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Abstract: N-heterocyclic carbene (NHC) has been widely used as an organocatalyst for both umpol-
ung and non-umpolung chemistry. Previous works mainly focus on species including Breslow
intermediate, azolium enolate intermediate, homoenolate intermediate, alkenyl acyl azolium interme-
diate, etc. Notably, the NHC-bound alkynyl acyl azolium has emerged as an effective intermediate to
access functionalized cyclic molecular skeleton until very recently. In this review, we summarized the
generation and reactivity of the NHC-bound alkynyl acyl azolium intermediates, which covers the
efforts and advances in the synthesis of achiral and axially chiral cyclic scaffolds via the NHC-bound
alkynyl acyl azolium intermediates. In particular, the mechanism related to this intermediate is
discussed in detail.
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1. Introduction

Early in 1943, N-heterocyclic carbene (NHC) was discovered and applied to catalytic
reactions in the form of coenzyme vitamin B1 [1]. Later in 1958, Breslow proposed an ap-
propriate mechanism for a vitamin B1-catalyzed benzoin condensation reaction [2], which
has inspired synthetic chemists to focus on NHCs in the field of catalytic organic reactions
for decades. Due to its unique properties in organic chemical reaction processes, NHCs
have been widely used as organometallic ligands as well as organocatalysts, owing to their
extensive and diverse synthesis and versatility [3–11]. Generally, NHC-bound interme-
diates involving organocatalytic reactions are divided into the following types: Breslow
intermediates, azolium enolate intermediates, homoenolate intermediates, azolium dieno-
late intermediates, and radical intermediates, as well as acyl azolium intermediates [12–16].
These intermediates have been explored for both umpolung and non-umpolung chemistry
such as benzoin condensation, Stetter reaction, hydroacylation, [n + m] annulation, and
so on.

Over recent decades, acyl azolium has represented a central reactive species for reac-
tion designs in the modern era of NHC-based catalysis. Overall, acyl azolium intermediates
can be categorized into the following types: alkyl acyl azoliums [17], alkenyl acyl azoli-
ums [18–20], dienyl acyl azoliums [21–23], and alkynyl acyl azoliums [20] (Scheme 1A).
Among them, NHC-based alkynyl acyl azolium intermediates, initially identified indepen-
dently by Chi [24], Du [25], and Wang [26] between 2017 and 2018, were less commonly
studied. Although only a few reaction models involving the species have been devel-
oped, alkynyl acyl azolium intermediates have been recognized as a new NHC-bound
specie for the discovery of new reactions. Until now, three procedures have been dis-
closed to produce alkynyl acyl azoliums intermediates according to their precursors (i)
via the addition of NHCs to ynals and subsequent oxidation of the Breslow intermediates
(Scheme 1B, I); (ii) via the reaction of NHCs with activated alkynoic acid esters (Scheme 1B,
II); (iii) via the reaction of NHCs with in situ activated alkynoic acids (Scheme 1B, III).
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Typically, alkynyl acyl azoliums exhibit bielectrophilicity, and they have been investigated
for [3 + n] annulations with diverse binucleophile reagents to afford heterocyclic molecules
(Scheme 1B, IV).
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Scheme 1. N-heterocyclic carbene (NHC)-bound acyl azoliums (A), generation and reactivity of the
alkynyl acyl azoliums (B), and the main challenges to explore the concerning reactivity of alkynyl
acyl azoliums (C).

However, despite recent developments gradually enabling the diverse transformation
of these species, the area is in the early stages of its development. The main challenge to
exploring the reactivity of alkynyl acyl azoliums intermediates is attributed to the difficulty
to control the chemo- and regioselectivities, which would result in undesired byproducts.
For instance, the NHC-bound alkynyl acyl anion intermediates Int. I, allene intermediates
Int. II, and alkenyl acyl azoliums intermediates Int. III might also be formed during the
generation of alkynyl acyl azoliums intermediates (Scheme 1C). Furthermore, the control
of the regioselectivity of the [3 + n] annulations between binucleophile and alkynyl acyl
azolium intermediates is another challenge to explore in this reaction (Scheme 1C, IV,V).

Herein, we summarized the efforts and advances in the NHC-catalyzed [3 + n] annula-
tion reactions involving alkynyl acyl azoliums intermediates with focus on their generation
and reactivity as well as the mechanism of the reactions. We present these achievements
in generally chronological order and some seminal efforts or closely related works are
mentioned as well. All the NHCs described in this article are summarized in Scheme 2.
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2. Discussion

In 2018, Wang described the generation of alkynyl acyl azolium intermediates through
the addition of NHC catalyst to ynals and subsequent oxidation of the Breslow interme-
diates (Scheme 3) [26]. The reaction of alkynyl acyl azoliums with binucleophile cyclic
1,3-diones 1 affords the axially chiral α-pyrone-aryls 3, along with byproducts 4, 5 and
6 which are derived from the annulation of α,β-unsaturated acyl azoliums intermediate
Int. III, regioselective annulation between alkynyl acyl azoliums intermediate and oxygen
nucleophile of cyclic 1,3-diones 1, as well as Knoevenagel reaction of 3 with 1, respectively.
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Mechanistically, the reaction proceeds via the addition of NHC catalyst to ynal 2
followed by oxidation of the Breslow intermediate to form NHC-bound alkynyl acyl
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azolium intermediate 7. Nucleophilic addition of cyclic 1,3-diones 1 to 7 are promoted
by Lewis acid Mg(OTf)2 affords allenolate intermediate 9. Subsequent proton transfer
forms alkenyl acyl azolium intermediate 10. Then, nucleophilic attack of acyl azolium
forms an O—C bond and affords intermediate 11. The release of NHC catalyst finally
delivers the targeted product 3. Importantly, the addition of Lewis acid was essential
to modulate the regioselectivity. The chelation of the oxygen atom with magnesium ion
promoted carbon nucleophilic addition of 1,3-dione to alkynyl acyl azoliums intermediate
7 and the formation of byproduct was inhibited. In addition, the attempt of oxidative
dehydrogenation of 4 under their standard reaction conditions did not deliver product
3, which suggested that the direct annulation of cyclic 1,3-dione with unsaturated acyl
azolium intermediate pathway was excluded (Scheme 4).
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1,3-diones.

In 2020, Qi and co-workers developed a similar NHC-catalyzed [3 + 3] annulation of
alkynyl acyl azoliums intermediate by replacing the binucleophile of pyrrol-4-one 13 [27].
In this reaction, the simple ynal 12a underwent [3 + 3] annulation smoothly and afforded
the non-axially chiral pyrones in good yield. By optimizing a particular class of chiral
indanol-derived NHCs and other conditions, the formation of axially chiral pyrones was
also proven to be feasible by using 3-(2-methoxynaphthalen-1-yl)propiolaldehyde (12b) in
the presence of chiral NHC catalyst A2 (Scheme 5).

Chi, Jin and co-workers also disclosed a [3 + 3] annulation of NHC-bound alkynyl
acyl azoliums with N-Ts imine 16 [24]. In this case, the alkynyl acyl azolium intermediate
was generated by the reaction of NHC catalyst with activated alkynoic acid ester. The
alkynyl acyl azolium intermediates have great potential for reaction discovery due to the
highly reactive carbon–carbon triple bond. In this work, they explored the reactivity of
alkynyl acyl azoliums with binucleophile N-Ts imine 16 in order to access a variety of
functionalized pyridines 17 (Scheme 6).
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Mechanistically, the addition of NHC catalyst to the ester 15 affords the key alkynyl
acyl azolium intermediate 19. The nucleophilic conjugated addition of enamide 20 to 19
delivers the allenolate azolium intermediate 21, which undergoes a proton transfer to form
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alkenyl acyl azolium intermediate 22. Subsequent lactamization occurs to release the NHC
catalyst and delivers the N-Ts δ-lactams 18. Finally, isomerization of N-Ts δ-lactam 18
at a slightly elevated temperature produces the pyridines 17. This work pioneered the
use of activated alkynoic acid ester as the precursor to generate the alkynyl acyl azolium
intermediate.

In 2020, Qi and co-workers explored even further the reactivity of alkynyl acyl azolium
intermediate for the [3 + 3] annulation reaction (Scheme 7) [28]. In this work, the N-Ts-
protected 2-aminoacrylate 24 serves as a nucleophile for conjugated addition and affords a
range of pyridines 25 in moderate yields.
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Scheme 7. NHC-catalyzed [3 + 3] annulation of ynals and N-Ts 2-aminoacrylates.

A possible mechanism is proposed for the reaction. Addition of NHC catalyst to
ynal 23 delivers Breslow intermediate 26, then oxidation of 26 with DQ yields the alkynyl
acyl azolium intermediate 27. Subsequent 1,4-addition of N-Ts-protected 2-aminoacrylate
24 to 27 produces allenolate azolium intermediate 28, which undergoes proton transfer
and lactamization to afford N-Ts δ-lactam 30 and regenerates the NHC catalyst. Finally,
thermodynamic aromatization achieves the product pyridines 25. Interestingly, 1,2-addition
of 24 to 27 and Claisen rearrangement with 31 pathways cannot be excluded.

Besides [3 + 3] annulation reactions, Du and co-workers also developed an NHC-
catalyzed [3 + 2] annulation of alkynyl acyl azolium intermediate in 2017 [25]. In this
process, activated esters 15 were used to generate the alkynyl acyl azolium intermediates,
which reacted with β-diacyl 32 to afford the desired Z-2-vinylfuran-3(2H)-one 33 with
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various substituents in moderate to excellent yields. The reaction was compatible with
both electron-withdrawing and electron-donating groups with regard to esters. However,
undesired six-membered ring byproduct 39 was also observed with low to moderate yields
in some cases (Scheme 8).
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amidomalonates.

Mechanistically, the reaction starts by nucleophilic addition of NHC catalyst to the
ester 15 to afford the key alkynyl acyl azolium intermediate 34. Deprotonation of β-diacyl
32 by DIPEA followed by complexation with LiCl yields acyl enolate 35, which undergoes
1,2-addition to obtain 36. Subsequent intramolecular proton transfer generates intermediate
37. Two pathways may be involved in the intramolecular nucleophilic addition process.
The 5-membered Z-2-vinylfuran-3(2H)-ones 33 are obtained when the addition of hydroxyl
occurs at the α-carbon of the triple bond. On the other hand, 6-endo-dig cyclization of 37
yields the byproducts 4H-pyran-4-ones 39. DFT calculations indicated that the α-carbons
are positively charged and that the β-carbons were negatively charged in both intermediate
36 and 37. Therefore, attack of the α-carbon by oxygen anion is more favorable for yielding
five-membered products in the intramolecular addition process. Due to the less-steric
hindrance between alkenyl hydrogen and carbonyl, Z-isomers are able to be obtained with
high stereoselectivity (Scheme 8).

To further investigate the reactivity of NHC-bound alkynyl acyl azoliums intermedi-
ates, Wang and co-workers extended binucleophile to amidines 40 [29]. In this case, they
explored another NHC catalyzed [3 + 3] annulation of alkynyl acyl azoliums to construct
multiply substituted pyrimidin-4-ones (Scheme 9). The reaction was compatible with both
electron-withdrawing and electron-donating groups on ynals and amidines. Furthermore,
the desired products were obtained in good yields even with the bulkier amidines, which
enabled this reaction to be applied for further diversification.
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Mechanically, the catalytic cycle begins with the addition of NHC catalyst to ynal
23 to form Breslow intermediate 42, which undergoes an oxidation to afford alkynyl acyl
azolium intermediate 43. The coordination of the Lewis acid Mg(OTf)2 with amidine
40 and intermediate 43 produces complex 44. Then, Michael addition affords allenolate
intermediate 45, which undergoes intramolecular proton transfer to generate alkenyl acyl
azolium intermediate 46; subsequently, intramolecular 6-exo-dig cyclization delivers the
final product, pyrimidin-4(1H)-one 41, and regenerates the NHC catalyst.

In 2018, based on the works of NHC-catalyzed reactions with in situ activation of
saturated or alkenoic acids [30–35], Du and co-workers reported the formation of alkynyl
acyl azolium intermediate 50 via the in situ activation of alkynoic acids of 47 by NHC
catalyst [36]. This seminal work achieved the NHC-catalyzed formal [3 + 3] annulation
of alkynoic acids 47 and 2-mercaptoimidazoles 48 to access the heterocyclic imidazo[2,1-
b][1,3]thiazinone frameworks (Scheme 10).

Mechanistically, alkynoic acid 47 is activated in situ by pyBOP followed by the addi-
tion of NHC catalyst to afford alkynyl acyl azolium intermediate 50. Michael addition of
2-mercaptoimidazoles 48 to intermediate 50 forms allenolate azolium intermediate 51. Sub-
sequent proton transfer produces alkenyl acyl azolium intermediate 52, which undergoes
6-exo-trig cyclization to give formal [3 + 3] annulation product δ-lactam 49 with release of
the NHC catalyst.
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mercaptobenzimidazoles.

In 2019, based on previous works on the annulations of alkenyl acyl azolium intermedi-
ates with indolin-3-ones [37,38], Du and co-workers achieved [3 + 3] annulation of alkynyl
acyl azolium intermediates with 3-oxo indolin-2-ides (Scheme 11) [39]. In the presence of
DBU and NHC iminium salt A8, 4-nitrophenyl alkynyl acid esters 15 and indolin-3-ones 53
underwent the [3 + 3] annulation smoothly and yielded pyrano[3,2-b]indol-2-ones 54 in
an efficient and rapid manner. The benzofuran-3(2H)-one 60 was also explored as binucle-
ophile for the [3 + 3] annulation reaction under standard conditions, which produce the
corresponding 4-phenyl-2H-pyrano[3,2-b]benzofuran-2-one 61 product in 30% yield.

Mechanistically, the reaction is initiated by the addition of NHC catalyst to activated
alkynoic acid esters 15 followed by the elimination of 4-nitrophenolate to afford alkynyl
acyl azolium intermediate 56. Michael addition of 3-oxo indolin-2-ide 59 to intermediate 56
forms allenolate azolium intermediate 57. Subsequent proton transfer produces alkenyl
acyl azolium intermediate 58 which undergoes 6-exo-trig cyclization to give corresponding
formal [3 + 3] annulation product 54 with the release of the NHC free carbene. Although
the nucleophilic addition of resonant isomer enolate 59′ of 59 to alkynyl acyl azolium
intermediate 56 could produce byproduct 55, its formation could be completely inhibited by
optimizing the base and solvent. When the reaction carried out at 90 ◦C or tetrahydrofuran
was used as the solvent, byproduct 55 was obtained in 30–45% yields. Reducing the heat
from 90 ◦C to room temperature and replacing tetrahydrofuran with other solvent (toluene,
acetonitrile, or dichloromethane) could essentially completely inhibit the formation of
byproduct 55, and the targeted product 54 could be obtained with high chemoselectivity.
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Additionally, NHC-catalyzed [3 + 3] annulations of 4-nitrophenyl alkynyl acid esters
15 and benzofuran-3-amines 62 were also demonstrated by Du and co-workers to obtain
functionalized benzofuro[3,2-b]pyridin-2-ones 63 (Scheme 11) [40]. The reaction conditions
are generally consistent, except for the binucleophile (53, 60 and 62); the reaction mechanism
is similar to the previous work. Deprotonation of benzofuran-3-amine 62 generates enamine
ion 64, which resonates with the 3-oxo indolin-2-ide 59 analogue 3-imino benzofuran-2-ide
64′. 1,4-Conjugate addition of 64′ with alkynyl acyl azolium intermediate 56 and followed
by lactamization affords the desired product 63.

Based on the successful synthesis of achiral δ-lactones 54 or δ-lactams 63 via [3 + 3] an-
nulations of alkynyl acyl azolium intermediate 56 with α-oxo ide 59 or α-imino ide 64′ [40],
a related asymmetric annulation reaction was developed by Wei, Du, and co-workers in
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2021 [41]. In the presence of potassium carbonate and NHC iminium salt A9, a steric hin-
drance alkynyl acid ester 66 activated by 4-nitrophenyl reacts with 2-sulfonamidoindolines
65 yielding axially chiral δ-lactam 68, and subsequently thermodynamic aromatization
produces an enantioenriched 4-aryl α-carboline 67 containing a chiral C–N axis (Scheme 12).

Molecules 2022, 27, x FOR PEER REVIEW 12 of 16 
 

 

formation of byproduct 55, and the targeted product 54 could be obtained with high 

chemoselectivity. 

Additionally, NHC-catalyzed [3 + 3] annulations of 4-nitrophenyl alkynyl acid esters 

15 and benzofuran-3-amines 62 were also demonstrated by Du and co-workers to obtain 

functionalized benzofuro[3,2-b]pyridin-2-ones 63 (Scheme 11) [40]. The reaction condi-

tions are generally consistent, except for the binucleophile (53, 60 and 62); the reaction 

mechanism is similar to the previous work. Deprotonation of benzofuran-3-amine 62 gen-

erates enamine ion 64, which resonates with the 3-oxo indolin-2-ide 59 analogue 3-imino 

benzofuran-2-ide 64′. 1,4-Conjugate addition of 64′ with alkynyl acyl azolium intermedi-

ate 56 and followed by lactamization affords the desired product 63. 

Based on the successful synthesis of achiral δ-lactones 54 or δ-lactams 63 via [3 + 3] 

annulations of alkynyl acyl azolium intermediate 56 with α-oxo ide 59 or α-imino ide 64′ 

[40], a related asymmetric annulation reaction was developed by Wei, Du, and co-workers 

in 2021 [41]. In the presence of potassium carbonate and NHC iminium salt A9, a steric 

hindrance alkynyl acid ester 66 activated by 4-nitrophenyl reacts with 2-sulfon-

amidoindolines 65 yielding axially chiral δ-lactam 68, and subsequently thermodynamic 

aromatization produces an enantioenriched 4-aryl α-carboline 67 containing a chiral C–N 

axis (Scheme 12). 

 

Scheme 12. Catalytic atroposelective formal [3 + 3] annulation between alkynyl acyl azolium inter-
mediate and 2-sulfonamidoindolines.

Mechanistically, the reaction is initiated by the addition of NHC catalyst to activated
alkynoic acid esters 66 followed by the elimination of 4-nitrophenolate to afford alkynyl
acyl azolium intermediate 69. Deprotonation of 2-sulfonamidoindolines 65 by potassium
carbonate and followed by Michael addition to intermediate 69 forms allenolate azolium
intermediate 70. Subsequent proton transfer produces alkenyl acyl azolium intermediate
71 which undergoes lactamization to yield the corresponding formal [3 + 3] annulation
δ-lactams 68 with release of the NHC catalyst. Further thermal treatment of δ-lactams
68 affords the aromatized product 67. DFT calculation indicates that in the process of
nucleophilic attack to intermediate 69, the energy of transition state TS1 R is 1.8 kcal/mol
lower than that of transition state TS1 S, so R configuration isomer plays a dominant role
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in the reaction. According to DFT calculations, the main reason for the lower energy of TS1
R than TS1 S is that the noncovalent interactions (LP . . . π, C–H . . . N, π . . . π, etc.) of the
former are stronger than the latter.

The above works referred to the construction of achiral compounds or molecules with
the C–C axis through NHC-bound alkynyl acyl azolium intermediates. However, investiga-
tion of the C–hetero chiral axis remained underexplored. In 2021, Jin, Chi, and co-workers
realized NHC-catalyzed asymmetric synthesis of C–N axial chiral thiazine 73 via the [3 + 3]
annulation of alkynyl acyl azolium intermediate and thioureas 72 (Scheme 13) [42]. In this
approach, in the presence of NHC-free carbene A10 and Scandium trifluoromethanesul-
fonate additive, a variety of bulky aryl substituted thioureas 72 annulated with ynals 23
afforded thiazine 73 with moderate to good yields and high to excellent enantioselectivities.
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Scheme 13. NHC-catalyzed atroposelective [3 + 3] annulation of ynals and thioureas.

Mechanistically, the reaction proceeds via the addition of NHC catalyst to activated
ynal 23a in order to generate the Breslow intermediate 74. The subsequent oxidation
by DQ generates alkynyl acyl azolium intermediate 75. Deprotonation of thiourea 23a,
through DMAP and nucleophilic thiol-addition to intermediate 75, forms allenolate azolium
intermediate 76. Subsequent proton transfer produces alkenyl acyl azolium intermediate 77,
which complexes with Sc(OTf)3 to afford stereoisomeric intermediate 78. Under the action
of chiral NHC, intermediate 78 undergoes 6-exo-trig cyclization to yield the corresponding
formal [3 + 3] annulation product 73a with the release of the NHC catalyst. It is worth
noting that although Scandium promotes the reaction, it has no effect on ee value.

In 2021, as a continuous work on NHC-catalyzed atroposelective [3 + n] annulation to
access chiral C–N axis heterocyclic compounds, Chi and co-workers disclosed the atropose-
lective [3 + 2] annulation between ynals 23 and 4-arylurazole 79 using a desymmetrization
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strategy (Scheme 14) [43]. A wide range of ynals 23 and symmetric urazole 79 with bulky
4-aryl bearing diverse substituents were well tolerated and underwent the desymmetric
atroposelective [3 + 2] annulation to afford pyrazolo[1,2-a]triazoles 80 containing a C–N axis
in good to excellent yield with high enantiomeric excess. The mechanism is similar to that
reported previously, in which atroposelective nucleophilic addition of the deprotonated 79
to the alkynyl acyl azolium intermediate 75 occurs to yield formal [3 +2] annular product.
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3. Conclusions

Since its discovery, NHC-based alkynyl acyl azolium intermediates have made sig-
nificant progress in the past five years. Three methods to access the NHC-based alkynyl
acyl azolium intermediates have been discussed, (1) via the oxidation of ynals, (2) via
the activation of alkynoic acid ethers, and (3) via the in situ activation of alkynoic acids.
These intermediates exhibit bielectrophilicity and react with binucleophiles via conjugated
addition followed by 1,2-addition to yield structurally and functionally diverse cyclic
molecules such as pyridines, lactones, and lactams containing a ring-fused structure, as
well as multiple heteroatoms. Particularly, with the participation of alkynyl acyl azolium
intermediates, the construction of C–N chiral axes and C–C chiral axes was achieved.

However, due to the formation of several other reactive species during the generation
of alkynyl acyl azolium intermediates and the difficulty of controlling the regioselectivity
of the nucleophilic addition, these reactions lead to the formation of several byproducts.
Unfortunately, only a few reports concerning this topic have been produced. On the other
hand, only four relatively successful cases for the synthesis of chiral compounds have been
developed. In the future, more efforts will be required to explore new reactions for the
synthesis of axially chiral molecules and to further investigate the mechanism by which
NHC-based alkynyl acyl azolium intermediates participate.
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