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Abstract: Green synthesis of silver nanoparticles (AgNPs) has gained greater interest among chemists
and researchers in this current scenario. The present research investigates the larvicidal and anti-
proliferation activity of AgNPs derived from Knoxia sumatrensis aqueous leaf extract (K. sumatrensis-
ALE) as a potential capping and reducing candidate. The synthesized AgNPs were characterized
through-UV-spectra absorption peak at 425 nm. The XRD and FT-IR studied displayed the crystalline
nature and presence of functional groups in prepared samples. FE-SEM showed the hexagonal shape
of NPs with the size of 7.73 to 32.84 nm. The synthesized AgNPs displayed superior antioxidant
and anti-proliferative activity (IC50 53.29 µg/mL) of breast cancer cell line (MCF-7). Additionally,
larvicidal activity against mosquito vector Culex quinquefasciatus larvae delivered (LC50-0.40, mg/L,
and LC90-15.83) significant mortality rate post treatment with synthesized AgNPs. Overall, the
present research illustrates that the synthesized AgNPs have high biological potential and present a
perfect contender in the pharmacological and mosquitocidal arena.

Keywords: silver nanoparticles; green synthesis; larvicide; anti-proliferation

1. Introduction

Noble metal nanoparticles (MNPs) have received considerable attention in recent
years due to their various applications [1]. Various methods can achieve nanoparticle
synthesis. Among these techniques, biological synthesis is rapid, simple and low cost and
is the best method when compared to other synthesis methods [2]. The green synthesis
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process has benefits because it is an easy, inexpensive, and safe way to synthesize metal
nanoparticles [3]. Additionally, employing plant extracts as a reducing agent makes it
suitable for biomedical and pharmaceutical applications because no hazardous chemicals
are utilized in the synthesis [4]. Recently, AgNPs have been synthesized using different
plant species such as Capsicum chinense and Hypericum perforatum [5,6]. Knoxia sumatrensis
belongs to the Rubiaceae. The plant has therapeutic uses in beverage preparation [7] and
wound healing [8]. The extract of K. sumatrensis leaves was used to synthesize zinc oxide
nanoparticles [9]. However, this is the first report on AgNPs synthesized by K. sumatrensis
aqueous leaves extract.

Mosquitoes are considered to be global vectors of crucial diseases across the nation [10].
Dengue is spread by Aedes aegypti [11]. Anopheles stephensi is a carrier of plasmodium, which
causes malaria [12]. Culex quinquefasciatus is a vector responsible for lymphatic filariasis [13].
The search for plant-based insecticides is underway, to find alternative mosquito control
methods to chemical insecticides. Plant-based insecticides leave the least environmental
footprint and can address the problem of insecticide resistance among mosquitoes to
chemical insecticides [14]. Cancer is one of the leading diseases in developed countries. Its
treatment primarily relies on surgery, chemo- and radio-therapies, although these are high
cost, have side effects, and involve the death of normal cells along with cancer cells [15].
Consequently, novel chemotherapy drugs that have specific toxicity towards cancer cells
and methods to directly target the tumor tissue are being actively explored. The use of
nanoparticles with potential cytotoxic plant-based molecules is considered to be a vital
way to treat cancer. Nanoparticles are efficient drug delivery vehicles that can be blended
with bio-active plant compounds (secondary metabolites) derived from bio-rational plants
for wide cancer therapeutic applications [16]. The present investigation highlights the
characterization of green based Ag nanoparticles derived from white horseweed aqueous
leaf extracts (K. sumatrensis-ALE) and their biological activity against the MCF-7 cell lines
and larvicidal activity against the major mosquito vectors of medical importance.

2. Materials and Methods
2.1. Plant Collection and Extraction

Knoxia sumatrensis (Retz.) DC. was collected from Vytla hills Tamil Nadu, India, and
authenticated by BSI. The leaves were washed, dried, and ground. Plant powder (10 g) was
mixed with distilled water (100 mL) and boiled for 30 min at 70 ◦C. The K. sumatrensis-ALE
was cooled and filtered with Whatman filter paper no.1 and stored at 4 ◦C for further use.

2.2. Synthesis

K. sumatrensis-ALE (10 mL) and 90 mL of silver nitrate (1 mM-AgNO3) were mixed
and then stirred (3 h at 80 ◦C). After 3 h the color was changed from yellow into dark brown.
The color indicated the formation of the AgNPs. The synthesized NPs were centrifuged at
10,000 for 15 min to obtain pellets, and then stored at 4 ◦C for further work.

2.3. Characterization

The synthesized AgNPs using K. sumatrensis extract were characterized by UV-Vis
spectroscopy (UV-Vis-Shimadzu-1800). X-ray diffraction (XRD-Rigaku Miniflex) and ana-
lyzed by its crystalline structure. FT-IR indicated the functional groups, and nanoparticle
morphology was analyzed by scanning electron microscopy (SEM- Jeol-6390LA).
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2.4. Antioxidant

K. sumatrensis in synthesis of AgNPs was performed in DPPH by Shimada et al. [17],
H2O2 Rajeshwar et al. [18], and ABTS assays by Giao et al. [19] with standard protocol
and a dosage of 20–100 µg/mL. This assay used the standard of ascorbic acid. The assay
inhibition (%) was calculated below.

Scavenging activity =

[
Absorbance (Control)− Absorbance(Sample)

Absorbance (Control)

]
× 100% (1)

2.5. Anti-Proliferative Activity
2.5.1. Culture

Breast cancer cell-line (MCF-7) was obtained by NCCS-Pune, India, and it was grown
in Dulbecco with DMEM elevated glucose medium.

2.5.2. MTT Assay

Cell viability assays were described by Mosmann [20]. Ninety-six well plates were
seeded in MCF-7 cells and maintained at 37 ◦C for 24 h in the incubator. The AgNPs
dosages of 6.5, 12.5, 25, 50 and 100 µg/mL were used. Cell viability was calculated (MTT
10 µL for 4 h at 37 ◦C) after 24 h treatment. Dimethyl sulfoxide (DMSO) was dissolved in
treated cells. The ELISA instrument (2.0-Epoch-USA) measured (OD-540 nm) the formazan
in crystals (reference: 630 nm). Cell morphology was captured and calculated below.

Cell viability % = OD of AgNPs/OD of Control (Untreated) × 100% (2)

2.6. Larivicidal Activity
2.6.1. Larval Culture

Ae. aegypti, An. stephensi and Cx. quinquefasciatus were collected from ICMR-VCRC
Madurai) and maintained in the laboratory condition.

2.6.2. Bioassay

This assay was followed by WHO [21] standard procedure with slight change (Thanda-
pani et al. [22]). Larvae (4th instar) in twenty numbers were added from each cup (200 mL).
The concentration of K.sumatrensis-ALE and synthesized AgNPs (5–25 mg/L) was added.
The dead larva were counted after 12, 24 and 48 h post treatment then mortality (%) was
obtained from average of n = 3. Abbott [23] was used in correction of larval mortality.

2.7. Statistical Analysis

The data were analyzed by mean ± SD. Larval mortality was calculated by Probit analysis
for finding out LC50, LC90 and chi-square values using SPSS software. All the data were
analyzed with analysis of variance (ANOVA), and treatment means were compared by Tukey’s
family error test (p < 0.05) for pairwise comparison using Minitab® 16 software package.

3. Results and Discussion
3.1. UV-Vis Spectral Analysis

The synthesized AgNPs from K.sumatrensis extract showed the UV absorption peak at
425 nm due to the surface plasmon resonance (SPR), as shown in Figure 1. The mechanism
of green synthesis of silver nanoparticles is due the constituent secondary metabolites
donating electrons for the reduction of Ag+ ions to Ag◦ ions [24]. As compared to our
results, the recent reports of silver nanoparticles synthesized from Passiflora subpeltata leaf
extract demonstrated the UV absorption peak at 456 nm [16]. Additionally, the AgNPs of
Acacia concinna leaf extract exhibited the UV absorption peak at 440 nm [25].



Molecules 2022, 27, 7854 4 of 10

Molecules 2022, 27, x FOR PEER REVIEW 4 of 10 
 

 

the AgNPs of Acacia concinna leaf extract exhibited the UV absorption peak at 440 nm 

[25]. 

 

Figure 1. UV-visible absorbance spectra obtained from synthesized silver nanoparticles using K. 

sumatrensis aqueous leaf extracts (Ks-ALE). 

3.2. X-ray Diffraction Studies 

K. sumatrensis of synthesized AgNPs in XRD results showed the nine peaks at 2θ 

degree ranges of 27.87°, 32.14°, 38.77°, 44.20°, 46.10°, 54.40°, 57.34°, 64.34° and 77.72° cor-

responding to values 210, 101, 111, 200, 231, 142, 241, 220 and 311 (Figure 2). The lattice 

planes of pure silver based on the face-center cubic structure (JCPDS No. 89–3722) and 

the XRD results indicate the crystalline nature of AgNPs. Similar data were found for 

synthesized AgNPs using Sargassum myriocystum extract [26]. In another report, Drimia 

polyantha derived AgNPs revealed the presence of four diffraction values at 2θ ranges 

[27]. The average crystal size of synthesized AgNPs was 15.70 nm using Debye Scher-

rer’s formula. 

 

Figure 2. XRD pattern of synthesized AgNPs using K. sumatrensis aqueous leaf extracts (Ks-ALE) 

exhibiting the facets of crystalline silver. 

Figure 1. UV-visible absorbance spectra obtained from synthesized silver nanoparticles using K.
sumatrensis aqueous leaf extracts (Ks-ALE).

3.2. X-ray Diffraction Studies

K. sumatrensis of synthesized AgNPs in XRD results showed the nine peaks at 2θ degree
ranges of 27.87◦, 32.14◦, 38.77◦, 44.20◦, 46.10◦, 54.40◦, 57.34◦, 64.34◦ and 77.72◦ corresponding
to values 210, 101, 111, 200, 231, 142, 241, 220 and 311 (Figure 2). The lattice planes of pure
silver based on the face-center cubic structure (JCPDS No. 89–3722) and the XRD results
indicate the crystalline nature of AgNPs. Similar data were found for synthesized AgNPs
using Sargassum myriocystum extract [26]. In another report, Drimia polyantha derived AgNPs
revealed the presence of four diffraction values at 2θ ranges [27]. The average crystal size of
synthesized AgNPs was 15.70 nm using Debye Scherrer’s formula.
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3.3. FT-IR Study

FTIR analysis confirmed that the bioproduction of Ag+ ions to silver nanoparticles was
due to the reduction of capping material of green extract. The IR spectra of K. sumatrensis
aqueous leaf extract revealed four functional groups: 3411.84 cm−1 for OH (alcohols, phe-
nols), 3209.85 cm−1 for OH (carboxylic acids), 2908.55 cm−1 for C-H (alkanes), 2327.59 cm−1

for P-H (phosphines) and 1647.25 cm−1 for C=C (alkene) (Figure 3; Table 1). The synthe-
sized AgNPs of K.sumatrensis extract in IR spectra showed the four functional groups as:
2319 cm−1 for CH (methylene), 1614.08 cm−1 by C=C stretching (alkenes), 1318.32 cm−1

indicating C-N (amines) and 1027.71 cm−1 C-X stretching (fluoride group) (Figure 3b;
Table 2. Kumar et al. [28] reported that the carboxyl (–C=O), hydroxyl (–OH) and amine
(–NH) groups of leaf extracts are importantly involved in fabrication of silver nanoparticles.
Previous research of Morales-Lozoya et al. [29] illustrates that the synthesized AgNPs from
Moringa citrifolia extract showed the presence of four functional groups. Correspondingly,
the synthesized AgNPs by Cucumis prophetarum extract indicated the existence of eight
functional groups [30]. The essential functional groups, such as alcohol, amides, alkanes,
methyl, aliphatic and halides, confirmed the presence of NPs. They were stabilizing, cap-
ping and dipping agents of the AgNPs [31]. Thus, in this study, K. Sumatrensis derived
AgNPs functional groups may be responsible for the formation of AgNPs.
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Table 1. FT-IR analysis of K. sumatrensis aqueous leaf extract (Ks-ALE).

Wave Number (CM−1) Intensity Group Compound Functional Group

3411.84 Medium OH Alcohols, Phenols
3209.85 Medium OH Carboxylic acids
2908.55 Strong C-H Alkanes
2327.59 Medium P-H Phosphines
1647.25 Medium-Strong C=C Alkene

Table 2. FT-IR analysis of AgNPs using K. sumatrensis aqueous leaf extract (Ks-ALE).

Wave Number (CM−1) Intensity Group Compound Functional Group

2319.15 Strong CH Methylene
1614.08 Medium C=C Alkenes
1318.32 Medium-Strong C–N Amines
1027.71 Strong C–X Fluoride

3.4. SEM and EDAX Analysis

FE-SEM shows that the synthesized AgNPs using K. sumartrensis extract had hexagonal
shapes (Figure 4). In parallel, the related shape was obtained by Calotropis gigantean and
Sargassum myriocystum in synthesized AgNPs [25,32]. In the present study, the chemical
composition was analyzed with EDX, and silver, carbon, oxygen, calcium and chlorine
were present (Figure 4). Our research was in agreement with the previous investigation,
which found that synthesized AgNPs of Plumeria alba leaf extract in EDX confirmed the
presence of silver [33].
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3.5. Antioxidant Activity

K. sumatrensis of synthesized AgNPs proved to have superior antioxidant activity
against DPPH, ABTS and hydroxyl radical assays. In all three assays, inhibition percent-
ages in synthesized AgNPs (55.20%, 53.15 and 53.70) and ascorbic acid (65.30%, 62.20 and
68.45), respectively, at higher concentrations of 100 µg/mL, were seen (Supplementary
Material Figures S1–S3) in dose-dependent manner. Correspondingly, synthesized AgNPs
derived from Eucalyptus tereticornis, commonly known as forest red gum, and Embeliaribes
(common name: false black pepper), showed potential antioxidant activity [34,35]. The
synthesized AgNPs and ascorbic acid (standard) DPPH IC50 values were calculated to be
92.73 and 79.37, respectively. In parallel, the synthesized AgNPs derived from Nepeta leuco-
phylla (common name: white leaved catmint) root extract delivered significant antioxidant
activity (IC50 value of 119.28 µg/mL) [36]. Previous research illustrates that the DPPH
radical scavenging capacity of the synthesized AgNPs showed the presence of phenolic
derivatives that can deliver the H into OH groups [37]. The ABTS inhibitory concentration
(IC50) of the synthesized AgNPs displayed 94.68 µg/mL as compared to standard IC50
value of 79.48 µg/mL, and it is in parallel with the previous investigation on Cymbopogon
citrates (common name: lemon grass) derived AgNPs, which revealed the IC50 value of
123.89 µg/mL [38]. The H2O2-IC50 value of the synthesized AgNPs showed significant
range of 91.46 µg/mL as compared to the standard (IC50:71.47 µg/mL). The present re-
search was well matched with the previous findings that Cassia angustifolia (common name:
Indian senn) flowers extract of AgNPs delivered IC50 value of 78.10 µg/mL [39].

3.6. Anti-Proliferative Activity

Figures S4 and S5 show the cell viability (%) and treated images of MCF-7 cell line by the
synthesized AgNPs from K. sumatrensis extract in a dose dependent manner. The percentage
of viability is directly proportional to the synthesized AgNPs dosages (6.5 to 100 µg/mL)
treatments. The inhibitory dosage IC50 of synthesized K. sumatrensis was 5.3 at 29 µg/mL at
the maximum dosage of 100 µg/mL. Correspondingly, the synthesized AgNPs from Syzgium
aromaticum (common name: clove) delivered profound MCF-7 activity (IC50-60 µg/mL) [40].
Similar results were obtained in the treatment of Camellia sinensis (common name: tea shrub)
(IC50-59.2 µg/mL) [41] and also in Cassia angustifolia (Indian senna) (IC50-73.82 µg/mL) [39].
All the above findings were in line with our present investigation, which reveals that the K.
sumatrensis of AgNPs delivered significant MCF-7 activity.

3.7. Larvicidal Activity

K. sumatrensis-ALE and the synthesized AgNPs displayed significant larvicidal activity
against all three crucial mosquito vectors and the mortality rate was significant in the
filarial vector Cx. quinquefasciatus as compared to dengue (Ae. aegypti) and malarial
vector (A. stephensi) in the preliminary screening. The lethal concentrations (LC50 and
LC90) were displayed at 0.40 mg/L and 15.83 mg/L, respectively, post 48 h treatment
with K. sumatrensis-ALE (Tables S1–S3). In parallel, the synthesized AgNPs derived from
Ixorabrachiata (Gorbale) and Carmona retusa (Fukien tea tree) extract delivered significant
larvicidal activity against the filarial vector Cx. quinquefasciatus [42,43].

4. Conclusions

As an endnote, the present biological screening of green synthesized K. sumatrensis-
ALE displayed multipotent biological activity as an anti-cancer and larvicidal agent and the
present baseline toxicological screening suggests further interest in this eco-friendly green
extract derived from white horseweed, as a potential eco-friendly drug and mosquitocide.
Future prospective research is highly required to determine the molecular mechanisms
and pharmacokinetic activity of bioactive molecules derived from K. sumatrensis using an
in vivo rat model and field trial to determine the mosquitocidal actions and their non-target
toxicity against beneficial insects which share the same ecological niche of mosquito vectors.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27227854/s1. Figure S1: Antioxidant activity of AgNPs
synthesized using K. sumatrensis aqueous leaf extracts (Ks-ALE). DPPH radical scavenging activity,
(b) ABTS radical scavenging activity and (c) Hydroxyl scavenging activity. Figure S4: MTT assay
confirming the Anti-proliferative effects of AgNPs using aqueous leaf extracts of K. sumatrensis
(Ks-ALE) against MCF-7 cell line. Figure S5: Anti-proliferative observed from confocal microscope
(340 pixel); Control and various concentrations (6.5, 12.5, 25, 50 and 100 µg/mL) of K. sumatrensis
aqueous leaf extract (Ks-ALE) of AgNPstreated on breast cancer cells (MCF-7). Table S1: Larvicidal
activity of K. sumatrensis aqueous leaf extract (Ks-ALE) and Synthesized AgNPs against Aedes aegypti.
TableS2: Larvicidal activity of K. sumatensis aqueous leaf extract (Ks-ALE) and synthesized AgNPs
against Anopheles stephensi. Table S3: Larvicidal activity of K. sumatrensis aqueous leaf extract (Ks-ALE)
and synthesized AgNPs against Culex quinquefasciatus.
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