 32.7 ± 1.0 42.6 ± 3.2 49.2 ± 1.9 71.7 ± 2.4 88.6 ± 6.6 99.1 ± 1.4 99.5 ± 2.2
A073 13.8 ± 1.4 28.0 ± 0.1 35.8 ± 5.1 49.8 ± 2.6 68.1 ± 5.5 75.2 ± 4.5 93.2 ± 3.0 98.8 ± 1.1
A0100 20.5 ± 1.2 30.8 ± 3.1 40.1 ± 2.5 48.4 ± 2.7 77.7 ± 0.7 87.1 ± 2.6 99.6 ± 5.1 98.5 ± 1.3

E. faecium
A0105 20.6 ± 6.3 32.2 ± 4.0 41.7 ± 5.7 56.8 ± 2.3 75.8 ± 1.1 85.9 ± 1.2 98.7 ± 2.5 99.4 ± 1.1
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Table 1. Cont.

Isolates
ISO Concentrations (µg/mL)

19.5 39.1 78.1 156.2 312.5 625 1000 ATBs

E. faecalis
A069 18.5 ± 1.7 31.8 ± 3.4 42.1 ± 3.5 50.2 ± 0.6 72.8 ± 2.4 84.0 ± 6.5 98.6 ± 2.3 99.2 ± 1.2

C. koseri
A068 17.1 ± 1.3 29.6 ± 0.7 36.9 ± 3.6 47.2 ± 1.2 73.8 ± 3.0 89.8 ± 1.1 97.4 ± 1.8 99.4 ± 1.0
A079 17.2 ± 5.9 25.1 ± 2.0 36.2 ± 3.9 46.1 ± 0.8 54.9 ± 1.1 88.3 ± 4.8 99.4 ± 0.2 99.9 ± 0.7

S. marcescens
A071 17.1 ± 0.6 27.1 ± 2.7 35.8 ± 1.7 47.1 ± 3.1 58.1 ± 2.3 71.5 ± 2.8 99.3 ± 0.5 95.6 ± 2.8

A. hydrophila
A088 17.8 ± 0.8 31.1 ± 0.6 36.6 ± 0.5 49.6 ± 6.0 74.6 ± 1.7 84.9 ± 4.2 99.1 ± 1.4 98.5 ± 2.4

S. maltophilia
A0102 17.1 ± 1.3 25.9 ± 2.5 40.9 ± 3.7 46.5 ± 2.3 67.0 ± 3.6 87.4 ± 4.7 98.7 ± 2.7 99.8 ± 0.5
A095 14.4 ± 1.0 29.2 ± 1.3 35.7 ± 1.5 52.5 ± 2.5 73.4 ± 1.7 86.7 ± 1.6 98.4 ± 3.6 98.4 ± 2.2

P. rettgeri
A096 14.5 ± 1.9 24.1 ± 1.8 36.9 ± 3.4 52.1 ± 3.4 74.3 ± 2.6 84.0 ± 2.6 96.6 ± 1.9 99.3 ± 1.0

* BLEE (extended spectrum beta-lactamases); + multi-resistant; ATBs: (AMK 20 µg/mL: A006, A017, A018, A019,
A020, A021, A025, A027, A029, A032, A033, A037, A091, A094, A0103, A0106), (GEN 8 µg/mL: A009, A016,
A0104), (VAN 2 µg/mL: A065, A066, A067), (MEM 1 µg/mL: A043), (SAM 2 µg/mL: A089), (SXT 20 µg/mL:
A095, A0102), (CIP 6 µg/mL was used for the rest of the isolates).

Table 2 shows the MIC90 and MIC50 values of ISO against the evaluated clinical isolates.
The greatest effect was observed in isolate A065 of S. epidermidis, with MIC90 and MIC50 values
of 694.3 and 154.2 µg/mL, respectively. The smallest effect was observed in P. aeruginosa
isolate A012, with MIC90 and MIC50 values of 916.5 and 457.3 µg/mL, respectively.

Figure 1 shows the trend of the data and regression line with 95% confidence. A reduc-
tion in the percentage of growth inhibition of bacterial isolates exposed to ISO (MIC of each
isolate) is observed, highlighting a strong positive correlation between the concentration of
ISO and the percentage of growth inhibition, with Pearson correlation coefficients between
0.86 and 0.96 in most isolates. The hypothesis test on the correlation coefficient yields a
p-value of <0.05, which indicates a significant linear relationship with 95% confidence. For
the isolates of P. aeruginosa and E. coli, the Spearman test [Rho] (0.96 and 0.97, respectively)
was used, which also shows a strong positive relationship between the ISO concentration
and the growth reduction of these isolates.

Figure 2 shows the directly proportional relationship between the ISO concentration
(µg/mL) and bacterial growth inhibition of each group of clinical isolates.

2.3. Biofilm Reduction

All P. aeruginosa isolates used in this study were moderate biofilm producers with
OD590 between 1.52 and 2.79, unlike isolate A050, which was a strong biofilm producer
with OD590 > 3.0, as shown in Figure 3A. Figure 3B shows the production of P. aeruginosa
biofilms in the presence of ISO, CIP, and without treatment (INO), evidencing a lower
biomass of biofilms when exposed to ISO and CIP compared to cells without treatment.
Figure 3C shows the percentage of biofilm eradication of ISO and CIP, highlighting a
significantly greater effect of ISO compared to CIP. In the biofilms treated with ISO, a
biomass eradication of between 6.6 and 77.4% was obtained after 1 h of exposure. The
biomass eradication of biofilms in cells treated with CIP was lower (between 4.3 and 67.5%).
It should be noted that isolate A050, which presented a strong biofilm biomass production,
was one of the isolates with the highest biofilm eradication (68.2%) by ISO.
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Table 2. MIC90 and MIC50 values of ISO against bacterial clinical isolates.

Isolates
Isoespintanol µg/mL

Isolates
Isoespintanol µg/mL

MIC90 MIC50 MIC90 MIC50

E. coli P. aeruginosa
457.3A017 * 731.6 296.8 A012 916.5

A018 * 798.8 367.4 A015 765.3 247.4
A019 * 783.2 358.3 A050 826.2 315.4
A020 * 828.7 387.9 A051 727.3 83.56
A021 * 849.4 422 A052 767.9 275.2
A022 816.2 362.4 A053 749.7 273.4
A023 846.8 372.9 A054 796.7 280.6
A031 782.5 297.3 A055 749.4 235.1
A035 747.5 298.5 A056 740.7 185.8
A036 811.9 365.6 A057 776.8 324
A037 * 788.9 312.9 A058 766.7 237.7
A038 798.2 322.9 A097 766.3 304.4

A007 798.3 389.2 P. mirabilis
A006 * 884.9 442.8 A059 739.4 199.6
A009 781.2 316 A060 751.3 218.3
A016 791.5 324.4 A061 702.9 192.3
A087 768.6 308.6 A062 769.4 259.2
A091 * 786.6 314.6 A063 791.1 269.5
A093 775.8 318.3 A064 843.3 275.7
A094 * 760 329.6 A090 769.5 235.6

A099 750.6 283.4 S. epidermidis
A0101 742.5 304 A065 694.3 154.2
A0103 * 770.4 309.3 A066 756.1 230.1
A0106 * 745.7 292.3 A067 783.9 233.7

A024 799.4 339.4 A. baumannii
A025 * 781.1 373 A001 878.7 394.6
A026 811.6 331.6 A070 778.9 269
A027 * 756.6 291.7 A089 799.6 278.6

A028 780.3 316 K. pneumoniae
A029 * 761.1 312.1 A008 852.2 212.5
A030 777.6 327.5 A039 831.4 215.1
A032 * 774.7 280.1 A040 849.1 289.6
A033 * 818.4 335.1 A041 730.3 235.9
A034 812.7 372.7 A042 795.2 248.5
A005 815.1 350.2 A043+ 755.6 266.3
A011 824.3 397.2 A044 760.1 237.5
A013 784.6 251.3 A045 757.9 266.2
A014 805.9 263.2 A046 754.4 294.9

S. aureus A047 891.1 268.8
A004 800.6 266.6 A048 852.3 263.7
A010 767 213.6 A049 794.5 254.8
A072 748.4 209.2 A0104+ 784.6 281.9

A073 853.7 289.8 E. faecium
A0100 740.7 216.8 A0105 748.1 196.5

C. koseri E. faecalis
A068 752.3 241.8 A069 767.1 225.1

A079 778 287.9 S. maltophilia

S. marcescens A0102 764.7 257.8
A071 843.9 306.7 A095 754.5 244.8

A. hydrophila P. rettgeri
A088 757.9 236.8 A096 774.6 258

* BLEE (extended spectrum beta-lactamases); + multi-resistant.
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Figure 1. Strong positive correlation between the concentration of ISO and the percentage of growth
inhibition of clinical isolates. We observed that the higher the ISO concentration, the higher the
inhibition of microbial growth. The hypothesis test on the correlation coefficient with a p-value < 0.05,
indicates that there is a significant linear relationship, with 95% confidence.
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Figure 2. Percentages of growth inhibition showing the MIC50 of each group of species of clinical
isolates at different ISO concentrations—(A): E. coli; (B): P. aeruginosa; (C): P. mirabilis; (D): S. epider-
midis; (E): A. baumannii; (F): K. pneumoniae; (G): S. aureus; (H): Enterococcus (E. faecium, E. faecalis);
(I): (C. koseri, S. marcescens, A. hydrophila, S. maltophilia, P. rettgeri).
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Figure 3. ISO and CIP action on P. aeruginosa biofilms. (A) Biofilm formation at 37 ◦C for 24 h.The
OD590 between 1.1. and 3.0 indicates moderate biofilm production and OD590 > 3 indicates strong
biomass production in biofilms. (B) Biofilm production in the presence of ISO, CIP and without
treatment (INO). (C) Percentage of biofilm eradication after 1 h of treatment with the MIC of ISO
and CIP for each isolate. The results of the ANOVA have a value of p < 0.05 and Tukey’s test has a
confidence level of 95%, indicating that there is a significant difference between the effect of ISO and
the effect of CIP on the eradication of biofilms.

3. Discussion

The incidence of NIs represents a serious health problem, increasing rates of morbidity,
mortality, and costs for health services around the world. An important factor in the
increased mortality of NIs is the increasing prevalence of multiresistant microorganisms
that render antibiotics ineffective in the treatment of many common infectious diseases [18].
In this context, Gram-positive [10,12], multiresistant Gram negative [11,12] and hyper-
virulent [9] bacteria are of great concern. For this reason, the search for alternative and
novel compounds that have action against these pathogenic microorganisms is becoming
increasingly urgent.

In this study, we evaluated the antibacterial activity of ISO against 90 nosocomial
isolates, distributed in 14 species that include multiresistant clinical isolates. In this investi-
gation, we report MIC90 values between 694.3 and 916.5 µg/mL and MIC50 values between
154.2 and 457.3 µg/mL. These results are in agreement with other studies that report the
antimicrobial activity of terpenes against a wide variety of microorganisms [37,42,56,57].
However, our results are the first to reveal the antibacterial potential of the natural monoter-
pene ISO against human pathogenic bacteria. The hydrophobic character of the structure
in the cell membranes of microorganisms makes them important targets for the action of
monoterpenes; the correlation between the chemical structure of these metabolites and
their antimicrobial activity has been described [38,44]. The antibacterial activity of monoter-
penes with a chemical structure similar to ISO has been investigated. The treatment of
Gram-negative and Gram-positive bacteria with phenolic terpenoids, such as carvacrol and
thymol, indicates damage to the integrity of the cell membrane and leakage of intracellular
material, highlighting the importance of hydrophobicity and the presence of a phenolic
hydroxyl group, disrupting membrane integrity and establishment of its antibacterial activ-
ity [28,58]. Similarly, the antifungal activity of these terpenes against pathogenic yeasts has
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been reported, indicating that their lipophilicity allows interaction with the fungal cell wall,
facilitating their penetration into the cell membrane [38]. The monoterpene linalool has
also been reported to have antimicrobial activity due to its action in membrane potential,
suggesting membrane depolarization, the irregular activity of cell metabolism and dam-
age to the respiratory chain, ultimately leading to cell death [37]. The antifungal action
of ISO against pathogenic yeasts of the genus Candida was recently described, reporting
damage to the cell membrane and the induction of intracellular reactive oxygen species,
causing the death of the yeast [54,55]. On the other hand, it has also been reported that
bacteria in the presence of compounds with structures similar to ISO, such as thymol,
limonene, carvacrol, cinnamaldehyde and eugenol, can modulate the ratio of membrane
fatty acids, from saturated to unsaturated; an increase in unsaturated membrane fatty acids
and increased fluidity has been reported in the presence of these metabolites, which may
affect transport or enzymatic processes at the membrane level; this could be related to the
antibacterial action mechanisms of these compounds [59]. All of this indicates that the an-
tibacterial action of ISO could also be associated with damage to the integrity of the bacterial
cell membrane.

Quorum sensing (QS), is a cell density-based signaling system that aids bacteria-bacteria
communication and regulates several virulence factors, including biofilm formation [60]. It
is well known that the formation of biofilms is related to the resistance to antimicrobials
expressed by pathogenic microorganisms, since they hinder or prevent the penetration of
antimicrobials to the site of infection. Pseudomonas aeruginosa is known for its ability to
form powerful biofilms, which increases its ability to cause a host infection and facilitates
the establishment of chronic infections [61–63]. Respiratory infection by P. aeruginosa is the
main cause of morbidity and mortality in patients with cystic fibrosis; biofilm formation in
the respiratory tract is thought to increase persistence and resistance to antibiotics during
infection [64]. Taking this into account, we also evaluated the ability of ISO to eradicate
mature biofilms in this pathogen. All P. aeruginosa isolates in this study were biofilm
producers. We highlight the role of ISO in the eradication of mature bacterial biofilms
during 1 h of treatment, showing eradication percentages of between 6.6 and 77.4%. These
results are consistent with previous studies that report the action of ISO against mature
biofilms of pathogenic yeasts [54,55], most likely by the inhibition of important components
of the biofilms formed by these bacteria, as described in [28]. Studies carried out with the
essential oil (EO) of Thymbra capitata, a compound rich in thymol, showed an inhibition in
the swarm motility, aggregation capacity and hydrophobic capacity of P. aeruginosa, further
indicating a reduction in the production of three virulence factors regulated by the QS
system, including pyocyanin, rhamnolipids, and LasA protease [65]. Monoterpenes, such
as citral and carvacrol, are also reported to have antibiofilm activity against pathogenic
bacteria [66]. On the other hand, the analysis of the structure-activity relationship, carried
out with hordenine and its analogs against strains of P. aeruginosa and S. marcescens, indicates
that the hydroxyl group in the benzene ring present in the structure of these compounds
is related to its inhibitory activity of QS and the consequent formation of biofilms [67]. It
should be noted that ISO also has this hydroxyl group on the benzene ring, which could
be related to its ability to eradicate mature biofilms in these pathogens. Comparing the
efficacy of ISO and CIP in the eradication of these biofilms, we found that ISO had a greater
effect (between 6.6 and 77.4%), being greater than the effect of CIP in all cases (between 4.3
and 67.5%).

In addition to damage to cell membrane integrity, other mechanisms of the antibacterial
action of monoterpenoids have been proposed, including the inhibition of efflux pumps,
prevention of the formation and rupture of preformed biofilms, inhibition of bacterial
motility, and inhibition of membrane ATPases. Furthermore, it was discovered that they
can act synergistically with conventional antibiotics to overcome the problem of bacterial
resistance [68]. For all the above, it is interesting to continue investigating the mechanisms
of antibacterial action expressed by the natural monoterpene ISO.
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Our results provide new and important knowledge on the antibacterial and antibiofilm
potential of monoterpene ISO against bacteria causing NIs. In addition, these results serve
as a basis for future research on the exploration of mechanisms of action of ISO against
pathogenic bacteria.

4. Materials and Methods
4.1. Reagents

Mueller-Hinton broth (MHB) (Sigma, Mendota Heights, MN, USA) was used for the
determination of MIC and cultures of bacterial isolates. Tryptic Soy Agar (TSA) and Tryptic
Soy Broth (TSB) (Becton, Dickinson and Company, San Diego, CA, USA), Mueller-Hinton
agar (MHA) (Sigma, Mendota Heights, MN, USA), and Brain Heart Infusion (BHI) broth
(Sigma-Aldrich, St. Louis, MO, USA) were also used for bacterial cultures. Dimethyl
sulfoxide (DMSO), phosphate-buffered saline (PBS), crystal violet (CV) and antibiotics
(ATBs): ciprofloxacin (CIP), amikacin (AMK), ampicillin/sulbactam (SAM), gentamicin
(GEN), meropenem (MEM), vancomycin (VAN), and trimethoprim/sulfamethoxazole (SXT)
used in this study were obtained from Sigma-Aldrich, St. Louis, MO, USA; glacial acetic
acid was obtained from Carlo Erba Reagents, Milano, Italy.

4.2. Microorganisms

In this study, 90 clinical isolates were evaluated, distributed in 14 species that included:
Escherichia coli (38), Pseudomonas aeruginosa (12), Klebsiella pneumoniae (13), Acinetobacter
baumannii (3), Proteus mirabilis (7), Staphylococcus epidermidis (3), Staphylococcus aureus (5),
Enterococcus faecium (1), Enterococcus faecalis (1), Stenotrophomonas maltophilia (2), Citrobacter
koseri (2), Serratia marcescens (1), Aeromonas hydrophila (1) and Providencia rettgeri (1). Isolates
were cultured from tracheal aspirate samples, blood cultures, bronchoalveolar lavage, tissue
secretions, surgical wound secretions, bronchial secretions, sputum, abscesses, and urine
cultures from patients hospitalized at the Salud Social S.A.S. from the city of Sincelejo, Sucre,
Colombia. All microorganisms were identified by standard systems: Vitek® 2 Compact.
Biomerieux SA. (AST-P577, AST-N272, AST-GN93, AST-N271, AST-P612). To maintain the
bacterial cultures, BHI broth, TSB, TSA, MHB, MHA and blood agar were used.

4.3. Antibacterial Susceptibility Testing

The minimal inhibitory concentration (MIC) of the ISO against clinical isolates was
defined as the lowest concentration at which 90% (MIC90) of bacterial growth was inhibited,
compared to the control (untreated cells). The MIC50 was defined as the lowest concentra-
tion at which 50% of bacterial growth was inhibited. MIC was determined by performing
broth microdilution assays, using 96-well microtiter plates (Nunclon Delta, Thermo Fisher
Scientific, Waltham, MA, USA), as described in the Clinical Laboratory Standards Institute
(CLSI) method M07-A9 [69], with minor modifications. Serial dilutions in MHB were
made to accurately obtain final concentrations of 19.5, 39.1, 78.1, 156.2, 312.5, 625, and
1000 µg/mL of ISO in each reaction. A stock solution of ISO at 20,000 µg/mL in DMSO
was prepared for carrying out the experiments; in addition, stock solutions of the ATBs
used as controls were also prepared. The assays were developed at a final volume of
200 µL per well as follows: 100 µL of the bacterial inoculum at a concentration of
108 CFU/mL and 100 µL of the adjusted ISO system to reach the previously described
concentrations in a final reaction. Wells with bacterial inoculum, either without ISO or
with ATBs (CIP 6 µg/mL, AMK 20 µg/mL, SAM 2 µg/mL, GEN 8 µg/mL, MEM 1 µg/mL,
VAN 2 µg/mL, SXT 20 µg/mL) were used as growth controls and positive controls, respec-
tively. Wells with culture media without inoculum and without ISO were used as negative
controls. For each experiment, the controls were made with different concentrations of ISO
in culture medium without inoculum. The plates were incubated at 37 ◦C for 24 h. The
experiments were performed in triplicate. The inhibition of bacterial growth by ISO was de-
termined by changes in optical density using a SYNERGY LX microplate reader (Biotek), at
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600 nm, from the start of incubation to the end of incubation (24 h). Finally, the percentage
of inhibition of bacterial growth was calculated [70] using the following equation:

%Inhibition = (1 − (ODt24 − ODt0/ODgc24 − ODgc0)) × 100

where ODt24: optical density of the test well at 24 h post-inoculation; ODt0: optical density
of the test well at 0 h post-inoculation; ODgc24: optical density of the growth control
well at 24 h post-inoculation; ODgc0: optical density of the growth control well at 0 h
post-inoculation.

4.4. Quantitative Assessment of Biofilm Formation

Clinical isolates of P. aeruginosa were used as a model to quantify biofilm reduction
caused by ISO following the reported methodology [71], with minor modifications. For
the formation of biofilms, bacterial colonies of 24 h of incubation in TSA were used, stan-
dardizing the bacterial inoculum at 108 cell/mL. Then, in 96-well polystyrene microplates,
200 µL of the bacterial inoculum was discharged into each well and incubated at 37 ◦C for
24 h. Subsequently, the broth was removed from the microplates, and 200 µL of ISO was
added to the MIC of each isolation in TSB broth and incubated at 37 ◦C for 1 h. Then, the
floating cells were removed, and the biofilms at the bottom of the wells were washed three
times with deionized water. Excess moisture was removed by tapping the microplates on
sterile napkins, and the plates were dried for 5 min. Three assays were performed, and
each isolate was tested in 6 replicates. Cultures without ISO were used as control, and CIP
was used as positive control. Biofilm reductions were quantified by staining wells with
200 µL of 0.1% CV for 20 min. The samples were washed with deionized water until the
excess dye was removed; the excess of water was carefully dried, and then the CV was
solubilized in 250 µL of 30% glacial acetic acid. Absorbance values were measured at
590 nm (OD590), using a SYNERGY LX microplate reader (Biotek). Biofilm production was
grouped into the following categories: OD590 < 0.1: non-producers (NP), OD590 0.1–1.0:
weak producers (WP), OD590 1.1–3.0: moderate producers (MP) and OD590 > 3.0: strong
producers (SP). Biofilm reduction was calculated [72] using the following equation:

% Biofilm reduction: AbsCO − AbsISO/AbsCO × 100

where AbsCO: absorbance of the control sample and AbsISO: absorbance of the sample
treated with ISO.

4.5. Statistical Analysis

The data were analyzed using the statistical software R version 4.1.1. (R Develop-
ment Core Team, 2021, Copenhagen, Denmark) and the Excel program. In principle, the
Shapiro–Wilk test was used to determine the distribution of data. Subsequently, the Pearson
correlation coefficient (for most of the isolates) and Spearman’s test (for P. aeruginosa and
E. coli) were used to measure the degree of linear correlation between the ISO concen-
tration and the reduction in bacterial growth. To compare the effects of ISO and CIP on
the reduction in the biofilms, Tukey’s test was used. All experiments were performed
in triplicate.

5. Conclusions

In this study, we investigated the antibacterial effect of ISO against 90 clinical isolates,
as well as its role in biofilm eradication in P. aeruginosa. Our results show an inhibition
of the growth of the bacteria treated with ISO, in comparison with the untreated isolates
used as controls. The inhibitory effect was dependent on ISO concentration and different
for all isolates. We also highlight a significantly greater effect of ISO compared to CIP in
eradicating mature P. aeruginosa biofilms. The antibacterial potential of ISO against these
pathogens is demonstrated in this study.
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