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Abstract: Polyphenols of plant origin are a broad family of secondary metabolites that range from
basic phenolic acids to more complex compounds such as stilbenes, flavonoids, and tannins, all of
which have several phenol units in their structure. Considerable health benefits, such as having
prebiotic potential and cardio-protective and weight control effects, have been linked to diets based
on polyphenol-enriched foods and plant-based products, indicating the potential role of these sub-
stances in the prevention or treatment of numerous pathologies. The most representative phenolic
compounds in apple pomace are phloridzin, chlorogenic acid, and epicatechin, with major health
implications in diabetes, cancer, and cardiovascular and neurocognitive diseases. The cereal byprod-
ucts are rich in flavonoids (cyanidin 3-glucoside) and phenolic acids (ferulic acid), all with significant
results in reducing the incidence of noncommunicable diseases. Quercetin, naringenin, and rutin
are the predominant phenolic molecules in tomato by-products, having important antioxidant and
antimicrobial activities. The present understanding of the functionality of polyphenols in health
outcomes, specifically, noncommunicable illnesses, is summarized in this review, focusing on the
applicability of this evidence in three extensive agrifood industries (apple, cereal, and tomato process-
ing). Moreover, the reintegration of by-products into the food chain via functional food products and
personalized nutrition (e.g., 3D food printing) is detailed, supporting a novel direction to be explored
within the circular economy concept.

Keywords: agro-industrial by-products; biological activity; circular economy; health effects; re-
integration; waste management; phenolic compounds

1. Introduction

By-products of agro-industrial provenance and food waste are severe global concerns,
particularly in many developed countries [1]. Food consumption has increased as a con-
sequence of urbanization, population expansion, and economic growth, and it remains
a consistent issue worldwide in the long run [2,3]. The most bothersome sectors are the
wheat flour production, apple juice production, and tomato-processing industries, which
generate massive amounts of residues, as a result of the extensive yearly processed tonnage
(Figure 1). On the other hand, the low cost and straightforward availability of this residual
biomass shelter the economic prospects of its potentially valuable components [4].

In general, cereal grains are the world’s main food source, contributing up to
300 million tons (Mt) of food products yearly according to FAOSTAT (http://www.fao.org/
accessed on 10 October 2022) [5]. The primary cereals produced are maize, wheat, rice,
barley, and oat crops, from which maize is mainly submerged as flour, animal feed, and
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substrate in ethanol production [6], while wheat is consumed worldwide mostly in the
form of flour [7].
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Figure 1. Production of cereal, apples, and tomatoes (tons) in Europe. (A) Evolution of world cereal,
apple, and tomato production over the last two decades; (B) production of wheat (tons) in Europe
for every country in 2020; (C) production of apples (tons) in Europe for every country in 2020;
(D) production of tomatoes (tons) in Europe for every country in 2020 (http://www.fao.org/faostat,
accessed on 22 April 2022).

Maize (Zea mays L.), cultivated globally, is the prime cereal grown in the world [8].
As presented in Figure 1A, its production increased by more than 50% in the last 20 years
and is the most significant starch supply, and subsequently, it is one of the main organic
by-product generators in the world [6]. In Europe, cereal production increased more than
four times from 2000 to 2020, with the highest production in Western and Eastern Europe
(Figure 1B). According to a recent study, in Europe, these cereal by-products, via integration
with foodstuffs, could replace as many as 8.8 Mt of edible grains [9].

Wheat (Triticum aestivum L.) is one of the world’s most prominent cereals. According to
FAOSTAT, the global output in 2020 was over 760 million tons (Mt), up from 580 Mt in 2000,
showing a 30.97% increase in wheat production over the last two decades, and the global
output is expected to increase gradually in the future [10]. In agreement with the European
Flour Millers’ Report (2016), more than 45 Mt of wheat and oats is processed annually in
Europe, creating over 6.5 Mt of by-products, which are predominantly used for animal
nutrition [11]. By-products such as bran are a rich source of beneficial phytochemicals
such as dietary fibers, minerals, vitamins, polyphenols, and phytosterols, known for their
health-promoting properties [7,11–13]. Phenolic acids are among these components since
they are categorized as bioactive phytochemicals and have a significant impact on human
health [14].

Apple (Malus domestica sp.) is one of the most widespread fruits on the global scale.
In 2020, the global output was over 86 Mt, up from just over 59 Mt in 2000, indicating
an incremental tendency of apple production, with 46.19% in the last two decades [5].
China is the leading contributor to overall production with 46.85%, followed by the USA
with 5.38%, and Turkey with 4.97%, and from Europe, the main contributor is Poland with
4.11%, as shown in Figure 1C. Furthermore, the worldwide output is predicted to rise
steadily in the future [15,16].

http://www.fao.org/faostat
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The resulting by-product of apple pressing/processing, which derives from juice,
cider, wine, distilled spirits, and vinegar production, as well as the formulation of jellies, is
known as apple pomace (AP). Solid pomace makes up to 20–35% of the apple fruit’s fresh
weight and is composed of a mixture of pulp, peel, core, seed, and calyx. Approximately
95.5% of the solid waste is produced by epi-mesocarp [17]. Dietary fiber, which makes
up around 65% of the dry weight of AP, is the main component from a nutritional point
of view, and the majority of dietary fiber in all pomace is insoluble. Apple seeds include
significant amounts of proteins and lipids, up to 49.5 and 24%, respectively. Additionally,
hemicellulose is the second-most significant fiber in AP (19.9–32.2%), and cellulose accounts
for a crucial part, comprising 43% of the pomace [18]. The by-products of the seed and peel
are rich in phenolic chemicals, primarily chlorogenic acid and phloridzin [19].

Tomatoes (Solanum lycopersicum L.) are considered one of the world’s most popular
vegetables but are classified as a fruit. In Europe, it was first domesticated in Spain [20], and
the main producers are represented in Figure 1D. The global output of tomatoes increased
to 186 Mt in 2020, up from just over 109 Mt in 2000 [5]. According to FAOSTAT, a substantial
increase in tomato production can be observed in the last two decades, precisely above
70%. The major producers are China with 34.67%, followed by India with 11.01%, Turkey
with 7.07%, and the USA with 6.54% of global tomato crop production. Additionally, the
global output is expected to increase gradually in the future [2]. More than one-third
of the tomatoes are processed due to their perishable nature, and considerable amounts
of by-products are generated via juice, sauces, ketchup, or puree production, among
other meals. The removal of tomato peels, seeds, and tiny amounts of pulp can add
between 5 and 30% to the cost of the primary products, and the by-products are a source
of environmental discomfort due to their high moisture content, which favors bacterial
growth and carbon dioxide emission [21]. The scientific literature confirms the presence
of health-promoting compounds such as carotenoids, polyphenols, tocopherols, terpenes,
and sterols in industrial tomatoes and their by-products, and endorses their extraction and
revalorization in functional food products, as the bioactive substances resist to industrial
processes [22,23].

Polyphenols are secondary metabolites that contain one or more hydroxyl groups,
being one of the largest classes of valuable bioactive compounds for supporting human
health [24,25]. Phenols are essentially made up of a hydroxyl group (-OH) linked directly
to an aromatic hydrocarbon group, whereas polyphenols are larger polymers of 12 phenolic
hydroxyl groups linked to five-to-seven aromatic rings [26,27]. Based on recent trends
regarding healthier lifestyles and an increase in the consumption of foodstuffs derived from
natural resources without any environmental drawbacks, the reintegration of by-products
generated by the food industry is an important topic [28,29].

Green alternatives to lessen environmental pollution and waste generation include
renewable biomaterials, and wheat-, apple-, and tomato-processing by-products can be
framed into this category. In recent years, innovative and inventive applications of these
by-products have contributed to the steady advancement of bioeconomy and biotechnology
through the extraction and/or revalorization of natural phenolic compounds [30].

The use of agro-industrial derivatives might provide an additional source of income,
and it could reduce by-product disposal and improve the nutritional profile of functional
food items at the same time. Utilizing grain, tomato, and apple by-products from industrial
production may provide a generous supply of nutrients, and their repurposing might
represent a substantial source of revenue. Therefore, the objective of the current literature
review is to highlight the primary phenolic components linked to human health, which
can be found in the by-products of these three major agrifood industries (apple, cereal, and
tomato processing), and to encourage their recovery and, accordingly, reintegration into
the food chain using circular economy principles. Nonetheless, based on the findings of
this study, it is projected that the food-processing industries could better manage their by-
products and waste (e.g., through the incorporation of by-products into food formulations
to boost the nutritional value), therefore avoiding a major environmental concern.
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2. Polyphenols in Apple-Processing By-Products

Apples are one of the most consumed fruits worldwide, both in industry and at
the individual population level [31]. Approximately 11 million metric tons of apples is
produced and used annually in the apple-processing industry and alcoholic beverage
production in Europe [32]. Apple pomace is one of the most widely produced agrifood
wastes, with an annual production rate of about 4 million tons worldwide [33]. The recovery
rate for this by-product, however, is modest. Pomace is frequently discarded and dumped
in landfills as waste, which causes environmental issues and presents a potential risk to
public health [3,34].

The amount of pomace resulting after apple processing can be reused in biotechno-
logical routs as a substrate for the production of different compounds, such as flavoring
compounds, pigments, fuel, and citric acid, or as raw materials for the extraction of fibers
and phenolic compounds [35–38].

From a nutritional point of view, apple pomace is a by-product rich in fibers, vita-
mins, minerals, phenolic compounds, and pigments [19]. All these macronutrients have
a significant role in the human organism through their effects on metabolism. Therefore,
apple pomace has attracted researchers’ consideration, as well as stakeholders’ attention,
by virtue of its valuable composition and by presenting suitable properties for further
sustainable use [39].

The nutritional profile of apple pomace is mainly represented by phenolic compounds,
carbohydrates, and fibers, as presented in table Table 1. These constituents can help treat
gastrointestinal disorders, decrease serum triglycerides and LDL-cholesterol, and regulate
glycemia [40,41]. All these effects in the human organism can be explained through their
high concentration of the beneficial compounds mentioned above, primarily exerting
anti-inflammatory and antioxidant roles [42].

Table 1. The nutritional and polyphenolic profile of apple pomace 1 [43].

Composition Amount (% DW)

Total sugar 45.1 ± 5.3
Total dietary fiber 26.5 ± 0.8

Insoluble fiber 18.4 ± 0.4
Soluble fiber 8.2 ± 0.5

Total phenolic content (mg EGA/100 g AP) 289.1 ± 24.2
Fat 3.8 ± 0.2

Protein 2 3.8 ± 0.0

Polyphenolic profile (mg/100 g dry matter)

Quercetin-3-O-galactoside 22.55 ± 0.34
Quercetin-3-O-xyloside 13.91 ± 0.03

Quercetin-3-O-rhamnoside 19.21 ± 0.00
Chlorogenic acid 20.55 ± 0.12

p-coumaroylquinic acid 0.16 ± 0.03
Catechin 1.44 ± 0.02

Procyanidin B2 2.61 ± 0.00
Phloretin-2-O-xylosyl-glucoside 1.48 ± 0.14

Phlorizin 15.52 ± 0.00
1 Values represent mean ± standard deviation, based on [43]; 2 nitrogen to protein conversion factor was 5.7.

In addition to the benefits, the consumption of apple pomace may raise questions
associated with toxicity when it comes to its applicability in the food industry [44], with
seeds representing 4–5% of the apple pomace [45]. Apple seeds contain a plant toxin called
cyanogenic glycoside amygdalin, which can interact with digestive enzymes, resulting
in the release of hydrogen cyanide. This toxin can cause different symptoms, from mild
symptoms such as dizziness to severe symptoms such as paralysis and coma [46]. However,
to reach poisoning levels, the ingested quantity must be significantly high; more exactly,
between 83–500 apple seeds are needed to reach the poisoning level, or the person must
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consume more than 800 g of apple pomace [33,47]. Studies on apple seed oil have confirmed
the safety of its use, as the limit was found to be below the toxicity level [48].

Phenolic compounds are concentrated mainly in the core, seeds, peel, calyx, and
stem, as well as in smaller amounts in the pulp, highlighting how apple pomace can be
valorized through its high amount of antioxidant compounds. As shown in Figure 2, the
total phenolic content of seeds has a higher value compared with the pulp, followed by the
peel, both being part of apple pomace.
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Figure 2. Distribution of phenolic compounds in apple fruit, according to Feng et al. [49]. TPC—total
phenolic content; DW—dry weight.

The predominant phenolic compound families in apple pomace are dihydrochalcones,
procyanidins, flavan-3-ol monomers, flavonols, anthocyanidins, and hydroxycinnamic
acids. The most representative compounds are phlorizin from the dihydrochalcones family,
chlorogenic acid from the hydroxycinnamic acids family, and epicatechin from the flavan-3-
ol monomer family [50].

One of the representative phenolic compounds in apples and, remarkably, apple
pomace, is phlorizin (Figure 3A). As the main compound from the dihydrochalcone family,
the amount of phlorizin in apple pomace is approximately 1.6 mg/g dry weight, highlighted
in a study by Lavelli et al. on the stability of phenolic compounds in apple pomace [51].
Phlorizin is used as a marker of apple varieties and is mainly concentrated in apple seeds.
This polyphenol is also used as a reliable marker for spotting the presence of apples, a less
expensive alternative compared with the reported fruits [52].
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Nevertheless, it also acts as a strong antioxidant, anti-inflammatory, and antimicro-
bial compound [53,54]. Regarding its benefits, phlorizin exerts several health benefits,
mainly in diabetes, due to its ability to alter the glucose absorbed and excreted. A recent
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study illustrated that the intestine and kidney’s sodium/glucose cotransporters are specifi-
cally and competitively inhibited by phlorizin. In addition, postprandial hyperglycemia
therapy in diabetes and other associated illnesses, such as obesity, may benefit from this
characteristic [55]. A study conducted on streptozotocin-induced diabetic mice showed
that a diet containing 0.5% phlorizin significantly improves the exacerbated elevations in
blood glucose levels [56,57]. Another health benefit can be seen in colitis, where it acts as
a protective compound for the intestinal brush border [58].

Chlorogenic acid (Figure 3B) is representative in the peel and flesh of apples compared
with their seeds. Chlorogenic acid is a powerful antioxidant known for counteracting
pathologies caused by oxidative processes [59,60]. A study conducted on the improvement
of mood and cognition in the elderly showed enhanced results after the administration
of enriched decaffeinated coffee with chlorogenic acid, displaying that the consumption
of products containing chlorogenic acid can help in the treatment of neuro-cognitive
diseases [61]. Besides the benefits mentioned previously, chlorogenic acid can also confer
positive effects by lowering blood pressure, confirmed in a randomized trial involving
healthy volunteers after the administration of 400 mg chlorogenic acid in 400 mL low-
nitrate water. This effect can be explained by the ability of phenolic compounds to increase
nitric oxide, which improves cardiovascular health [62].

The third phenolic compound found in apple pomace in smaller amounts is epicat-
echin (Figure 3C). Besides all its fulfilled roles (e.g., antioxidation, anti-inflammation),
epicatechin can exert its role in diabetes, cancer, and cardiovascular disease, acting as
a neuroprotective compound, and it improves muscle performance [63]. Cilleros et al.
showed, in an in vitro study, the effect of epicatechin in regulating glucose uptake and
bolstering the insulin signaling pathway [64]. A study conducted on human monocytic
cells (THP1 cells) showed similar results regarding the beneficial effects of epicatechin in
diabetes through the attenuation of high-glucose-induced inflammation [65].

3. Polyphenols in Cereal-Processing By-Products

Rice, wheat, barley, and corn are the most prevalent cereals globally, accounting for
more than 90% of total cereal consumption [8]. By-products from the grain processing
food industry include bran, straw, germ, and spent brewery grain [8,14]. Recent scientific
studies confirm that the by-products of grain milling contain a wide range of beneficial
components that support human health. These components, illustrated in Figure 4, include
dietary fiber, vitamins, minerals, phytosterols, and polyphenols [66].
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The most common polyphenols in cereal by-products are flavonoids and phenolic
acids, categorized into two large classes: hydroxybenzoic acids and hydroxycinnamic
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acids [67]. Gallic, vanillic, p-hydroxybenzoic, protocatechuic, syringic, and salicylic acids
are all hydroxybenzoic acids with a C6-C1 structure. Hydroxycinnamic acids, on the other
hand, have a C6-C3 structure comprising caffeic, ferulic, p-coumaric, chlorogenic, and
synaptic acids [68].

Most of the phytochemicals found in cereal grains are identified in the bran fraction
and are primarily bound to dietary fiber components, such as cellulose, hemicellulose, and
lignin. In cereal by-products, a smaller amount of phenolic acid is present in a free form,
and a larger amount is present in a bound form. In corn, for example, the free phenolic
fraction ranges between 1 and 5 mg/100 g DW, while the bound fraction ranges between
150 and 300 mg/100 g DW [69]. The common phytochemical composition of cereal bran is
presented in Table 2.

Table 2. Chemical composition of cereal bran.

Compound
Amount (% DW)

References
Wheat Bran Rice Bran Oat Bran Corn Bran

Water 12.1 8.72- 29.4–31.2 4 [70–73]

Protein 13.2–18.4 10–16 5.9–6.7 9.5–10.1 [71,74,75]

Fat 3.5–3.9 15–22 6.47 1.92–6.41 [74,76–78]

Total carbohydrates 56.8 34.1–52.3 66.22 78.05–79.7 [74,76–78]

Starch 13.8–24.9 18.19–32.45 2.5–16.3 27.7–28.2 [70,72]

Cellulose 10.5–14.8 15.8 3.4 23–23.1 [72,79]

Hemicellulose 35.5–39.2 31.3 35% 26.1–27 [72,79,80]

Lignin 8.3–12.5 11.6 11.22 2.2–6.5 [72,79]

Total arabinoxylans 10.9–26.0 4.8–5.1 3 17.5–17.7 [70,79,81]

Total β-glucan 2.1–2.5 0.04–0.21 5.4–8.5 - [79,81]

Phenolic acids 1.1 1.57 0.7–1 2.2-2.7 [71,74,82]

Ferulic acid 0.02–1.5 0.004 1.76 1.5–1.9 [70,82,83]

Phytic acid 4.2–5.4 50.68 * - - [74]

Ash 3.4–8.1 10.65 10.3–10.9 4 [71,73]

* Phytic acid content of rice bran is expressed as mg/g DW.

Ferulic acid is primarily found in cereal by-products with values over 1000 µg/g
DW [69]. Wheat bran contains 90% ferulic acid, while oat bran contains 75% ferulic acid [84].
The metabolism of phenylalanine and tyrosine is responsible for their widespread presence
in plant-based sources. Ferulic acid may be found in cereals in several forms, including
free ferulic acid, γ-oryzanol, ferulic acid monoesters, and certain triterpene alcohols [84].
Ferulic acid is covalently linked to cell wall molecules, such as lignin, polysaccharides,
long-chain fatty acids, and flavonoids via ester, ether, and amide bonds [85,86]. Because of
the position of the hydrogen atom in the hydroxyl group of ferulic acid, it reacts with a free
radical to produce an antioxidant effect [69,87].

Cereal bran is also rich in vanillic, syringic, salicylic, caffeic, and p-coumaric acids [68].
Vanillic acid (4-hydroxy-3-methoxybenzoic acid) is a hydroxybenzoic acid, a major compo-
nent of vanilla flavor, which is used in the food industry for flavoring and preserving appli-
cations, along with the beverage, pharmaceutical, cosmetic, and tobacco industries [88].

Another predominant phenolic acid found in cereal bran is p-coumaric acid, which
is the most available form of cinnamic acid and the most common cinnamic acid isomer
in nature [89]. Coumaric acid, like the vast majority of phenolic acids, is found in lower
concentrations in the endosperm of grains, with significantly increased concentrations in
the peripheral tissues. Barley (230 µg/g), wheat (166 µg/g), oats (165 µg/g), and corn
(2555 µg/g) have the highest levels of p-coumaric acid in their pericarp fractions [89].
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Generally, phenolic acids have powerful biological effects such as antioxidant activ-
ity, antibacterial activity, anticancer properties, and anti-inflammatory effects, along with
flavonoids. Flavonoids derived from grain-processing by-products contain antioxidant and
anti-inflammatory functional groups. Flavonoid glycosides, such as cyanidin 3-glucoside,
have been found to provide antioxidant and anti-inflammatory effects, and their gastroin-
testinal absorption rate is high. These chemicals’ bioavailability is poor, ranging from
1–100 nmol/L of the total plasma concentration [87]. However, bounded polyphenols can
be released in the colon by intestinal bacteria and certain enzymes, resulting in bioavailable
phenolic metabolites with possible health advantages.

A study conducted on the effects of phenolic compounds on the large intestine’s
modulation showed that chlorogenic acid was converted into caffeic acid during the
first stage of microbial biotransformation (dehydroxylation, dehydrogenation, or ester
hydrolysis), and the primary metabolites found included di- and mono-hydroxylated
phenylpropionic acids, m-coumaric, and hippuric acid [90].

An in vivo study conducted by Nuria Mateo Anson and colleagues [91] investigated
how processed bran from whole wheat bread modifies the bioavailability of phenolic acids
and exerts antioxidant and anti-inflammatory effects by examining postprandial plasma.
The results showed a two- to three-fold increase in the bioavailability of ferulic acid, vanillic
acid, sinapic acid, and 3,4-dimethoxybenzoic acid after eating bioprocessed bread. Further-
more, the ratio of pro-anti-inflammatory cytokines was significantly lower [92]. Another
study examined the impact of regulated ferulic acid intake on lipid profiles, oxidative
stress, and inflammatory activity in hyperlipidemic individuals. The improvement of the
lipid profile, oxidation of LDL-cholesterol, decrease in oxidative stress, and reduction in
inflammation were noticed after the consumption of 1000 mg of ferulic acid daily [93].
Thus, a diet rich in phenolic compounds can help prevent illnesses caused by oxidative
stress and inflammation, as well as relieve symptoms associated with chronic diseases,
including cardiovascular disease, obesity, and metabolic syndrome.

4. Polyphenols in Tomato-Processing By-Products

Tomatoes are highly appreciated and consumed for their appetizing taste and various
shapes and colors, as well as for their antioxidant properties and chemoprotective and
cardioprotective effects. Tomato-based food products such as juices, ketchup, sauces, paste,
and puree generate large quantities of wet solid by-products with harmful environmental
consequences; however, paradoxically, these solid wastes are a promising source of health-
promoting compounds, such as carotenoids and polyphenols [2,22,94,95]. The main tomato-
processing by-products are peels and seeds, together with small amounts of pulp. For
instance, the seeds account for 10% of the fruit and 60% of the total waste [96].

Tomatoes contain various phytochemicals and bioactive compounds that are able
to endure industrial treatments and still remain in the tomato waste [97]. Therefore, the
valorization of tomato by-products could be a valuable source of natural bioactive molecules
for human health. Their reintegration into the food chain may be achieved by using them
as natural additives in food production and/or nutraceuticals [2]. Bioactive compounds
found in tomato by-products are carotenoids, polyphenols, vitamins, proteins, and high-
quality fatty acids [95,98,99]. Among these active molecules, polyphenols have antioxidant
and anti-inflammatory properties that play an essential role in human health [25]. The
primary phenolic compounds found in tomato by-products are flavonols and phenolic
acids, illustrated in Figure 5, with quercetin, naringenin, and rutin being the predominant
molecules [100].

Tomato peels contain a significantly higher level of phenolic compounds in com-
parison with the seeds and pulp; 83% of the flavonols in tomatoes are present in the
peels [101]. As an example, a higher level of polyphenol content in tomato peel by-products
(33.5 mg TAE/100 g dried peel) was reported by Sarkar and Kaul (2014) compared with
tomato seed by-products (20.11 TAE/100 g meal) [94]. However, the profile of polyphenol
contents found in tomato by-products is dependent on several factors, such as the fruit
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varieties [99], the geographical origin of the fruits [101], and the extraction methods used on
the target compound [102]. Some examples regarding the total phenolic content in tomato
by-products considering location and extraction method, as well as their antimicrobial
and antioxidant activity, are provided in Table 3. Given the fact that tomato-processing
by-products are most abundant in carotenoids as primary bioactive molecules, the antioxi-
dant activity and antimicrobial effects might be attributed to the synergistic antioxidative
effects of lycopene with other bioactive compounds to enhance their overall antioxidant
activity [103].
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Table 3. Total phenolic content and antimicrobial and antioxidant activity considering the localization
and extraction methods.

Geographical
Origin Tomato By-Products Extraction Method Total Phenolic Content Antioxidant Activity Antimicrobial

Activity Reference

India Peels

Solvent extraction

33.5 mg TAE/100 g 21.0% inhibition/g - [94]Seeds 20.11 mg TAE/100 g meal 34.0% inhibition/g -

Romania

Seeds and peels of
10 varieties
of tomato

111.9 to 407.7 mg/100 g DW Mean value of 489.9 ± 41.5 µmol TE/100 g Gram-positive and
Gram-negative

bacteria

[99]

Peels of 10 varieties
of tomato 35 to 157 mg/ 100 g DW Mean value of 201 ± 44 µmol TE/100 g [95]

Portugal Whole tomato

408.89 ± 12.11 and
277.24 ± 11.29 mg

GAE/100 g DM (fresh and
after 6 months of frozen

storage); 310.33 ± 10.38 and
283.64 ± 11.84 mg

GAE/100 g DW (before and
after 6 months of
powder storage)

ABTS (694.07 ± 45.00 and 558.73 ± 29.06 mg
TE/100 g in fresh and after 6 months of

frozen storage; 350.15 ± 14.37 and
407.56 ± 25.93 mg TE/100 g before and after

6 months of powder storage)

Enterobacteriaceae,
Bacillus cereus spp.,
yeasts, and molds

[104]

ORAC (3165.18 ± 77.48 mg TE/100 g,
3285.77 ± 271.25 mg TE/100 g

1771.66 ± 31.25 mg TE/100 g in fresh and
after 1 to 6 months of frozen storage;

1581.76 ± 124.90 TE/100 g,
1610.74 ± 46.51 mg TE/100 g and

1229.74 ± 38.52 mg TE/100 g before and after
2 to 6 months of powder storage)

DPPH (418.79 ± 30.92, 648.06 ± 55.38,
388.53 ± 27.18 mg TE/100 g in fresh and after
3 to 6 months of frozen storage; 117.78 ± 4.99

to 130.44 ± 3.51 mg TE/ 100 g before and
after 6 months of powder storage)

Spain Peels fiber

Enzyme hydrolysis 291.14 ± 11.1 to
353.15 ± 19.6 mg GAE/kg

3.90 µmol TEAC/g - [105]Maceration 749.84 ± 15.55 mg GAE/kg
Ultrasonic assistance (5

to 15 min)
985.78 ± 112.93 to

1056.18 ±67.9 mg GAE/kg

DW—dry weight; GAE—gallic acid equivalents.

The antioxidant and antimicrobial capacity of polyphenols has attracted increasing
interest. These compounds have the ability to scavenge free radicals and reactive oxygen
species, which are known to be involved in the development of cardiovascular diseases
and several cancers [106]. For a more thorough study regarding the mechanism of action of
polyphenols, Zhang and Tsao (2016) critically reviewed their biological activities, including
antioxidative stress activity, anti-inflammatory effects, etc. [107].

The antioxidant capacity of tomato by-products can be divided between the hy-
drophilic and the lipophilic fractions. The antioxidant activity generated by polyphenols
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is attributed to the hydrophilic fraction since these molecules are soluble in water. The
entrapment of polyphenols in the major insoluble fraction of tomato peels, formed mainly
by hemicelluloses, leads to low antioxidant activity. The antioxidant activity of tomato peel
fiber was found to be 3.90 µmol TE/g for the hydrophilic extract, lower than expected [105].
The mean value of the antioxidant activity of ten varieties of tomato by-products was found
to be about 4.90 µmol TE/g, with the highest value being 5.74 µmol TE/g. Furthermore,
little to any correlation has been found between the total phenolic content and antioxidant
activity [99]. However, antioxidant activity might not always correlate with the num-
ber of phenols; it could be connected to the mutual interactions between all hydrophilic
antioxidants and other constituents of the tomato by-products [95].

Even though tomato peels and seeds have relatively modest antioxidant activities,
it is necessary to consider other remarkable attributes of these by-products, such as the
antimicrobial capacity of polyphenols. Due to their hydrophobicity, phenolic compounds
such as flavonols are capable of penetrating the cell phospholipid membranes of bacte-
ria, able to exert their antibacterial activity inside the cell [108]. Gram-negative bacteria
have cell walls surrounded by external membranes, which have high lipopolysaccha-
ride contents. This makes Gram-negative bacteria less sensitive to the action of bioactive
compounds such as polyphenols. This phenomenon was proved when the phenolic ex-
tracts of ten varieties of tomato by-products were tested against seven bacterial strains.
The Gram-positive bacteria showed a higher sensitivity to the extract compared with the
Gram-negative bacteria. All extracts were effective against Staphylococcus aureus, especially
the Tiny Tim tomato variety, with a higher amount of flavonol glycosides and isochloro-
genic acid. The Mirsini extract presented moderate antibacterial activity against Gram-
negative bacteria (Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella pneumoniae,
and Escherichia coli) [99].

The microbial contamination of soil can also influence the antimicrobial activity of
fresh tomato by-products. When the Portuguese national microbiological guidelines for
ready-to-eat foods were considered, unwashed and impure tomato by-products showed
unsatisfactory Enterobacteriaceae, yeast, and Bacillus cereus spp. microbial counts for these
food products. Washed and disinfected tomato by-products maintained these bacteria
within satisfactory limits. Thus, tomato by-products have antimicrobial potential and can
be used in food formulations or for cooking also considering their carotenoid content as
natural food colorants. Furthermore, 6 months of frozen storage causes no substantial
variation in microbial counts. Storing dry tomato by-products at room temperature slightly
decreases the microbial counts of tested microorganisms [109]. Therefore, tomato by-
products may control microbiological growth and may play an important role in the
prevention of foodborne diseases.

5. Health-Promoting Properties of Polyphenol-Rich Diets

Since ancient times, the consumption of fresh vegetables, various green leaves, seeds,
and fruits has promoted an optimal health state in the human organism without people
knowing the exact mechanism of action. Polyphenols have contributed significantly to
the enhancement of health status in humans over time, mainly due to their antioxidant
properties, prebiotic potential, and, in some cases, their antimicrobial effects [25,110]. Based
on their antioxidant effects, the polyphenolic structures are involved in the stimulation of
the immune response against the progression of degenerative disorders such as metabolic
syndrome, neurological affections, and different types of cancer. In addition, diets rich in
polyphenols have been proven to sustain the optimal functioning of the immune system, as
they enhance the activation of the NF-κB signaling pathway in macrophages that intervene
in the management of inflammation processes [111]. Furthermore, multiple associations
have been made between polyphenols and protective effects against chronic diseases
based on chronic inflammation, and substantial evidence highlights the precautionary
consequences of a polyphenol-rich dietary pattern [112–114].
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The generous number of scientific reports available in recent years point out the
strong antioxidant potential of vegetable-based polyphenols manifested through their
antidiabetic, anti-obesity, anti-inflammatory, anticancer, hepatoprotective, cardioprotective,
nephroprotective, neuroprotective, and osteoprotective effects, confirmed through various
in vitro and in vivo studies [112]. In the same line, Condezo-Hoyos et al. highlighted,
through a systematic review, the role of polyphenol-rich diets in clinical trials. The main
results of the investigation showed substantial differences considering the consumption of
2564 mg of polyphenols (including hydroxycinnamic acids) per day [115].

Apples are among the most polyphenol-abundant fruits that are broadly consumed
worldwide. Both the peels and pulp of apple fruits are rich in polyphenols, such as catechins,
quercetin, rutin, phloridzin, phloretin, and chlorogenic acid, which are confirmed to exert
positive effects, especially in reducing the evolution of neurodegenerative disorders [31].
At the same time, in vitro studies conducted on mice have proved that polyphenols ex-
tracted from apples have a protective effect on damaged gastrointestinal mucosa induced
by drugs [31]. In addition, plenty of in vitro studies and clinical trials demonstrate the
positive biological effects of polyphenol-rich foods such as apples on human and animal
health, especially by stimulating the immune system. Diets consisting of moderate apple
consumption maintain the general health state and accelerate the immune system’s re-
sponse to pathogenic threats [116]. Due to the lower water percentage in apple by-products,
the phenolic content increases compared with fresh fruit. Additionally, the exterior layer of
the apple contains enzymatic and nonenzymatic antioxidants as a consequence of outer
environment exposure, which is valuable for homeostasis maintenance [117].

In addition, cereal bran represents a valuable source of polyphenolic compounds. Bran
derived from wheat, corn, rice, barley, sorghum, rye, oat, and millet has been proven to
contain high concentrations of phenolics, flavonoids, and anthocyanins, which can inhibit
the oxidation of human low-density lipoprotein (LDL) cholesterol. Moreover, the bioactive
compounds found in cereal bran have great biological potential in the prevention of chronic
disease development, such as cardiovascular disease, diabetes, and cancer [118].

In the same line, tomato-processing by-products contain different concentrations of
polyphenolic compounds, mainly phenolic acids and flavonoids, which have been validated
to be involved in decreasing triglyceride levels and regulating lipid metabolism. Nonethe-
less, tomato peel-derived polyphenols have shown anticarcinogenic, anti-inflammatory,
anti-aggregation, and vasodilating effects in vitro and in clinical studies [119,120].

5.1. The Prebiotic Potential of Phenolic Compounds

Phenolic compounds may play an important role in the gut microbiota’s health state,
acting as a prebiotic substrate for a diversity of probiotic strains [25,121]. In addition,
polyphenols are considered prebiotics in the consensus document of the International
Scientific Association for Probiotics and Prebiotics (ISAPP) [122]. Polyphenols such as
catechin, gallic, vanillic, ferulic, and protocatechuic acids selectively stimulate probiotic
strains and inhibit pathogenic ones. A study conducted by Pacheco-Ordaz et al. [123]
investigated the effect of the five abovementioned polyphenols on the development of two
probiotic strains, Lactobacillus rhamnosus GG ATCC 53103 and Lactobacillus acidophilus NR-
RLB 4495, and two pathogens, Escherichia coli 0157:H7 ATCC 43890 and Salmonella enterica
serovar Typhimurium ATCC 14028. The authors observed that the combination of phenols
allows for the selective growth of probiotics and inhibits the development of pathogenic
bacteria [123].

Apple pomace, composed especially of seeds and peel, contains the more signif-
icant part of phenolic compounds, primarily phloridzin, chlorogenic acid, and solu-
ble/insoluble fibers. These contribute to the diminished glycemic index and amended
mineral bioavailability [124]. Besides improving the nutritional quality of food products,
their applicability in food fortification promotes the viability and fermentation period of
lactic acid bacteria, which can further upgrade sourdough quality [3].
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5.2. Cardioprotective Effects of Polyphenols

The imbalance between free radical accumulation and antioxidant activity is one of
the critical indicators contributing to the high prevalence of cardiovascular disease. This
noncommunicable illness is the primary cause of mortality worldwide [125]. The current
pandemic also highlighted the importance of nutrition and a healthy lifestyle regarding the
immune system and the prevention of certain chronic diseases, particularly cardiovascular
disease [126].

Diets comprising polyphenols extracted from apples, cereals’ bran, tomato peels
showed positive activity close-connected to the well-functioning of the cardiovascular
system [31]. For instance, in vivo studies on mice with cardiovascular disorders, treated
with polyphenolic extracts from apple peels, showed improved results considering blood
pressure, endothelial function, lipid homeostasis, and insulin resistance compared with the
control group [127].

A double-blind, placebo-controlled investigation on 24 hyperlipidemic adults found
that taking 1000 mg of ferulic acid daily for six weeks resulted in a significant reduction in
total cholesterol (8.1%), LDL-cholesterol (9.3%), triglyceride (12.1%), and significantly in-
creased HDL-cholesterol (4.3%) compared with placebo subjects [73]. Additionally, studies
have demonstrated that regular whole grain consumption lowers the chance of developing
particular illnesses, including type 2 diabetes, cardiovascular diseases, metabolic syndrome,
and obesity [72,103,104]. Particular attention has been paid to the use of polyphenols in
the prevention of cardiovascular-associated diseases, as these represent one of the main
causes of increased mortality worldwide [105]. Moreover, ferulic acid, which abounds in
wheat and oat brans, has good cardioprotective potential, as it maintains blood pressure,
cholesterol, and glycemia at their optimal levels [128]. Furthermore, phenolic compounds
found in tomato peels and seeds influence the cardiovascular system, mainly through their
antithrombotic activity, imprinting ischemic injury prevention at the same time [129].

5.3. Polyphenols in Weight-Control Diets

Gut homeostasis is perturbed by obesity and overweightness, and it consequently
enhances the ratio of Firmicutes/Bacteriodetes, which accelerate adiposity [130]. Studies con-
ducted on polyphenols extracted from apples showed the positive impact of these compounds
on weight loss and on the microbial communities of the guts of obese individuals [131]. More-
over, studies conducted on the effect of phenolic acids extracted from grain bran showed
their output in reducing obesity risk and attenuating insulin resistance, thus contributing
to maintaining a balanced body weight [132]. Polysaccharides, such as arabinoxylans
and xylooligosaccharides extracted from cereal by-products, have a prebiotic effect, which
also contributes to various metabolic dysfunctions and decreases blood cholesterol and
glucose [133,134].

Polyphenols have shown a positive impact on the control of blood glucose levels, thus
resulting in their positive attributes in the management of metabolic-related afflictions, such
as diabetes [135]. In a systematic review performed by Coe and Ryan, several randomized
clinical trials studying the effect of polyphenols in connection with carbohydrates on
acute postprandial glycemic and insulin responses were analyzed. The results of the
study pointed out that polyphenol-rich sources diminished the peak and early-phase
glycemic response and also maintained the glycemic response in the later digestion phases.
In addition, the polyphenol intake exhibited the mitigation of the insulin response, in
particular, when they were consumed with bread, thus sustaining the beneficial properties
in diminishing type 2 diabetes incidence [135].

6. Applicability of Recovered Polyphenols from Apple-, Cereal-, and
Tomato-Processing By-Products in Functional Food Products in the Food Chain

The present concept of functional foods is the result of the gradual recognition that
healthy diets derive from eating nutritious foods and from the identification of the mecha-
nisms by which foods modulate metabolism and health. Some groups of foods, in addition
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to their nutritional properties, have supplementary properties for health. These types
of foods are called functional foods and may be defined as any food that has a positive
impact on an individual’s health, physical performance, or state of mind, in addition to its
nutritious value.

6.1. Apple-Processing-Derived By-Products

The by-products of apple processing can be efficiently integrated into various food-
stuffs, as specified in Table 4. Due to high fiber content, such as pectin and starch, which
increases the viscosity of the products, these by-products can be integrated efficiently into
functional food products, such as jellies, jams, or other foodstuffs [30]. In addition, due to
several favorable health-related effects, the integration of AP is becoming more and more
popular in various forms and applications [3,136].

One of the most efficient methods of preserving and integrating AP is drying and
grinding it to obtain a powder, namely, AP flour. As indicated by Martau et al., 2021, the
fortification of sourdough with 5 or 10% AP flour improved the microorganism’s viability
due to high sugar content and enhanced the flavor of the sourdough [137]. Another study
indicated an increased dietary fiber content after the inclusion of AP flour in wheat and rye
crispbreads, from 9.39 to 15.89 g/100g and 15.8 to 19.89 g/100, respectively [138]. Besides,
no browning reaction could be observed in the final products even if the AP flour contained
increased reducing sugar content. The same results could be observed in other studies, as
shown in Table 4.

AP can also be applied to snacks or yogurts through extrusion and freeze-drying or
even to pork meat to prepare salami products [139–141]. The main phenolic compound,
phlorizin, has also been efficiently integrated into chewing gums, which can be dissolved
after 5 min of chewing, thus contributing to administering bioactive compounds [142].

On another note, from apple by-products, several other important compounds can
be obtained, such as pectin, via extraction and various organic chemicals (e.g., butanol,
propionic acid, bio-succinic acid) using fermentation processes [143]. In addition, from the
extracted pectin, efficient biofilm solutions can be produced, which can be further applied
in the production of active packaging that can be additionally enriched with AP-derived
antioxidants [144]. Introducing these bioactive compounds results in biodegradable, water-
soluble packages that improve the quality and shelf-life of wrapped foodstuffs.

6.2. Cereal-Processing-Derived By-Products

By-products belonging to the cereal industry mainly include rice, corn, wheat, barley,
and other cereals used in the production of bakery products and alcoholic beverages. Cereal
grains comprise one of the primary assets of human food, and recently, their manufacturing
has expanded; the by-products originating from these resources have also increased [28,145].
The direct derivatives of these cereals are bran, germ, husk, hulls, and brewery wastes
(brewer’s spect disposal) [133]. These comprise diverse, major compounds with significant
health effects [14,134].

The need for gluten-free diets, especially in humans with Celiac disease, has grown
steadily, and finding products with enhanced nutritional properties is of foremost
importance [146]. The integration of by-products can contribute to the improvement of
gluten-free products. A recent study improved the nutritional content of rice muffins
through the integration of sweet corncob flour. This increased the fiber and ferulic content
of the final product [147]. Another efficient method is the integration of oat proteins, which
are usually removed through processing and can be efficiently integrated into various
functional food products [148,149].

Several other kinds of cereal, native to their respective countries, contain important
functional and nutritional properties. One of these is quinoa, a pseudo-cereal that originates
from the Andean region. This cereal can also be efficiently used in the production of gluten-
free products, especially after sourdough fermentation [150]. Through fermentation, the
overall characteristics of the final foodstuff obtained from cereal by-products are improved,
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through prolonged shelf life, improved texture, flavor, diminished antinutrients, and
growth in phytochemicals [151,152].

6.3. Tomato-Processing-Derived By-Products

Tomatoes are consumed in high quantities worldwide; thus, the by-products origi-
nating from this vegetable are consistent. Various studies have handled the reutilization
of this by-product, as it contains essential amounts of organic acids, sugars, antioxidants,
fibers, vitamins, proteins, and oils that are crucial to the effective functioning of the human
body [22,153].

The main compounds recovered from tomato-industry-derived by-products are
carotenoids, which can be efficiently integrated into various functional food products. They
contribute to the sensory properties and shelf life and increase the bioactive
ingredients [97,154,155]. Several studies tackle the troubles that are encountered through
their inclusion in food products, such as their hydrophobic nature. A recent study by
Szabo et al., 2022, efficiently incorporated these carotenoids in microcapsules that improved
bioaccessibility through in vitro digestion model [2]. In a recent study, tomato by-products
were integrated with various vegetable oils [154]. These extracts decreased the viscosity in
the cases of hempseed and grapeseed oils and increased the viscosity in the case of flaxseed
oil. This variation in viscosity can be attributed to the fact that the enrichment increased
the thermal motion of the oil molecules and decreased the intermolecular resilience. These
oils can be easily integrated with functional foods and are an efficient delivery system for
these carotenoid extracts.

A high portion of tomato by-products is composed of seeds (5–10%), from which
tomato seed oil can be extracted. These seeds consist of proteins (34%), lipids (30%),
and fibers [129], as well as unsaturated fatty acids (palmitic, oleic, and linoleic acid).
Generally, the proportion of oil extraction from tomato seeds ranges between 10 and 35%
DW, depending on the extraction method [156].

Table 4. Examples of the reintegration of apple-, cereal-, and tomato-processing by-products in
functional food products.

Food Product Effect On Food Product Ref.

A
pp

le

AP flour (5, 10%) Bakery product—sourdough + cell viability; ↑ organic acid content (malic, oxalic, and citric acid) [3]

AP flour (5, 10, 15%) Cereal crispbread ↑ total dietary fiber; ↑ hardness and crispiness [139]

Apple peel powder Muffin ↑ dietary fiber; ↑ bioactive compounds; + color and texture; + organoleptic
characteristics (12%) [157]

AP flour (2.5, 5, 7, 10%) Pasta
↓ carbohydrate content; ↑ fiber, protein, fat, and ash content; ↑ swelling index, cooking water

absorption, and cooking loss; ↓ optimum cooking time; ↓ texture and structure of
pasta (10%)

[32]

AP (2, 3, 6, 9%) Freeze-dried snacks ↑ AP; ↓ lightness coefficient; ↑ cutting force; ↑ organoleptic properties (2%); ↓ water activity [158]

AP 20% GF corn snacks
↑x36 chlorogenic acid; ↑x4 cryptochlorogenic acid; ↑x6 catechin; ↑x3 procyanidin; ↑x8

epicatechin; ↑x25 phlorizin; ↑x3 total soluble and insoluble dietary fiber; ↑
organoleptic scores

[159]

AP powder Yogurt ↓ sensory profile; ↑ protein and fat content; ↑ rheological attributes [141]

Freeze-dried AP powder (0.5, 1%) Set-type yogurt ↑ gelation pH; ↓ fermentation time (1%); firmer and consistent yogurt (cold storage); stable
structure (0.5%); stabilizer and texturizer [43]

Dried AP (7, 14%) Italian salami ↓ fat and calories; ↑ fiber and phenol content [140]

Defatted apple seed flour Chewing gum ↑ phlorizin content (52–67% and 75–83% of the total phenolics) [143]

C
er

ea
l

WB & BF Bread

↑ dietary fibers content

[160]↑ alveograph profile

↑ volume of bread

SCC (10, 20, and 30%) GF rice muffin ↑ dietary fibers and ferulic acid content; ↑ nutritional value; + height, color, and texture
(20% SCC) [147]

BRF Buns and muffins
↑ dietary fibers, iron, zinc, and calcium; ↑ antioxidant capacity and phytonutrient content;
↓ carbohydrates and sensory acceptability; moderate glycemic index and glycemic load;

↑ shelf life
[161]

OPC & OPI Yogurt ↑ nutritional benefits (OPI); ↑ product quality and sustainability (OPC); ↑ nutritional (OPC) [149]

BMG + PBD (1:1) Cereal composite bar + essential minerals and fiber; ↑ sensorial evaluation; antifungal properties [162]

BSG Yogurt ↑ viscosity and shear stress; ↓ fermentation time; maintained flow behavior and stability [163]

BRG+PFPF+WP GF breakfast cereals Average acceptance; + total, soluble, and insoluble dietary fiber; ↑ darkness, protein, and
carbohydrate content; ↓ expansion and consumer acceptance [164]
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Table 4. Cont.

Food Product Effect On Food Product Ref.

PH Gel-based foods ↑ textural and sensory characteristics; syneresis and fat loss during cooking avoidance;
↑ gelling properties [165]

To
m

at
o

CT Hemp, flaxseed, grapeseed oil ↑ oil quality; ↑ viscosity (flaxseed oil); ↓ viscosity (hemp and grapeseed oil); intense color [154]

TBPP biofilms ↑ aesthetic impact and coloring; ↓ transparency [166]

TBPP biofilms ↑ physical properties (diameter, thickness, density, weight); ↑ antimicrobial effect; ↑ total
phenolic content [155]

TPP GF ready to cook snack ↑ fiber, mineral, and lycopene content; ↑ antioxidant activity; ↓ oil uptake [167]

TPF Spreadable cheese ↑ spreadability; ↑ antioxidant activity and phenolic content; ↑ fibers [168]

TBP Passata ↑ total dietary fiber; ↑ lycopene and polyphenols [169]

TPP (5, 10, 15, 20, 25%) cookies ↓ lightness values; ↑ redness and yellowness; acceptable by consumers (5%) [170]

TPF (15%) pasta ↑ carotenoids and dietary fiber; ↓ sensory scores for elasticity, odor, and firmness [171]

Food manufacturing through 3D-printing technology is an innovative method of
delivering personalized food, meeting our nutritional needs and expectations regarding
taste, texture, color, and other aspects [172]. In addition, personalized, 3D-printed food
products are promising in the prevention of different noncommunicable diseases due to
the possibility of enhancing them with bioactive compounds (e.g., polyphenols, dietary
fibers, proteins, etc.) [173].

As for future perspectives, bioactive compounds, such as polyphenols, vitamins,
and/or proteins found in food processing by-products, could be easily integrated into func-
tional foods by associating 3D-printed food with molecular gastronomy [174]. Alongside
a facile integration of recovered polyphenols, the inner biological activities and nutritional
profile can be enhanced, obtaining fortified nourishment [175]. In addition, delivering forti-
fied foods via 3D printing is a sustainable approach to food-waste management, according
to circular economy principles [174].

7. Conclusions

All things considered, apple-, cereal-, and tomato-processing by-products are a valuable
source of phenolic compounds that can be safely reintegrated with the food chain within
recommended parameters. Apple pomace possesses a significant number of beneficial
effects for the human body, most of them offered by their antioxidant and anti-inflammatory
properties. The three main compounds identified in apple pomace—phlorizin, chlorogenic
acid, and epicatechin—can act upon metabolic diseases, being important pillars in the
prevention and treatment of the ailment.

Studies demonstrate that regular whole grain consumption lowers the chance of
developing noncommunicable diseases, the cause for these health effects being the synergy
between the polyphenols and dietary fibers found in the outer layers of the grains, which
are unfortunately discarded as by-products.

It is necessary to consider the remarkable antimicrobial capacity of polyphenols de-
rived from tomato by-products, with a focus on flavonol glycosides and isochlorogenic
acid against Staphylococcus aureus.

In addition to altering the composition of the gut microbiota, which is closely linked
with health benefits, gut bacteria also metabolize polyphenols to create bioactive chemicals
that have therapeutic effects. Polyphenols such as catechin, gallic, vanillic, ferulic, and
protocatechuic acids selectively stimulate probiotic strains and inhibit pathogenic ones.

In light of this, polyphenols seem to be promising candidates for use in both functional
food products and personalized nutrition (e.g., 3D-printed food). To fully take advantage of
their outstanding qualities, various pharmacokinetic concerns, such as decreased intestinal
absorption and bioavailability and quick metabolic alterations, should be considered.
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