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Abstract: Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor. Relapse is
frequent and rapid due to glioblastoma stem-like cells (GSCs) that induce tumor initiation, drug
resistance, high cancer invasion, immune evasion, and recurrence. Therefore, suppression of GSCs is a
powerful therapeutic approach for GBM treatment. Natural compounds berbamine and arcyriaflavin
A (ArcA) are known to possess anticancer activity by targeting calcium/calmodulin-dependent
protein kinase II gamma (CaMKIIγ) and cyclin-dependent kinase 4 (CDK4), respectively. In this
study, we evaluated the effects of concurrent treatment with both compounds on GSCs. Combined
treatment with berbamine and ArcA synergistically inhibited cell viability and tumorsphere formation
in U87MG- and C6-drived GSCs. Furthermore, simultaneous administration of both compounds
potently inhibited tumor growth in a U87MG GSC-grafted chick embryo chorioallantoic membrane
(CAM) model. Notably, the synergistic anticancer effect of berbamine and ArcA on GSC growth is
associated with the promotion of reactive oxygen species (ROS)- and calcium-dependent apoptosis via
strong activation of the p53-mediated caspase cascade. Moreover, co-treatment with both compounds
significantly reduced the expression levels of key GSC markers, including CD133, integrin α6,
aldehyde dehydrogenase 1A1 (ALDH1A1), Nanog, Sox2, and Oct4. The combined effect of berbamine
and ArcA on GSC growth also resulted in downregulation of cell cycle regulatory proteins, such as
cyclins and CDKs, by potent inactivation of the CaMKIIγ-mediated STAT3/AKT/ERK1/2 signaling
pathway. In addition, a genetic knockdown study using small interfering RNAs (siRNAs) targeting
either CaMKIIγ or CDK4 demonstrated that the synergistic anticancer effect of the two compounds
on GSCs resulted from dual inhibition of CaMKIIγ and CDK4. Collectively, our findings suggest that
a novel combination therapy involving berbamine and ArcA could effectively eradicate GSCs.

Keywords: glioblastoma stem-like cells; berbamine; arcyriaflavin A; calcium/calmodulin-dependent
protein kinase II gamma; cyclin-dependent kinase 4

1. Introduction

Glioblastoma multiforme (GBM) is the most aggressive and common form of malig-
nant brain tumor in adults and has a poor prognosis [1]. The standard therapy for patients
with GBM includes surgical resection followed by adjuvant radiotherapy and chemother-
apy with the alkylating agent temozolomide (TMZ) [2]. Despite recent advances in disease
treatment, the median survival of patients with GBM is estimated to be 12–15 months [3,4].
This limited survival rate is due to drug resistance and subsequent recurrence of GBM
following chemotherapy and other treatments [3,5]. Although the mechanisms of GBM
resistance are not yet fully understood, accumulating evidence has revealed that glioblas-
toma stem-like cells (GSCs) contribute to poor prognosis in patients with GBM [6]. GSCs
are a subpopulation of GBM tumor cells that possess self-renewal and multi-lineage differ-
entiation capacities and play important roles in tumor initiation and propagation, cancer
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invasion, immune evasion, treatment resistance, and tumor recurrence [7,8]. Therefore,
targeting GSCs is considered a powerful therapeutic approach for GBM.

Combining drugs with different mechanisms of action can enhance cancer treatment
effects and overcome drug resistance compared to single drug administration [9]. However,
although combination therapy with the antiangiogenic agent bevacizumab and TMZ
prolonged progression-free survival in patients with GBM, it did not increase overall
survival due to tumor recurrence within 1–2 years in a phase III trial [10,11]. Therefore,
discovering new drug combinations to effectively eradicate GSCs may be a promising
strategy for improving the outcome of GBM treatment.

Berbamine is a natural bis-benzylisoquinoline alkaloid and the major bioactive com-
pound isolated from traditional Chinese herbal medicine Berberis amurensis [12] (Figure 1A).
Berbamine is known to possess various pharmacological properties, including antioxidant,
anti-inflammatory, antihypertensive, antiarrhythmic, and antiangiogenic activities [13–16].
Several recent studies have demonstrated the antitumor effects of berbamine in various
cancers [17–27]. Berbamine inhibits the proliferation of lung cancer, myeloma, prostate
cancer, and liver cancer cells by activating the intrinsic pathway of apoptosis [17–20]. It also
causes regression of GBM tumor progression by inhibiting angiogenesis [16]. Furthermore,
berbamine potentiated the inhibitory effects of gemcitabine and paclitaxel on the growth of
pancreatic and gastric cancer, respectively [21,22]. Berbamine has also been shown to sup-
press the growth of cancer stem cells (CSCs) by targeting calcium/calmodulin-dependent
protein kinase II gamma (CaMKIIγ) [23–25]. Berbamine inhibits the self-renewal abilities of
leukemia stem cells and liver CSCs by inhibiting kinase activity through binding specificity
for the ATP-binding pocket of CaMKIIγ [23,24]. More recently, it was found that com-
bined treatment with CaMKII inhibitors, including berbamine, hydrazinobenzoylcurcumin
(HBC), and KN93, and neurokinin 1 receptor (NK1R) inhibitors, such as SR 140,333 and
aprepitant, increased GSC lethality [25]. The synthetic lethal interaction between CaMKIIγ
and NK1R in GSCs has been demonstrated by gene silencing using small interfering RNAs
(siRNAs), suggesting a new combination therapy targeting CaMKIIγ and NK1R to elimi-
nate GSCs [25]. Therefore, CaMKIIγ is an attractive anticancer target for combating CSCs,
including GSCs, and the discovery of novel compounds that can synergistically increase
the suppressive effects of berbamine may provide another promising CaMKII-targeted
combination therapy for the effective treatment of GBM.

In proliferating cells, cyclin-dependent kinase 4/6 (CDK4/6) binds to cyclin D1, and
the complex subsequently phosphorylates retinoblastoma (Rb) to release the transcription
factor E2F, which then drives cell cycle progression [28,29]. In several cancers, including
GBM, the CDK4/6-cyclin D-Rb-E2F pathway is excessively activated to promote cancer
cell proliferation [30,31]. Therefore, targeting the cell cycle pathway is a rational option for
cancer treatment [31]. CDK4/6 inhibitors, such as palbociclib, ribociclib, and abemaciclib,
have been widely used in preclinical and clinical trials as anticancer drugs [32]. They
suppress proliferation and induce apoptosis in a variety of tumor cells, including GBM,
by inhibiting the CDK4/6-cyclin D-Rb-E2F pathway [31–35]. However, intrinsic or ac-
quired resistance to CDK4/6 inhibitors has limited their application in cancer therapy [36].
Therefore, the discovery of new CDK4/6 inhibitors and the development of effective drug
combination strategies to overcome this resistance are urgently required. Arcyriaflavin
A (ArcA), a natural compound found in myxomycetes Arcyria obvelata and Arcyria denudata,
inhibits CDK4 and CaMKII [37] (Figure 1A). ArcA inhibited the replication of human
cytomegalovirus, suppressed proliferation, and induced apoptosis of human colon cancer,
lung cancer, and endometriotic stromal cells [38–40]. However, the anticancer activity and
underlying molecular mechanisms of ArcA in GBM have not yet been studied.

In the present study, we demonstrated for the first time the synergistic anticancer effect of a
combination of berbamine and ArcA on GSCs in vitro and in vivo. We also found that increased
inhibitory activity in the growth of GSCs by the combination treatment was associated with the
dual inhibition of CaMKIIγ and CDK4. Thus, these findings suggest a novel CaMKIIγ-targeted
combination therapy involving berbamine and ArcA to eradicate GSCs.
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Figure 1. Combined treatment of berbamine and ArcA synergistically suppresses GSCs viability. 
(A) The chemical structures of berbamine and ArcA. (B,C) U87MG- and C6-derived GSCs were 
treated with the indicated concentrations of berbamine and ArcA for 7 days. Cell viability was meas-
ured using the CellTiter-Glo® luminescent assay system. The number of formed tumorspheres was 
counted under an optical microscope. * p < 0.01, *** p < 0.001 vs. the compound alone. 
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Figure 1. Combined treatment of berbamine and ArcA synergistically suppresses GSCs viability.
(A) The chemical structures of berbamine and ArcA. (B,C) U87MG- and C6-derived GSCs were
treated with the indicated concentrations of berbamine and ArcA for 7 days. Cell viability was
measured using the CellTiter-Glo® luminescent assay system. The number of formed tumorspheres
was counted under an optical microscope. ** p < 0.01, *** p < 0.001 vs. the compound alone.

2. Results
2.1. Combined Treatment of Berbamine and ArcA Synergistically Suppresses GSC Viability

To explore novel combination therapies for efficient suppression of GSCs, we previ-
ously performed high-throughput drug combination screening using CaMKII inhibitors
including berbamine and a bioactive compound library [25]. As a newly discovered drug
combination, the potent CDK4 inhibitor ArcA and berbamine synergistically increased the
lethality of U87MG- and C6-derived GSCs. As shown in Figure 1B,C and Figure S1, co-
treatment with berbamine and ArcA significantly inhibited the viability and tumorsphere
formation of U87MG- and C6-derived GSCs compared to single-compound treatments.
These results suggest that combined treatment with berbamine and ArcA has a promising
anticancer effect in effectively eliminating GSCs.

2.2. Combined Treatment of Berbamine and ArcA Strongly Promotes GSC Apoptosis

Next, we investigated whether the combined effect of berbamine and ArcA in inhibit-
ing GSC viability is associated with the promotion of apoptosis. As shown in Figure 2A,
co-treatment with berbamine and ArcA for 24 h strongly induced the nuclear condensation
and fragmentation of U87MG- and C6-derived GSCs.
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Figure 2. Combined treatment of berbamine and ArcA strongly promotes GSC apoptosis. (A–D) 
U87MG- and C6-derived GSCs were treated with the indicated concentrations of berbamine and 
ArcA for 24 h. (A) Effect of combined treatment of berbamine and ArcA on the nuclear morphology. 
Changes in nuclear morphology were monitored by DAPI staining under a fluorescence micro-
scope. (B) Effect of combined treatment of berbamine and ArcA on the intracellular ROS generation. 
ROS levels were detected with H2DCFDA using a fluorescence microscope and were further quan-
tified by densitometry. The level of DCF fluorescence for untreated control was normalized to 1-
fold. (C) Effect of combined treatment of berbamine and ArcA on the intracellular calcium level. 
The levels of calcium were detected with Fluo-4 AM using a fluorescence microscope and were 
further quantified by densitometry. The level of Fluo-4 AM fluorescence for untreated control was 
normalized to 1-fold. (D) Effect of combined treatment of berbamine and ArcA on the expression of 
apoptosis regulators. Protein levels were detected by Western blot analysis using specific antibodies 
and were further quantified by densitometry. β-Actin levels were used as an internal control. The 
ratio of each target protein to β-actin for untreated control was normalized to 1-fold. * p < 0.05, *** p 
< 0.001 vs. the compound alone. 

2.3. Combined Treatment of Berbamine and ArcA Potently Downregulates CaMKIIγ-Mediated 
Growth Signaling Pathway 

CaMKII plays a significant role in the control of cell cycle machinery through the 
regulation of cyclins and CDKs and consequently induces cell proliferation [45,46]. There-
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luminescence assay. As shown in Figure S2, the proliferation of untreated control cells 
increased in a time-dependent manner. However, co-treatment of berbamine and ArcA 
more strongly inhibited the proliferation of both GSCs compared to single-compound 
treatments at the indicated time points. Next, compared to untreated control cells, co-

Figure 2. Combined treatment of berbamine and ArcA strongly promotes GSC apoptosis. (A–D) U87MG-
and C6-derived GSCs were treated with the indicated concentrations of berbamine and ArcA for 24 h.
(A) Effect of combined treatment of berbamine and ArcA on the nuclear morphology. Changes in
nuclear morphology were monitored by DAPI staining under a fluorescence microscope. (B) Effect
of combined treatment of berbamine and ArcA on the intracellular ROS generation. ROS levels were
detected with H2DCFDA using a fluorescence microscope and were further quantified by densitometry.
The level of DCF fluorescence for untreated control was normalized to 1-fold. (C) Effect of combined
treatment of berbamine and ArcA on the intracellular calcium level. The levels of calcium were detected
with Fluo-4 AM using a fluorescence microscope and were further quantified by densitometry. The
level of Fluo-4 AM fluorescence for untreated control was normalized to 1-fold. (D) Effect of combined
treatment of berbamine and ArcA on the expression of apoptosis regulators. Protein levels were detected
by Western blot analysis using specific antibodies and were further quantified by densitometry. β-Actin
levels were used as an internal control. The ratio of each target protein to β-actin for untreated control
was normalized to 1-fold. * p < 0.05, *** p < 0.001 vs. the compound alone.

The generation of reactive oxygen species (ROS) is closely related to the induction of
apoptosis mediated by mitochondria and the endoplasmic reticulum (ER) [41]. As shown
in Figure 2B, combined treatment with berbamine and ArcA for 24 h markedly increased
the intracellular ROS levels in U87MG- and C6-derived GSCs.

An increase in cytosolic calcium concentration can trigger the intrinsic apoptosis
pathway by promoting the release of pro-apoptotic factors such as cytochrome c from the
mitochondria and subsequent caspase activation [42,43]. Thus, we investigated whether
combined treatment with berbamine and ArcA affected the intracellular calcium levels of
GSCs. As shown in Figure 2C, co-treatment with berbamine and ArcA for 24 h increased
the intracellular calcium concentration more than single-compound treatment in U87MG-
and C6-derived GSCs.



Molecules 2022, 27, 7968 6 of 17

The p53 tumor suppressor triggers the activation of the caspase cascade through
the induction of specific apoptotic target genes [44]. We further evaluated the effect of
simultaneous treatment with berbamine and ArcA on the expression of the major mediators
of apoptosis in U87MG- and C6-derived GSCs. As shown in Figure 2D, co-treatment with
the two compounds significantly increased p53 and its downstream effector p21 expression
compared with single-compound treatments in both types of GSCs. The combination of
berbamine and ArcA markedly upregulated the levels of cleaved caspase-9, caspase-3, and
poly (ADP-ribose) polymerase (PARP). Taken together, these data demonstrate that the
increase in GSC lethality induced by the combination of berbamine and ArcA resulted
from the strong promotion of apoptosis through the synergistic activation of the ROS- and
calcium-mediated caspase cascade in GSCs.

2.3. Combined Treatment of Berbamine and ArcA Potently Downregulates CaMKIIγ-Mediated
Growth Signaling Pathway

CaMKII plays a significant role in the control of cell cycle machinery through the regu-
lation of cyclins and CDKs and consequently induces cell proliferation [45,46]. Therefore,
we further investigated whether the synergistic anticancer effect of the combination of
berbamine and ArcA in GSCs was related to the modulation of CaMKIIγ-mediated cell
cycle machinery. We first evaluated the effect of combined treatment with berbamine and
ArcA on the proliferation of U87MG- and C6-derived GSCs using the ATP-monitoring
luminescence assay. As shown in Figure S2, the proliferation of untreated control cells
increased in a time-dependent manner. However, co-treatment of berbamine and ArcA
more strongly inhibited the proliferation of both GSCs compared to single-compound
treatments at the indicated time points. Next, compared to untreated control cells, co-
treatment with both compounds for 24 h increased the G0/G1 phase cell population in
U87MG- and C6-derived GSCs (Figure 3A,B). In addition, similar to the results in the 24 h
treatment, combined treatment with the two compounds for the early time points, includ-
ing 4, 8, and 12 h, increased the G0/G1 phase cell population, but not those at the S and
G2/M phases, compared to single-compound treatments in both types of GSCs (Figure S3).
These results indicate that the combined action of these compounds caused cell cycle arrest
at the G0/G1 phase. Notably, combined treatment with berbamine and ArcA potently
decreased both the total and phosphorylated protein levels of CaMKIIγ compared to single-
compound treatments in U87MG-derived GSCs (Figure 3C). In addition, simultaneous
treatment with both compounds more effectively inhibited the expression of key cell cycle
regulatory proteins, including cyclin D1, E1, A2, and B1, than single-compound treatments
(Figure 3D). However, the inhibitory effect of the combination of the two compounds on
the expression levels of CDKs, such as CDK1, 2, and 4, was similar to that of ArcA alone
(Figure 3D). These data suggest that the growth-inhibitory effect of the combination of
berbamine and ArcA on GSCs may be implicated in the inactivation of CaMKIIγ-mediated
cell cycle progression.

CaMKII activates cell proliferation and survival by upregulating multiple intracellular
growth signaling pathways, such as Janus kinase/signal transducer and activator of transcrip-
tion (JAK/STAT), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), and mitogen-
activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) [44,47,48]. Thus,
we assessed the effect of combined treatment with berbamine and ArcA on STAT3, AKT, and
ERK1/2 signaling in U87MG-derived GSCs. As shown in Figure 3C, co-treatment with the
two compounds strongly inhibited the total and phosphorylated protein expression of STAT3,
AKT, and ERK1/2 in comparison with single-agent treatments. Collectively, these results
demonstrate that the combination of berbamine and ArcA potently suppressed GSC growth
by downregulating cell cycle regulatory proteins, including cyclins and CDKs, via inhibition
of the CaMKIIγ-mediated STAT3/AKT/ERK1/2 signaling pathway.
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Figure 3. Combined treatment of berbamine and ArcA potently downregulates CaMKIIγ-mediated
growth signaling pathway. (A–D) U87MG- and C6-derived GSCs were treated with the indicated
concentrations of berbamine and ArcA for 24 h. (A,B) Effect of combined treatment of berbamine
and ArcA on the cell cycle in both GSCs. Cell cycle distribution was detected using a Muse Cell
Analyzer with Muse® Cell Cycle kit. (C) Effect of combined treatment of berbamine and ArcA on the
CaMKIIγ-mediated STAT3/AKT/ERK1/2 signaling pathway in U87MG-derived GSCs. (D) Effect of
combined treatment of berbamine and ArcA on the expression of cell cycle regulatory proteins in
U87MG-derived GSCs. (C,D) Protein levels were detected by Western blot analysis using specific
antibodies and were further quantified by densitometry. β-Actin levels were used as an internal
control. * p < 0.05 vs. the compound alone or the control.
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2.4. Combined Treatment of Berbamine and ArcA Synergistically Suppresses Expression of
GSC Markers

The overexpression of several GSC markers has been implicated in the progression
and recurrence of GBM [49–51]. Therefore, they are potential therapeutic targets for GBM.
We investigated whether co-treatment with berbamine and ArcA affected the expression of
key cancer stemness markers in GSCs. The main GSC markers include the transmembrane
glycoprotein CD133; integrin α6, a regulator of stem cell–niche interactions; aldehyde
dehydrogenase 1A1 (ALDH1A1), a detoxifying enzyme of hazardous aldehydes; and
reprogramming transcription factors such as Nanog, Sox2, and Oct4, which are important
for maintaining stem-like properties [52]. As shown in Figure 4, simultaneous treatment
with the two compounds led to a significant reduction in the expression levels of CD133,
integrin α6, ALDH1A1, Nanog, Sox2, and Oct4 compared to single-compound treatments.
These results suggested that the synergistic anticancer effect of berbamine and ArcA on
GSCs is related to the effective suppression of major GSC markers.
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Figure 4. Combined treatment of berbamine and ArcA synergistically suppresses expression of GSC
markers. U87MG-derived GSCs were treated with the indicated concentrations of berbamine and
ArcA for 24 h. Protein levels were detected by Western blot analysis using specific antibodies and
were further quantified by densitometry. β-Actin levels were used as an internal control. * p < 0.05 vs.
the compound alone or the control.

2.5. Synergistic Anticancer Effect of Berbamine and ArcA on GSCs Is Related to Dual Inhibition of
CaMKIIγ and CDK4

To elucidate whether the synergistic effect of berbamine and ArcA in eliminating GSCs
was caused by the simultaneous inhibition of CaMKIIγ and CDK4, we performed genetic
knockdown experiments using small interfering RNAs (siRNAs) targeting either CaMKIIγ
or CDK4. U87MG cells were transfected with either CaMKIIγ-specific siRNA (siCaMKIIγ)
or CDK4-specific siRNA (siCDK4). Silencing of each gene was confirmed by Western
blot (Figure 5A,B). First, following CaMKIIγ knockdown, the U87MG-derived GSCs were
treated with ArcA. As shown in Figure 5C, silencing of CaMKIIγ significantly increased
the inhibitory effect of ArcA on cell viability and tumorsphere formation of U87MG-
derived GSCs. Following CDK4 gene silencing, U87MG-derived GSCs were treated with
berbamine. As shown in Figure 5D, CDK4 knockdown increased the chemosensitivity of
U87MG-derived GSCs to berbamine. We further confirmed the effect of the concurrent
knockdown of CaMKIIγ and CDK4 genes on GSCs. Synchronous silencing of both genes
effectively suppressed cell viability and tumorsphere formation in U87MG-derived GSCs
compared to silencing of each gene alone (Figure 5E). These results suggested that the
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synergistic anticancer effect of berbamine and ArcA on GSCs may result from the dual
inhibition of CaMKIIγ and CDK4.
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Figure 5. Synergistic anticancer effect of berbamine and ArcA on GSCs is related to dual inhibition of
CaMKIIγ and CDK4. U87MG cells were transfected with either CaMKIIγ siRNA or CDK4 siRNA.
Knockdown of (A) CaMKIIγ and (B) CDK4 genes was confirmed by Western blot analysis. Protein
levels were detected by Western blot analysis using specific antibodies and were further quantified
by densitometry. β-Actin levels were used as an internal control. * p < 0.05 vs. the control siRNA.
Following genetic knockdown, U87MG-derived GSCs were treated with the indicated concentrations
of (C) ArcA and (D) berbamine for 7 days. (E) Effect of simultaneous knockdown of CaMKIIγ and
CDK4 genes on the cell viability and tumorsphere formation of U87MG-derived GSCs. (C–E) Cell
viability was measured using the CellTiter-Glo® luminescent assay system. The number of formed
tumorspheres was counted under an optical microscope. ** p < 0.01, *** p < 0.001 vs. the compound
alone or the single gene knockdown.
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2.6. Combined Treatment of Berbamine and ArcA Potently Suppresses Tumor Growth Derived by
GSCs In Vivo

To further verify the effect of combined treatment with berbamine and ArcA on the
tumorigenic potential of GSCs in vivo, we used a chick embryo chorioallantoic membrane
(CAM) tumor model grafted with U87MG-derived GSCs. As shown in Figure 6, the tumor
weight of the control group was 18.9 ± 4.6 mg, and those of berbamine and ArcA indi-
vidual treatment were 17.8 ± 5.4 and 17.5 ± 2.6 mg, respectively. On the other hand, the
tumor weight of co-treatment group of both compounds was 6.15 ± 3.0 mg, indicating
that the combined administration markedly inhibited the GSC-derived tumor growth com-
pared with the single-compound treatments. Therefore, these data demonstrated potent
anticancer activity of the combination treatment of berbamine and ArcA in vivo.
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GSCs in vivo. Fertilized chick eggs were incubated in a humidified incubator at 37 ◦C. At embryonic
day seven, U87MG-derived GSCs were mixed with ECM gel in the absence or presence of the
indicated compounds (5 µg/egg) and were grafted onto the CAM surface. Seven days later, the
CAMs were observed, the formed tumors were retrieved, and the tumor weight was calculated.
** p < 0.01 vs. the compound alone.

3. Discussion

Numerous studies have demonstrated that GSCs play critical roles in GBM initiation,
progression, invasiveness, resistance to therapies, and recurrence [3,5]. Therefore, the de-
velopment of potential GSC-targeted therapies may improve therapeutic outcomes in GBM.
Although several stemness markers and signaling pathways related to the increased ma-
lignant properties of GSCs have been characterized, exploring novel GSC biomarkers and
effective therapeutic strategies is still challenging due to the various resistance mechanisms
of GSCs to therapeutic agents [7,8,53].

CaMKIIγ is one of the four isoforms of CaMKII, which is a multifunctional serine/threonine-
specific protein kinase [54]. Accumulating evidence has revealed that CaMKIIγ functions as an
important molecular switch in several oncogenic signaling pathways, including nuclear factor
kappa B (NF-κB), Wnt/β-catenin, ERK, AKT, and STAT3, and thus is closely implicated in
the pathogenesis of cancer [55–58]. In addition, CaMKIIγ plays a crucial role in maintaining
stem-like traits of CSCs, leading to tumor initiation, metastasis, drug resistance, and recur-
rence [23,24,59,60]. CaMKIIγ enhances the stemness and tumorigenicity of lung cancer cells
by promoting AKT- and Wnt/β-catenin-mediated Oct4 expression [24,59]. CaMKIIγ is also
overactivated in leukemia stem cells and upregulates Wnt/β-catenin, NF-κB, and STAT3 signal-
ing, thereby promoting cell survival and self-renewal [23]. Moreover, berbamine, a CaMKIIγ
inhibitor, inhibited the growth of leukemia stem cells by downregulating these signaling path-
ways [23]. Berbamine also suppressed the self-renewal ability of liver cancer stem cells, and
genetic knockdown of CaMKIIγ recapitulated the effects of berbamine [60]. More recently,
it has been demonstrated that CaMKIIγ is a promising therapeutic target to eliminate GSCs
and inhibitors of CaMKIIγ suppress the stem-like features of GBM cells [27]. The CaMKIIγ
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inhibitors HBC and KN93 effectively blocked the self-renewal and metastatic capacities of
GSCs by downregulating the CaM/CaMKIIγ/c-Met pathway. Furthermore, a new CaMKIIγ-
targeted synthetic lethal therapy against GSCs was identified by performing high-throughput
drug combination screening using CaMKIIγ inhibitors and a bioactive compound library in
GSCs [25]. NK1R inhibitors, such as SR 140,333 and aprepitant, exhibited strong synthetic lethal
interactions with CaMKIIγ inhibitors, including HBC, berbamine, and KN93, both in vitro and
in vivo. This suggests the potential for a new combination therapy targeting CaMKIIγ and
NK1R to eradicate GSCs. Further exploration of a novel anticancer treatment that displays
a potent synergistic combination effect with a CaMKIIγ inhibitor in suppressing GSCs may
contribute to overcoming chemoresistance and relapse of GBM.

The CDK4/6-cyclin D-Rb-E2F pathway plays a pivotal role in regulating cellular
proliferation [29]. In proliferating cells, activated cyclin D–CDK4/6 complexes initiate Rb
phosphorylation, thereby causing the functional inactivation of Rb. The subsequent release
of the E2F transcription factor induces the expression of genes that are required to enter
the S-phase for mitotic cell division. However, the CDK4/6-cyclin D-Rb-E2F pathway is
hyperactivated in many human cancers, including GBM, resulting in uncontrolled tumor
cell proliferation [31,36,61]. Notably, pathway-associated genes are altered in nearly 80%
of the human gliomas [62,63]. Therefore, the inhibition of CDK4/6 may be an attractive
therapeutic approach to block the initiation of GBM cell proliferation. Several selective
CDK4/6 inhibitors such as palbociclib, ribociclib, and abemaciclib have been developed and
widely used in preclinical and clinical trials for cancer treatment [36]. CDK4/6 inhibitors
effectively arrest cancer cell proliferation in the G1-phase by inhibition of Rb phosphoryla-
tion [36]. In a rat intracranial GBM xenograft model, the combination of abemaciclib and
TMZ additively increased survival time [64]. However, intrinsic or acquired resistance to
CDK4/6 inhibitors has limited their application in cancer therapy [36]. A previous study
revealed that CDK4 is a major self-renewal regulator of triple-negative breast CSCs, as well
as a key mediator of resistance to chemotherapy [65]. Therefore, the discovery of a novel
class of CDK4 inhibitors and the development of a new drug combination therapy with a
CDK4 inhibitor may provide the advantage to effectively block GSC growth.

In the present study, we demonstrated for the first time that the combination of
the CaMKIIγ inhibitor berbamine and CDK4 inhibitor ArcA synergistically increased
GSC lethality in vitro and in vivo. Simultaneous treatment with both natural compounds
markedly suppressed GSC viability and tumorsphere formation, and effectively inhibited
tumor growth in a GSC-grafted CAM model, in comparison with the single-compound
treatments. The synergistic anticancer effect of berbamine and ArcA on GSC growth results
from the promotion of ROS- and calcium-dependent apoptosis through strong activation
of the p53-mediated caspase cascade. Moreover, co-treatment with the two compounds
potently suppressed the expression of several GSC markers, including CD133, integrin
α6, ALDH1A1, Nanog, Sox2, and Oct4, which play central roles in GSC maintenance
and drug resistance. Furthermore, the combination of berbamine and ArcA significantly
downregulated the expression levels of cell cycle regulatory proteins by strongly inactivat-
ing the CaMKIIγ-mediated STAT3/AKT/ERK1/2 signaling pathway in GSCs. However,
simultaneous treatment with both compounds more effectively inhibited the expression of
cyclin D1, E1, A2, and B1 compared to single-compound treatments, whereas the inhibitory
effect of the combination treatment on the expression of CDK1, 2, and 4 was similar to that
of ArcA alone. These results suggest that the growth-inhibitory effect promoted by the
combination of berbamine and ArcA in GSCs may be related to an increase in cell cycle
arrest following synergistic inhibition of cyclin expression. Additionally, we demonstrated
that the combined effect of berbamine and ArcA in eliminating GSCs resulted from the
simultaneous inhibition of CaMKIIγ and CDK4 using siRNAs targeting either CaMKIIγ
or CDK4. These data imply that suppression of CDK4 function by ArcA may increase the
chemosensitivity of GSCs to the CaMKIIγ inhibitor berbamine. Taken together, our find-
ings suggest that the combination treatment of berbamine and ArcA could be a potential
therapeutic option to overcome GBM chemoresistance and recurrence by targeting GSCs.
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4. Materials and Methods
4.1. Materials

Berbamine and ArcA were purchased from Sigma-Aldrich (Saint Louis, MO, USA)
and Tocris (Bristol, UK), respectively. The compounds were dissolved in dimethyl sulfoxide
(DMSO) at a final concentration of 100 mM. DMEM/F12 was purchased from HyClone
(Marlborough, MA, USA). Accutase was obtained from EMD Millipore (Temecula, CA,
USA). Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were
purchased from Prospecbio (East Brunswick, NJ, USA). L-glutamine, B-27 serum-free
supplement, and penicillin/streptomycin were purchased from Gibco (Grand Island, NY,
USA). Heparin, 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA), 4′,6-diamidino-2-
phenylindole (DAPI), and ECM gel from Engelbreth-Holm-Swarm murine sarcoma (cat. no.
E6909) were purchased from Sigma-Aldrich (Saint Louis, MO, USA). The ECM gel contains
laminin as a major component, collagen type IV, heparin sulfate proteoglycan, entactin,
and other minor components. The CellTiter-Glo® 2.0 Cell Viability Assay (cat. no. G9241)
and Muse® Cell Cycle (cat. no. MCH100106) kits were purchased from Promega (Madison,
WI, USA) and Luminex (Austin, TX, USA), respectively. Fluo-4 AM ester was purchased
from Biotium (Hayward, CA, USA). Antibodies against p53 (cat. no. 9282), p21 Waf1/Cip1
(cat. no. 2947), cleaved caspase-9 (cat. no. 9501), cleaved caspase-3 (cat. no. 9661), PARP
(cat. no. 9542), cyclin D1 (cat. no. 2922), cyclin E1 (cat. no. 4129), cyclin A2 (cat. no. 4656),
cyclin B1 (cat. no. 12231), CDK1 (cat. no. 9116), CDK2 (cat. no. 2546), phospho-AKT
(Ser473, cat. no. 4060), AKT (cat. no. 9272), phospho-STAT3 (Tyr705, cat. no. 9145), STAT3
(cat. no. 9139), phospho-ERK1/2 (Thr202/Tyr204, cat. no. 9101), ERK1/2 (cat. no. 9102),
CD133 (cat. no. 64326), integrin α6 (cat. no. 3750), ALDH1A1 (cat. no. 12035), Nanog
(cat. no. 3580), Sox2 (cat. no. 3579), Oct4 (cat. no. 2750), β-actin (cat. no. 4967), rabbit
IgG (cat. no. 7074), and mouse IgG (cat. no. 7076) were purchased from Cell Signaling
Technology (Danvers, MA, USA). Anti-phospho-CaMKIIγ (Thr287, cat. no. PA5-37833) and
anti-CaMKIIγ (cat. no. PA5-29648) were obtained from Thermo Fisher Scientific (Rockford,
IL, USA). Anti-CDK4 (cat. no. sc-70831) was obtained from Santa Cruz Biotechnology
(Dallas, TX, USA).

4.2. GSC Culture

U87MG (KCLB No. 30014) and C6 (KCLB No. 10107) GBM cells were obtained from
the Korean Cell Line Bank (Seoul, Republic of Korea). The identity of the GBM cell lines was
confirmed by STR profiling as described previously [25]. GSC populations can be isolated
from GBM cell lines and grown in a serum-free spheroid suspension culture [6,66]. To
propagate GSCs, U87MG and C6 GBM cells were cultured in DMEM/F12 containing
1 × B-27, 5 µg/mL heparin, 2 mM L-glutamine, 20 ng/mL EGF, 20 ng/mL bFGF, and 1%
penicillin/streptomycin as described previously [25,27]. Tumorspheres grown in the serum-
free media were subcultured by dissociation using Accutase. The cells were maintained at
37 ◦C in a humidified CO2 incubator with 5% CO2 (Thermo Scientific, Vantaa, Finland).

4.3. Cell Viability Assay

U87MG- and C6-derived GSCs (3 × 103 cells/well) were seeded in a 96-white-well
culture plate using serum-free media and treated with the different concentrations of each
compound for 7 days. Cell viability was determined using the CellTiter-Glo® 2.0 Cell
Viability Assay kit as described previously [25]. Luminescence was detected using a
multimode microplate reader (BioTek, Inc., Winooski, VT, USA).

4.4. Tumorsphere Forming Assay

To evaluate the ability of a single GSC to grow into a non-adherent tumorsphere,
U87MG- and C6-derived GSCs (3 × 103 cells/well) were seeded in a 96-well culture plate
using serum-free media and treated with the different concentrations of each compound
for 7 days. The number of tumorspheres >80 µm in diameter was counted under an optical
microscope (Olympus, Tokyo, Japan).
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4.5. DAPI Staining

U87MG- and C6-derived GSCs (1 × 105 cells/well) were seeded in a 12-well culture plate
using serum-free media and treated with the indicated concentrations of each compound for
24 h. The cells were stained with 15 µg/mL DAPI for 30 min and then washed with phosphate-
buffered saline (PBS). The stained nuclear morphology of the cells was observed under a
fluorescence microscope (Optinity KI-2000F, Korea Lab Tech, Seong Nam, Republic of Korea).

4.6. Measurement of ROS

U87MG- and C6-derived GSCs (1 × 105 cells/well) were seeded in a 12-well culture
plate using serum-free media and treated with the indicated concentrations of each com-
pound for 24 h. The cells were stained with 10 µM H2DCFDA for 30 min and then washed
with PBS. The levels of intracellular ROS were observed under a fluorescence microscope
(Optinity KI-2000F, Korea Lab Tech, Seong Nam, Republic of Korea) and quantified by
measuring the DCF fluorescence intensity using ImageJ 1.5 software (NIH, Bethesda, MD,
USA) in randomly selected four fields per group at a 200 ×magnification.

4.7. Measurement of Calcium

U87MG- and C6-derived GSCs (1 × 105 cells/well) were seeded in a 12-well culture
plate using serum-free media and treated with the indicated concentrations of each com-
pound for 24 h. The cells were stained with 15 µM Fluo-4 AM ester for 20 min and then
washed with PBS. The calcium levels were observed under a fluorescence microscope
(Optinity KI-2000F, Korea Lab Tech, Seong Nam, Republic of Korea) and quantified by
measuring the Fluo-4 AM fluorescence intensity using ImageJ 1.5 software (NIH, Bethesda,
MD, USA) in randomly selected four fields per group at a 200 ×magnification.

4.8. Western Blot

The cell lysates were separated using 7.5–15% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis. The separated proteins were transferred to polyvinylidene difluoride
membranes (EMD Millipore, Hayward, CA, USA). The blots were blocked with 5% skim
milk in Tris-buffered saline with 1 × Tween-20 (TBST) at room temperature for 1 h and
then immunolabeled with the primary antibodies (dilution 1:500–1:2000) overnight at 4 ◦C
as described previously [24]. After washing with TBST, the membranes were incubated
with horseradish peroxidase-conjugated secondary antibodies (dilution 1:2000) at room
temperature for 1 h. Immunolabeling was detected using an enhanced chemiluminescence
kit (Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer’s instructions.
The band density was analyzed using ImageJ 1.5 software (NIH, Bethesda, MD, USA).
Expression levels were determined as the normalized ratio of each target protein to β-actin.

4.9. Cell Cycle Analysis

Distribution of cells in different stages of cell cycle was analyzed by flow cytometry
using the Muse® Cell Cycle kit. The kit utilizes propidium iodide (PI) staining to allow
quantitative measurement of percentage of cells in the G0/G1, S, and G2/M phases. Briefly,
U87MG- and C6-derived GSCs (2 × 105 cells/well) were plated in a 6-well culture plate
using serum-free media and treated with the indicated concentrations of each compound
for 24 h. The cells were harvested, fixed with 70% ethanol, and stained with 200 µL of
Muse® Cell Cycle reagent as described previously [67]. Cell cycle distribution was analyzed
using a Guava® Muse® Cell Analyzer (MuseSoft_V1.8.0.3; Luminex Corporation, Austin,
TX, USA).

4.10. RNA Interference

To silence the expression of target genes, small interfering RNAs (siRNAs) for CaMKIIγ
and CDK4 were obtained from Bioneer (Daejeon, Republic of Korea). The sequence of
CaMKIIγ siRNA was as follows: (sense) 5′-GUAGAGUGCUUACGCAAAU-3′; (antisense)
5′-AUUUGCGUAAGCACUCUAC-3′. The sequence of CDK4 siRNA was as follows: (sense)
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5′-CUGACUUUUAACCCACACA-3′; (antisense) 5′-UGUGUGGGUUAAAAGUCAG-3′. Non-
targeting scrambled siRNA (cat. no. sc-37007, Santa Cruz Biotechnology) was used as a
negative control. Cells were transfected with siRNAs using LipofectamineTM 2000 Reagent
(Invitrogen, NY, USA), and the expression levels of target genes were detected by Western blot.

4.11. Chick Embryo Chorioallantoic Membrane (CAM) Assay

The effects of the compounds on GBM tumorigenesis in vivo were investigated using
a modified CAM assay as described previously [25,67]. Briefly, fertilized chick eggs were
incubated at 37 ◦C in a humidified egg incubator for 7 days, and the eggshell membrane was
carefully peeled away. U87MG-derived GSCs (2 × 106 cells/egg) were mixed with ECM gel
(40 µL/egg) in the absence or presence of the compounds (5 µg/egg) and placed onto the
CAM (8 eggs per group). After incubation for 7 days, the tumor formed on the CAM of live
eggs (4–6 tumors per group) was retrieved, and the tumor weight was measured.

4.12. Statistical Analysis

The results are expressed as the mean ± standard deviation from at least three in-
dependent experiments. Statistical analysis was performed by analysis of variance with
Tukey’s post hoc test using SPSS 9.0 software (SPSS Inc., Chicago, IL, USA). Statistical
significance was set at p < 0.05.

5. Conclusions

In this study, we identified a novel CaMKIIγ-targeted combination therapy which
utilizes berbamine and ArcA to eradicate GSCs. Combined treatment with berbamine
and ArcA synergistically suppressed GSC growth, both in vitro and in vivo, by promoting
caspase-dependent apoptosis and cell cycle arrest at the G0/G1 phase. Furthermore, the
synergistic growth inhibitory effect of berbamine and ArcA on GSCs has been implicated
in the potent downregulation of cell cycle regulatory proteins, including cyclins and CDKs,
by inhibiting the CaMKIIγ-mediated STAT3/AKT/ERK1/2 signaling pathway. Moreover,
simultaneous treatment with the two compounds markedly decreased the expression of key
GSC markers such as CD133, integrin α6, ALDH1A1, Nanog, Sox2, and Oct4. In addition,
a gene silencing study using siRNAs demonstrated that the synergistic anticancer effect of
berbamine and ArcA on GSCs resulted from dual inhibition of CaMKIIγ and CDK4. These
findings suggest a novel drug combination strategy consisting of berbamine and ArcA that
simultaneously targets CaMKIIγ and CDK4 to effectively eradicate GSCs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27227968/s1, Figure S1: Effect of berbamine and ArcA
on the viability of GSCs; Figure S2: Effect of combined treatment with berbamine and ArcA on the
proliferation of GSCs; Figure S3: Effect of combined treatment with berbamine and ArcA on the cell
cycle in GSCs.
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