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Abstract: A simple, mild and general method has been developed for the preparation of alkyl
nitramines bearing a halogenoalkoxylic moiety. From these reactive halogen intermediates, a few
azidoalkoxyl alkyl nitramines have been produced as energetic plasticizers. This simple protocol
allows azidonitramino ether plasticizers to be obtained from available precursors in high yields, as it
is safe and viable for large-scale operations. The resulting products have been fully characterized
by spectral methods, and their impact sensitivity, thermal transformations and burning properties
were determined, thus allowing complete comparison to the analogues including other combinations
of structural units. Such characterization of these new plasticizers illustrates the extent to which
the nature and position of the functional units can be used to tune the above properties of these
nitramines. All azidonitramino ethers are liquid with excellent energetic performance and are
promising candidates for new environmentally friendly energetic materials.

Keywords: azide; nitramine; dialkyl ether; energetic plasticizer; synthesis; impact sensitivity; phase
transition; volatility; thermal decomposition; combustion; burning rate

1. Introduction

The unifying basis of most multicomponent energetic materials is a binder consisting
of a polymer and a plasticizer. Previously, both an inert polymer and a plasticizer were
disposed of for these purposes [1]. In recent decades, the design and synthesis of diverse
energetic polymers [2–7] and plasticizers [8–10] have received considerable attention. The
use of an energetic binder increases energy output further than traditional binders, which
obviously improve the performance of energetic materials. Strategically, this is usually
realized by the incorporation of various explosophoric units [11] in polymer chains and/or
in plasticizer backbones. Up to 80% of the binder can be occupied by a plasticizer, which
thus can have a more significant effect on the performance of the energetic material than the
polymer. For a specific energetic material, creating an optimal binder that, in combination
with other components, would be suitable for processing both an uncured mass and a
cured charge with the desired physical and mechanical properties is quite a difficult task.

Different plasticizers [12] give unequal plasticization effects due to the different
strength of the plasticizer–polymer and plasticizer–plasticizer interactions. In order for the
plasticizer to be effective and useful when introduced into a polymer, it must incorporate
two types of structural units—polar and non-polar. The balance between the polar and
non-polar parts of the molecules is very important for regulating the effect of the plasti-
cizer on a particular polymer. An imbalance leads to inefficiency or even incompatibility.
Only with a wide range of polymers and plasticizers in hand is there a chance to create a
suitable binder.
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To maximize its potential, a conventional plasticizer should [12]: (i) be thermodynam-
ically compatible with the polymer; (ii) not be lost during use either by volatilization or
by extraction from the binder matrix; (iii) have no odor; (iv) be chemically inert; (v) have
a decomposition temperature that should not be lower than the polymer processing tem-
perature; (vi) have affordable cost, and so on. A plasticizer reduces the glass transition
temperature (Tg) and the softening point of the polymer, increases its elasticity and strength
and thus facilitates processing.

To date, numerous energetic plasticizers containing such explosophoric groups as
nitro, nitrato, nitramino, or azido at various molecular backbones have been designed
and synthesized [8–10]. On the one hand, the incorporation of the above explosophores
tends to improve the density, enthalpy of formation and/or oxygen balance, and thereby
results in an excellent energy performance. On the other hand, excessive accumulation of
explosophoric groups on a compact backbone leads to increased sensitivity to thermal and
mechanical stimulation and increases the polarity and reduces the flexibility of the target
molecule, complicating its use for polymer plasticization. While the structural variety of
energetic plasticizers has increased dramatically, there still remains a need for a broader
investigation of diverse backbones and functional group combinations. New functionalized
compounds with a novel set of properties are required for the development of advanced
materials. Obviously, the more various combinations are synthesized and the more data
on the properties of the prepared compounds are collected, the more important reference
material for screening and design will be available to researchers.

In our continuing effort to seek new improved components for modern energetic
materials, here we present our attempts at designing and synthesizing a series of energetic
plasticizers that combine azido and nitramino groups on a dialkyl ether backbone.

While azidoalkyl nitramines are widely used as plasticizers [8–10,13], some shown in
Figure 1, the effect of the incorporation of the ether bridge into these molecules has been
studied very sparsely, and only meager physical and energetic properties are available [13–17].
On the other hand, due to the inherent stability and flexibility of the ether bridge, it is widely
used for the development of generally applicable plasticizers suitable for operation in a
wide temperature range. Moreover, the ether bridge, which has non-bonded electron pairs
available for inter- and intramolecular interactions, provides a sufficiently low migration of
the plasticizer from the binding matrix.
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Figure 1. Common azidoalkyl nitramine plasticizers.

From a practical point of view, the synthetic protocol to the target compounds should
be simple and concise, safe and scalable to provide rapid access to large quantities of
material. It is important that the starting reagents are either inexpensive, commercially
available or can be obtained using simple reliable processes.

Following the above guiding principles, we report the facile and effective synthesis
of new azidonitraminoethers. The same protocol provided improved the preparation of
analogues, which have previously been obtained but were insufficiently characterized. In
addition, we report the reliable preparation of several azidoalkyl nitramines and nitrates
as comparison compounds. These azides are a good set which enable investigation of the
structure–property relationship in energetic plasticizers. In the context of our interest in
various combinations of structural elements in energetic molecules, we also report extensive
studies of the physical and special properties of all compounds. These azidonitraminoethers
are valuable components for use in energetic materials and may also prove useful as
intermediates in the synthesis of other materials.
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2. Results and Discussion
2.1. Synthesis

In the course of our work on functionalized nitramines [15,17–22], we focused on
available chloromethylnitramines 1 and envisioned nucleophilic substitution of chlorine
by haloalcohols, which would give nitramino ethers 2 the halogen atom in which can be
replaced by an azide group (Scheme 1). This expectation was based on the possibility,
reported by Frankel et al. [13], of replacing the chlorine atom in chloromethylnitramines
with sterically unencumbered chloroethanol, which occurred during prolonged refluxing
(up to 120 h) in dichloroethane (DCE) and gave a crude mixture contained ca. 60% of the
target product requiring chromatographic purification.
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Scheme 1. Reagents and conditions: i, DCE, reflux, 12 h; ii, NaN3/Bu4NBr/H2O, reflux, 12 h (for 3a),
20 h (for 3a), 15 h (for 3c), 13 h (for 3d).

A well-known trend is that an increase in the molecular weight and branching of the
plasticizer molecule favors more acceptable properties. We commenced our study with
N-(chloromethyl)-N-methylnitramine 1a [22] and more sterically hindered alcohol, 1,3-
dichloropropan-2-ol. The desired ether 2a was indeed formed during refluxing in DCE. We
found that the yield of ether 2a is strongly dependent on the reaction time, as determined
by monitoring the reaction mixture by 1H NMR. The maximum accumulation of product
2a in the reaction mixture was fixed after 12 h of heating; with further refluxing, the yield
decreased, and by-products were formed.

The pure ether 2a was easily isolated in good yield after a simple washing of the crude
product with an aqueous 10% NaHCO3 solution at 70–75 ◦C. With a slight excess (up to
10%) of precursor 1a, the yield of product 2a is 76%.

A related reaction occurred using 2,3-dibromopropan-1-ol and 3-bromo-2,2-bis(bromomethyl)
propan-1-ol, resulting in the formation of ethers 2b and 2c, respectively. Using the similar protocol,
2b and 2c were obtained in 84% and 71% yields, respectively.
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It is noteworthy that a review of the literature using SciFinder did not find an ether
bearing 2,3-dibromopropyl-1 moiety. To the best of our knowledge, there are no reports
describing the preparation of 3-bromo-2,2-bis(bromomethyl)propan-1-ol ethers in the ab-
sence of a base; KOH or NaH are typical bases, and the reaction is carried out in DMSO or
DMF [23–25].

A similar technique to that used for ethers 2a–c also gave excellent results for the
synthesis of diether 2d. Although the yield of product 2d is close to what was reported
earlier [13], the reaction time is shorter (12 h versus 24 h) and the purification is simpler.

Azidation is an extensively studied fundamental reaction of great industrial impor-
tance, the products of which are key precursors in organic synthesis or target energetic
compounds [26–28]. Depending on the reactivity of the starting substrates, a host of
synthetic protocols have been developed. When alkyl azides are prepared from alkyl
halides, the nucleophilic substitution of a halogen or equivalent leaving group is typically
performed at heating with sodium azide in DMSO or DMF. The work-up of such reac-
tion mixtures usually involves dilution with water, extraction into an organic solvent (for
example, CH2Cl2/CHCl3/EtOAc/Et2O) and subsequent chromatography or distillation
giving the target azide. However, the protocol suffers from problems in product recovery,
accompanied by a loss of yields. From the point of view of synthesis, water is a very
attractive solvent for the preparation of energetic compounds, especially such dangerous
ones as azides.

The replacement of organic solvents with an aqueous medium is of great interest
for the chemical industry [29–32] and is particularly promising for reducing risks in the
synthesis of energetic compounds. However, difficulties may arise due to the insolubility
of the starting reactants, and phase transfer catalysis (PTC) [33] is very popular to eliminate
this drawback.

With this in mind, we have studied the possibility of obtaining alkylazides in an
aqueous medium. Preliminary work in our laboratory has shown that the azidation
reaction of chloralkyl nitramines in water is compatible with PTC [17].

We initiated our studies by evaluating the reaction of dichloride 2a with NaN3 un-
der a variety of conditions (Scheme 1). The phase transfer catalysts studied included
tetraalkylammonium chlorides and bromides. Overall, we found that tetraalkylammonium
bromides are more efficient than the corresponding chlorides, providing higher yields and
shorter reaction times. We established that a small excess of NaN3 (1.1 equiv per halogen)
and the addition of 0.1 equiv of tetraalkylammonium bromide was required to achieve
complete conversion of dichloride 2a. Accordingly, the reaction of 2a with NaN3 in the
presence of tetrabutylammonium bromide in water under reflux for 12 h providedthe
desired N-((1,3-diazidoprop-2-oxy)methyl)-N-methylnitramide 3a in 87% isolated yield.
When this reaction was carried out using more expensive tetraalkylammonium bromides,
product 3a was formed with comparable yields over a similar time. Significantly, diazide
3a could be synthesized in multigram quantities, with only extraction and simple washing
with water necessary to obtain the desired product in pure form.

Pleasingly, the similar azidation of other, even more branched haloalkylnitramines was
also successful, allowing for the synthesis of compounds 3b–d with good yields (Scheme 1).
However, some reactions take longer to complete.

In addition to ether-based azidonitramines, we synthesized energy plasticizers without
an ether bridge as comparison compounds. So, a recent patent of Chinese researchers showed
that N,N-bis(2-azidoethyl)nitramide 6 can be built up from N,N-bis(2-chloroethyl)nitramide by
azidation in water for 6 h in 80% yield under PTC [34]. By replacing chlorine with bromine in
the precursor, synthesizing bromo analog 5 (Scheme 2), we showed that when it was treated
with NaN3 under the conditions we found, compound 6 can be obtained in 95% yield in a
shorter time (3 h).
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3 h; iii, H2O/Dioxane/H2SO4, 60 ◦C, 4 h; iv, TsCl/Pyridine, rt, 72 h; v, NaN3, DMSO, 110 ◦C, 8 h; vi,
HNO3/Ac2O, CH2Cl2, −10 ◦C, 2 h.

Available nitramino oxetane 7 [35] was converted to branched diazide 10 in three steps
as shown in Scheme 2. The ring-opening of the oxetane 7 was achieved by acid catalysis
to form the diol 8 in 85% yield. The product 8 was then treated with p-toluenesulfonyl
chloride (TsCl) in the presence of a base to afford tosylate 9 in 92% yield. Finally, the tosyl
groups of compound 9 were substituted with an azide nucleophile to furnish target 10 in
89% yield.

1,3-Diazidopropan-2-ol 12 [36–38] had previously been prepared by various protocols
and used as a starting material in the synthesis of nitrate 13 [39,40]. Despite the fact that 1,3-
dichloropropan-2-ol 11 is soluble in water, azidation in the presence of tetrabutylammonium
bromide proceeds faster than in its absence, and product 12 is formed in quantitative yields
(Scheme 2). Following known procedures [39,40], the nitration of 12 was carried out
with HNO3/Ac2O. However, the literature procedure was modified by using a lower
temperature for the nitration. We were pleased to find that with HNO3/Ac2O, this reaction
provided a 92% yield of the desired product 13 after 20 min at −10 ◦C. For comparison,
72% yield was achieved at 0–5 ◦C in 3 h [40], and 85.6% at 10–15 ◦C/45 min [39].

The developed methods are scalable, and all azides of this study could be synthesized
in multi-gram quantities.

2.2. Sensitivity Measurements

An important property of an energetic material is its sensitivity to mechanical stim-
uli [41]. In order to determine the hazards associated with the compounds of this study, the
samples were analyzed for impact and compared with those of the commonly handled ener-
getic plasticizer nitroglycerine (NG) (Table 1). Sensitivity is characterized as the percentage
of explosions at impact (10 kg drop weight at a height of 25 cm, 25 tests); the higher the
percentage of explosions, the more sensitive the sample. By our testing methods (K-44-II
impact machine, set No.1 [42], which is similar to STANAG 4489 Test 3(a)(ii)), compound
13, like NG, has a maximum impact sensitivity (IS) value of 100%. Azide 3d, which has
the lowest burning rate, has the lowest IS. Compounds 3b and 10, whose burning rates
are slightly higher, also have a higher sensitivity. As expected, the more azide groups the
compound includes, the higher the sensitivity. Thus, triazide 3c is 16% more sensitive than
diazide 3a.
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Table 1. Percentage of azide explosions during impact sensitivity testing.

Sample IS a, % Observed Effects

NG 100 Very loud sound
13 100 Very loud sound, carbon deposits on a striker and an anvil
3c 88 Loud sound, carbon deposits on a striker and an anvil
3a 72 Loud sound, carbon deposits on a striker and an anvil, smoke
3b 52 Loud sound
10 36 Loud sound
3d 12 A weak sound

a IS = impact sensitivity.

2.3. Relaxation and Phase Transitions

For azides of this study, the low-temperature analysis using differential scanning
calorimetrics (DSC) (closed aluminum crucibles, the sample was cooled uncontrollably with
liquid nitrogen, ramp rate = 10 ◦C min−1) were performed to determine the temperature
for glass transition (Tg), crystallization (Tc) and melting point (Tm). Typical step-by-step
phase transitions from the solid state to the isotropic melt of compound 6 were observed in
the temperature range from −110 to 30 ◦C as illustrated in Figure 2.
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At −100 ◦C, azide 6 is an amorphous crystalline compound. When heated to ca.
−88 ◦C, de-vitrification occurs, and changes in heat capacity are recorded on the DSC plot.
Upon further heating, in the range from −48 to −41 ◦C, cold crystallization of the sample
occurs, manifested by an exothermic peak, and then melting, which is evidenced by an
endothermic peak (Figure 2). Azide 3d also belong to amorphous crystalline compounds
(see, Supplementary Materials Figure S17). Unlike azide 6, which melts ca. 30 ◦C above the
temperature of the end of crystallization, the melting of compound 3d begins immediately
after crystallization.

Azides 3a, 3b, 3c, 10 and 13 are amorphous compounds. In these cases, only one
phase transition associated with the relaxation process of glass transition was observed
(see Supplementary Materials Figures S14–S16, S18 and S19). It is well known that some
compounds are not prone to crystallization and remain in a supercooled state for a long time.
This may be due to crystallization conditions, or to the ability of the compound to form
polymorphs that give eutectic mixtures. For example, during spontaneous crystallization
of NG, a stable phase with a melting point of +13 ◦C is formed [43]. However, it remains
in an amorphous state and neither the peak of crystallization nor the peak of melting is
recorded on the DSC when heated using a 10 ◦C min−1 ramp rate (see, Supplementary
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Materials Figure S12). If the sample is heated at a low rate of 1.25 ◦C min−1, not only the
transition from a glassy to an amorphous state, but also cold crystallization and a melting
point (1 ◦C) are observed (see Supplementary Materials Figure S13). This melting point
characterizes crystals of labile NG form.

The temperatures of glass transition, crystallization and melting, as well as the heat
effects of phase transitions for azides of this study, are listed in Table 2.

Table 2. Data on glass transition, crystallization and melting of azides and NG (a 10 ◦C min−1

ramp rate).

Sample
Glass Transition Crystallization Melting

Tg, a ◦C ∆Cp, b

J g−1 K−1
Tc, c

◦C Tpeak,
d ◦C ∆Hc, e

J g−1
Tm, f

◦C
∆Hm, g

J g−1

3d −61 0.75 −7 10 44 +21 42
6 −88 0.87 −48 −41 104 +3 i 147
13 −94 1.00

Does not crystallize

3a −81 0.67
10 −74 0.65
3b −81 0.87
3c −72 0.73

NG −70 0.70
NG h −70 0.70 −26 −16 75 −1 86

a Glass transition temperature. b Change in heat capacity. c Crystallization temperature. d Peak temperature of
crystallization. e Heat of crystallization. f Melting point. g Heat of melting. h Data at a 1.25 ◦C min−1 ramp rate.
i Lit. [44] Tm = 3.5–4.2 ◦C.

It should be noted that the widely used benchmark plasticizer, nitroglycerin (NG), has
a glass transition temperature of −70 ◦C. Only azide 3d has a glass transition temperature
9 ◦C higher than that of NG. The glass transition temperature of the other azides of this
study is lower than that of NG. The absence of crystallization and low glass transition
temperatures allow us to consider azides 3a, 3b, 3c, 10 and 13 as possible plasticizers of
frost-resistant energetic materials.

2.4. Volatility

The volatility of the plasticizer determines the consistency of the composition and
properties of materials containing these components, as well as the conditions for safe
work with them. However, most liquid energetic plasticizers have rather high volatility. In
particular, this disadvantage is also inherent in the widely used NG. Energetic plasticizers
less volatile than NG are of great interest.

Here, the volatility of organic azides 3a, 3b, 3c, 6, 10 and, for comparison, NG was
determined by thermogravimetric analysis (TGA). The assessment of the volatility of
compounds is based on the measurement of the saturated vapor pressure or the rate
of weight loss per unit of the evaporation surface at a given temperature [45–47]. The
relationship of the volatility parameters is described by the Langmuir Equation (1):

G =
dm

dSdt
= kP

√
M

2πRT
(1)

where G = dm
dSdt is the evaporation rate (loss of weight m from a unit of surface S to a unit of

time t), k is the evaporation coefficient, P is the saturated vapor pressure, M is the molecular
weight, R is the universal gas constant and T is the temperature.

When a compound evaporates in a vacuum, it is assumed that k = 1. During evap-
oration in a gas atmosphere, this coefficient depends on the conditions of mass transfer
of molecules of the evaporating compound in the gas atmosphere (the rate of diffusion
of molecules in the gas layer near the evaporation surface, the speed and flow regime of
the gas flow, the composition and pressure of the gas, etc.). A comparative method for
determining the vapor pressure was previously proposed [48]. This method combines the
evaporation data obtained by the TGA method and the available data on the vapor pressure
of calibration compounds obtained by an independent method. This makes it possible to
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exclude the evaporation coefficient k from the calculations. To estimate the volatility, the
relative volatility coefficient Frel can be used, which characterizes the ratio of the vapor
pressure of a given compound to the vapor pressure of the compound accepted as standard
according to Equation (2) [48]:

Frel =
Pl
Pst

=
Gl
Gst

(
Ml
Mst

)0.5
(2)

where the indices l and st refer to the compound under study and the compound taken as
standard, respectively. We used NG as the standard.

Thermograms characterizing the change in the mass of the azides of this study and
NG during heating in the nitrogen-purged cell of the thermal analyzer scales are shown in
Figure 3. Preliminary TGA and DSC data showed that there is no decomposition of these
compounds in the temperature range from 25 to 80 ◦C. Thus, the decrease in the mass of
the samples is associated only with evaporation.
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on temperature.

The evaporation rates of samples were calculated by the time differentiation of ther-
mogravimetric curves and their subsequent mathematical processing. The calculated
evaporation rates of selected compounds and their relative volatility coefficients are sum-
marized in Table 3. The table clearly demonstrates that the volatility of the studied azides
is significantly lower than that of NG and diethylene glycol dinitrate (DNDEG).

Table 3. Volatility of azides and nitro esters at 60 ◦C.

Sample Molecular Weight,
g mol−1

Evaporation Rate G,
kg·sec−1·m−2 × 106

Relative Volatility
Coefficient Frel

NG 227 1.07 1
DNDEG 196 1.70 1.48

10 228 0.849 0.80
3b 218 0.738 0.68
6 200 0.394 0.35
3c 299 0.224 0.24
3a 218 0.237 0.22
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In particular, the volatility of azides 3a and 3c is five times lower than that of NG. Not
only the molecular weight, but also the structure of the molecule affects the volatility. This
is clearly seen when comparing isomeric azides 3a and 3b; the volatility of branched azide
3a is 3.5 times less than that of its linear isomer 3b.

2.5. Thermal Analysis

The thermal stability for compounds of this study was determined by differential
scanning calorimetric (DSC) and thermogravimetric analysis (TGA) measurements scan-
ning at 10 ◦C min−1 (Table 4, Supplementary Materials Figures S1–S8). Compounds 3d
and 6 are low-melting solids, while all other azides are liquids at room temperature. Ac-
cording to the TGA, despite the fact that the experiment was carried out in aluminum
crucibles closed with a lid, all samples almost completely evaporated to the decomposition
temperature, which is observed by DSC. In the crucible of DSC, compound 13 begins to
evaporate intensively before decomposition; as a result, the peak of heat absorption during
evaporation is superimposed on the peak of heat release during decomposition. Despite
the overlapping peaks, it is obvious that compound 13 is the least heat-resistant. This is due
to the presence of a nitrate ester group, which initiates the decomposition of the compound.
The decomposition temperatures of the other azides of this study ranged from 241 to 257 ◦C
(Table 4). Evaporation undoubtedly affects the amount of heat released, which varies from
152 to 840 kJ mol−1 for diazides and is 603 kJ mol−1 for triazide 3c.

Table 4. Decomposition results (DSC-TGA measurements).

Sample
DSC TGA

Tonset, a ◦C Tpeak, b ◦C ∆Hd, c J g−1

(kJ mol−1) Tonset/Tend, d ◦C ∆m, e %

3a 213 243 816 (175) 207/250 87
3b 201 244 1463 (319) 164/220 85
3c 223 254 2017 (603) 220/245 78
3d 226 257 2413 (840) 221/250 100
6 211 241 f 1442 (288) 165/200 98
10 211 243 666 (152) 163/220 99
13 185 187 - 93/155 100

NG 192 198 - 140–173 100
a Decomposition temperature (onset) measured at a heating rate of 10 ◦C min−1. b Decomposition temperature
(peak). c Heat of decomposition. d Onset/end temperature of mass loss. e Weight loss during decomposition.
f Lit. [44] Tpeak = 227 ◦C.

Since the thermal decomposition effect of the azide group in non-volatile compounds,
for example, glycidyl azido oligomers, is 165–170 kJ mol−1 [49], higher heat effects for 3d
(840 kJ mol−1) and 3c (603 kJ mol−1) indicate that the decomposition of both azide and
nitramine groups takes place.

There is an extensive literature describing the thermal transformations of organic
azides [50–52]. Alkyl azides are the most thermally stable in this class of compounds. It
was previously suggested that an inductive effect has an important effect on the stability
of alkylazides [51]. Indeed, the azides of this study, where the azido group is bonded to
the electron-withdrawing nitramine group by an alkyl bridge (compounds 6 and 10), are
slightly less stable than their analogues (compounds 3d and 3c), whose bridge includes an
ether bond which has negative inductive and positive mesomeric effects. The azido ester
3b falls out of the last group, which is most likely due to the mutual influence of the azide
groups, which in this compound are linked by the shortest aliphatic bridge.

An isothermal decomposition study of azides 3a, 3c and 6 was performed using a
Bourdon glass compensation pressure gauge [53]. The ratio of the mass of a sample to
the volume of the reaction vessel (m/V) was ~4 × 10−3 g cm−3. The dependence of gas
released during the decomposition of the above compounds on time was determined
(Figures S9–S11, Supplementary Materials).

The thermolysis of compounds 3a (150–190 ◦C) and 6 (150–175 ◦C) is described by
the first order reaction. The decomposition of compound 3c (170–190 ◦C) proceeds with
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a slight acceleration, so its gas release data were processed by a first-order model with
autocatalysis [53]. The final volume of gases released from 3a is 390 cm3 g−1 (3.8 moles
per mole of 3a); 510 cm3 g−1 (4.55 moles per mole) was released from compound 6, and
420 cm3 g−1 (5.6 moles per mole) was released from 3c. The decomposition rate constants
could be described by the equations k = 1014.36 exp(−161,540/RT), c−1 (I), k = 1014.28

exp(−162,040/RT), c−1 (II) and k = 1015.07 exp(−172,570/RT), c−1 (III) for azides 6, 3a and
3c, respectively.

Previously published data for azide 6 obtained under non-isothermal conditions using
the Ozawa method give a significantly lower activation energy of 115.3 kJ mol−1 [44]. The
stability of azide 6 is comparable to that of the previously studied promising energetic
material 4,4′-bis(azidomethyl)azofurazan [54].

The decomposition rate constants of azides 3a, 3c and 6 under isothermal conditions
are in good agreement with the data at higher temperatures (non-isothermal conditions,
DSC). Isothermal decomposition rates for 6, 3a and 3c were determined and evaluated by
the Kissinger equation [55], using the activation energies from the manometric experiments.
Figure 4 also shows the literature data on the decomposition of two benchmark azides,
glycidyl azido polymer (GAP) [56] and 1,3-diazido-2-nitro-2-azapropane (DANP) [52],
illustrating the opposite limits of the inductive effect. In GAP, the azide groups are
separated by an alkyl ether bridge of six atoms that do not transmit the inductive effect
well, while in DANP, the azide group is bonded to the electron-withdrawing nitramine
group by only one CH2 unit. It is clearly seen that the thermal stability of compound
3c and GAP are close. The decomposition rate constants of azides 6 and 3a are only
2–3 times greater than the rate constant of azide 3c, but more than 30 times higher than
that of the least stable DANP. A similar trend is observed for the activation energy, which
decreases in the following order: 3c (172.6 kJ mol−1) > 6 ∼= 3a (161.5–162.0 kJ mol−1) >
DANP (151.0 kJ mol−1 [52]).
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Figure 4. Comparison of decomposition rate constants 6, 3a and 3c, under isothermal (Manometry,
points and lines) and non-isothermal (DSC, triangles) conditions. Dashed lines are decomposition
kinetics of GAP [56] and 1,3-diazido-2-nitro-2-azapropane (DANP) [52].

Based on the decomposition kinetic parameters, it is possible to predict thermal safety,
without which it is impossible to assess the prospects for practical application. Firstly, the
degree of decomposition (η) of azides when stored at room temperature can be estimated
using the equation: η = (1− e−kτ) 100, %, where k is the decomposition rate constant
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of a sample at 298 K, and τ is the storage time of 20 years (or 6.3 × 108 s). Secondly, the
self-accelerating decomposition temperature (SADT) under adiabatic conditions can be
estimated. In accordance with the United Nations standard [57], the SADT is defined as
the lowest ambient temperature at which a temperature raise in the bulk of a particular
package exceeds 6 ◦C after a time period of 7 days. The degree of decomposition of the
sample can be calculated based on its Arrhenius parameters. To calculate the temperature
increase, the heat of reaction (Q) determined in the DSC experiments (Table 4) and the heat
capacity of 1.67 J·g−1 K−1 were used. The results are shown in Table 5. The ignition points
of azides (sample of 0.05 g) when heated from 100 ◦C using a 20 ◦C/min ramp rate are also
displayed in Table 5.

Table 5. Decomposition parameters and thermal safety for azides of this study.

Sample logA a Ea, b

kJ mol−1
k × 1014

(at 298 K), c s−1 k/kNG
d η × 10−3, e

%
SADT, f

◦C
Tign, g

◦C

3a 14.3 162.0 0.75 0.20 0.47 109 237
3c 15.1 172.6 0.07 0.02 0.04 116 234
6 14.4 161.5 1.10 0.29 0.69 106 226

GAP 14.1 164.8 0.16 0.04 0.10
NG 15.4 164.4 3.76 1.00 2.37

NC 16.9 175.8 1.21 0.32 0.76 185–205
[58]

a Preexponential factor. b Arrhenius activation energy. c the decomposition constant at room temperature, d the
ratio of the decomposition rate constants of compounds and NG, e the degree of decomposition (η) of azides
during 20 years of storage at room temperature, f the self-accelerating decomposition temperature, g the flash
point of compounds with a heating rate of 20◦/min.

As can be seen from Table 5, the decomposition rate constants of azides in this study
at a temperature of 298 K are significantly lower than that of the benchmark plasticizer,
nitroglycerin (NG), and are comparable to the stability of nitrocellulose (NC). At this
temperature, only thousandths of a percent of these azides will decompose over 20 years of
storage. The azides of this study, judging by the calculated self-accelerating decomposition
temperature, can withstand higher storage temperatures, and therefore, no temperature
restrictions need be imposed on their storage and use.

The values of the ignition points of azides presented in Table 5 give reason to believe
that this parameter, along with the decomposition kinetics, is influenced by the magnitude
of the thermal effect of their decomposition. In particular, azide 3c is the most stable, but
has a low decomposition heat, so its ignition point is close to those of other less stable, but
more energetic azides. It is clearly seen that for all azides of this study, the ignition point is
higher than that of NC by ~30–50 ◦C.

2.6. Combustion

It is well known that liquid alkyl azides [49,59,60], like other liquid energetic com-
pounds [58], are characterized by a light transition of combustion from laminar to turbulent
mode. Andreev reported [58] that turbulence can have a double effect: (i) increases the
apparent burn rate due to an increase in the burning surface, and (ii) prevents combustion,
leading to its attenuation, due to the destruction of the heated layer of the condensed phase.
Violations of the liquid–vapor interface (turbulence of the burning surface) depend on the
viscosity of the liquid. To eliminate this defect, the viscosity of these liquids can be increased
by thickening them with a polymer, such as nitrocellulose (NC). Here, the burning rate
for the azides of this study was determined on samples that were pre-thickened with 4%
NC (colloxylin 12% N). The dissolution of nitrocellulose was carried out from 1 to 2 h at
50–60 ◦C into transparent acrylic tubes of 7 mm i.d.

Burning rate data of azides 3b, 3d and 10 were determined in a wide range of pressures
(Figure 5a). Burning rates of these azides and NC (12% N) are close, but significantly lower
than that of NG. The compound 3d, which has the longest carbon chain among the azides
of this study, burns slightly slower than NC. At a pressure of 2 MPa, burning rates for all
azides of this group and NC are the same.
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Figure 5. (a) Comparison of the burning rates of azides 3b, 3d and 10 with NG and NC; (b) Compari-
son of the burning rates of azides 3a, 3c and 6 with NG and NC.

Within the limits of the experimental error, burning rates of compounds 3b and 10 are
the same, and due to a higher index in the law of combustion, (n = 0.98) exceed the burning
rate of NC at high pressures. Burn parameters of liquid azides are given in Table 6.

Table 6. Burning rate data of selected azides in comparison with NC and NG.

Sample
Burning Rate rb = Apn

rb 2, a

мм/c
rb 10, b

мм/cA c n d ∆p, e MΠa

3d f 1.39 0.85 3.5–12 3.4 9.1
NC (12% N) 1.99 0.75 1–12 3.3 11.2

3c f 1.16 1.08 9–12.6 - 13.8
3b f 1.81 0.98 1–12 3.3 17.3
10 f 1.81 0.98 2–10 3.3 17.3

NG f 7.42 0.68 1–12 11.8 35.5
a Burning rate at 2 MPa. b Burning rate at 10 MPa. c Empirical coefficient. d Pressure exponent in the burning rate
law. e ∆p Pressure range. f Samples pre-thickened with 4% NC.

For nitroxazide 13, the laminar combustion mode could not be implemented. After
ignition, this compound burns at a very high rate, significantly exceeding that of NG. As
noted above, compound 13 is volatile and the least stable of the azides in this study.

Experimental data on the combustion of compounds 3a, 3c and 6 are presented in
Figure 5b. These azides burn only at high pressures. For 3a, only a transitional site with
a very large index n ~ 2.7 was observed, whereas for 6 and 3c, small sites of laminar
combustion (with an index n = 1.08 and 1.0, respectively) were recorded, after which
combustion switches to a turbulent mode and it is impossible to measure its rate at higher
pressures. The ability to combustion only at high pressures was previously observed for
GAP liquid oligomers [49,60]. This is due to the fact that at high pressures, turbulent
combustion, which is inhibited due to destroying the preheated layer of the condensed
phase, changes due to an increase in the density of the outgoing gaseous combustion
products supporting the laminar regime. However, the increase in the rate with increasing
pressure continues, and for compounds with a high index n, there comes a moment when
the combustion breaks down again to a turbulent mode.
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Thus, all azides of this study are capable of self-sustained combustion, which, as in
the case of other liquid energetic materials, easily switches to turbulent mode. However,
in solid mixed compositions based on these azides, such a transition will be difficult, and
their combustion will proceed in laminar mode.

The volatility of azide plasticizers suggests that they, like NG, burn according to the
mechanism of volatile compounds [58,61], that is, the rate-determining reaction is in the
gas phase, the heat flux from which warms up the compound to the boiling point and
evaporates it. In this case, the lower burning rates of azides compared to NG are most
likely due to the lower temperature of the leading flame zone in which azides decompose.
It was previously shown [49,60] that in the absence of an oxidizer, the azide group does
not release all the energy stored in it, since endothermic combustion products including
double and triple C-N bonds are produced. Since the nitramine group, as an oxygen carrier,
is more stable than the azide group, in the combustion wave, it decomposes at higher
temperatures and has no effect on the burning rate.

2.7. Plasticizing Ability

Compounds bearing azide and nitramine groups are usually compatible with NC and
other energetic polymers (GAP, BAMO, etc.) [62,63]. For modern propellants operated
in a wide temperature range, an important characteristic is the transition temperature of
the binder, which is a mixture of polymer and plasticizer, from a highly elastic state to a
glassy one. The crystallization of plasticizers leads to a limitation of the lower limit of the
temperature of the use of a propellant [64,65].

An early study based on an interference diffusion method [66] showed that azide 6
has unlimited thermodynamic compatibility with a polyether urethane polymer [67]. A
binder, based on the polyether urethane polymer plasticized with nitroester plasticizer
1,2,4-butanetriol trinitrate (BTTN), demonstrates excellent low-temperature deformation
ability [68]. Here, the plasticizing ability for the azides of this study with respect to NC
(12.2 N%) and polyester urethane polymer (PU) synthesized on the basis of polyethylene-
butylene glycol adipinate and 2,4-toluenediisocyanate cured with 1,3-butanediol [69] was
determined. The content of the plasticizer in the mixture with NC was equal to 50 wt%,
whereas in mixtures with PU it was changed from 40 to 90 wt%. The mixing of polymers
with a plasticizer, such as liquid azide or, for comparison, NG, was carried out by direct
swelling. The glass transition temperature of the resulting binders was determined by DSC
and analyzed with a temperature ramp of 10 ◦C min−1 (Figure 6).
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The glass transition temperature of NC—azidoplasticizer (50/50) is higher than that
for NC–NG mixture by 4–24 degrees, depending on the azide used. In the series of azides,
the glass transition temperature of NC is most effectively reduced by compound 3a. While
many of the azides of this study have low intrinsic glass transition temperatures (Table 2),
in a mixture with NC, only compounds 3a, 3b and 10 provide an acceptable resulting Tg
(Table 7).

Table 7. Glass transition temperature (Tg) of NC/plasticizer mixtures (50/50).

Plasticizer Tg, oC ∆Cp, * J g−1 K−1

NG −53 0.35
10 −42 0.28
3a −49 0.45
3b −45 0.35
3c −35 0.29
3d −29 0.46

* Change in heat capacity.

For the plasticization of PU, azides 3a, 3b, 6 and 10 were used in comparison with NG.
Figure 7 shows the dependence of the glass transition temperature of PU-based binders on
the percentage of plasticizer.
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The glass transition temperature of PU decreases sharply with an increase in the
content of azide 10 to 60%. However, with a further increase in the content of azide 10,
from 60 to 70%, the Tg of the PU/azide 10 composition decreases by only one degree. With
a percentage of plasticizer equal to 50 and 60%, the PU/azide 10 composition has a glass
transition temperature 10 degrees lower than PU plasticized with NG. Azide 6 reduces the
glass transition temperature of PU most effectively; at 70% of compound 6 in a mixture
with PU, Tg of such a binder is reduced to −80 ◦C.

In terms of the effectiveness of reducing the glass transition temperature of the binder,
the established order of efficiency is 6 > 3a ∼= 3b > 10. All azides reduce the glass transition
temperature of PU by more than NG. Thus, to create PU-based binders, nitramines bearing
azide groups can be used as plasticizers. The percentage of such plasticizers can reach 70%,
at which point the binder is in a highly elastic state over a wide temperature range.
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2.8. Physical and Energy Properties

Although the data in Tables 1–7 demonstrate a number of properties of the com-
pounds of this study, which make it possible to assess their advantages in comparison with
benchmark energetic plasticizers, some more characteristics should be discussed.

The properties of energetic compounds depend on the oxygen and nitrogen content
in their composition; the disadvantage of one can be compensated by another. Table 8
compares the oxygen coefficient and nitrogen content of the azidonitramino ethers with
NG and azidonitramino alkanes, EtAENA, BuAENA and DANPE (6). Among these
compounds, NG is the most oxygen-rich, but is nitrogen-poor. The compounds of this
study have a more preferable content of both oxygen and nitrogen than the benchmark
azidonitramino alkanes. While the densities of non-energetic plasticizers are typically
below 1, the densities of azidonitramino plasticizers range from 1.262 to 1.366 g cm−3.

An important characteristic for the components of composite and double-base propel-
lants is the enthalpy of formation [60,70,71].

Table 8. Some properties of compounds of this study in comparison with benchmark plasticizers.

Sample Formula
Mw α a N, b

%
d4

19, c

g cm−3

∆Hf
0

(l), d

kJ mol−1

(kJ g−1)

Tf, e

K

EtAENA C4H9N5O2
159.15 0.160 44.01 1.320 +204.8

(+1.29) 1652

BuAENA C6H13N5O2
187.20 0.110 37.41 1.211 +150.5

(+0.80) 1377

DANPE
(6)

C4H8N8O2
200.16 0.167 55.98 1.330 +539.2

(+2.69) 2275

3a C5H10N8O3
230.19 0.200 48.68 1.313 +443.1

(+1.92) 1940

3b C5H10N8O3
230.19 0.200 48.68 1.319 +451.4

(+1.96) 1880

3c C7H13N11O3
299.26 0.146 51.49 1.312 +691.8

(+2.31) 1720

3d C8H16N10O6
348.28 0.250 40.22 1.366 +351.1

(+1.01) 1640

10 C6H12N8O2
228.22 0.111 49.10 1.262 +453.5

(+1.99) 1770

13 C3H5N7O3
187.12 0.353 52.40 1.379 +432.2

(+2.31) 2469

NG C3H5N3O9
227.09 1.059 18.50 1.593 −370.3

(−1.63) 3233

a Oxygen coefficient. For a compound with the molecular formula of CxHyNwOz, α = z/(2x + y/2). A compound
with α > 1 is an oxidizer [42]. b Nitrogen content. c Density at room temperatire. d Calculated enthalpy of the
formation for liquid state, with group additivity method [72–75]. e Calculated adiabatic flame temperature at a
pressure of 4 MPa [76].

Unlike NG, which has a negative enthalpy of formation, all of the new compounds ex-
hibit a positive enthalpy of formation ranging between 1.01 and 2.31 kJ g−1. Adiabatic flame
temperature (Tf) for azidonitramino ethers is lower than that of NG, which is attractive for
wide application.

3. Materials and Methods

IR spectra were recorded on a BrukerALPHA instrument in KBr pellets. The 1H,
13C, and 14N spectra were recorded on a Bruker AM-300 instrument (300.13, 75.47 and
21.69 MHz, respectively) at 299 K. The chemical shifts of 1H and 13C nuclei were reported
relative to TMS, for 14N, relative to MeNO2, high-filed chemical shifts are given with a
minus sign. Elemental analysis was performed on a PerkinElmer 2400 Series II instrument.
Analytical TLC was performed using commercially pre-coated silica gel plates (Kieselgel
60 F254), and visualization was affected with short-wavelength UV-light.
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Most of the reagents and starting materials were purchased from commercial sources
and used without additional purification. The starting chloromethylnitramines [22] were
synthesized by using previously reported procedures.

Thermal stability, relaxation and phase transitions were studied by differential scan-
ning calorimetry (DSC) using a Mettler Toledo DSC 822e module. Approximately 2 mg
of the compounds was weighed into a placed in a 40 µL aluminum crucible, sealed under
air with the appropriate sample press, and then pierced with a needle to leave two holes
of approximately 1 mm diameter. The decomposition of a sample was carried out in a
nitrogen atmosphere at a purge rate of 50 µL min−1. The temperature of the onset of intense
decomposition (Tonset) was taken as the temperature determining thermal stability. To
study relaxation and phase transitions, the samples were uncontrollably cooled to −130 ◦C
and then heated at a rate of 10 ◦C min−1. The temperature of the midpoint of the relax-
ation transition was taken as the glass transition temperature (Tg). The glass transition
process is accompanied by a change in the heat capacity of the sample ∆Cp, which was
also measured. The melting point (Tm) of the individual compounds was determined
as the temperature of the melting effect start point. The volatility of organic azides was
determined on a TGA/SDTA 850e module. Liquid compounds weighing from 160 to
190 mg were placed in a cylindrical aluminum cup with an inner diameter of 9.0 mm and a
height of 2 mm (Figure 8a). The accuracy of measuring the mass of the sample is 0.01·mg.
Weight loss measurements were made over a temperature range of 25 to 80 ◦C at a heating
rate of 1 ◦C min−1. The samples were subjected to thermostating in the measuring cell at a
temperature of 25 ◦C for 30 min before the start of measurements.
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Figure 8. (a) Aluminum cup with azide mass for volatility measurement; (b) Charges of azides
thickened with 4% nitrocellulose in Plexiglas tubes prepared to determine the burning rate.

The burning rate was determined in a constant pressure device (Crawford bomb)
with a volume of 2 L in a nitrogen atmosphere. Liquid compounds were mixed with 4%
nitrocellulose (colloxylin 12% N). The dissolution of nitrocellulose was carried out from 1
to 2 h at 50–60 ◦C into transparent acrylic tubes of 7 mm i.d. (Figure 8b) The combustion
process of the sample was recorded using a pressure strain gauge, which transmitted the
signal to a digital oscilloscope. The start and end times of combustion were determined
from oscillograms. The burning rate was calculated by dividing the sample height by the
burning time and was related to the mean integral pressure during the experiment. The
error in determining the burning rate does not exceed 3%.

The impact sensitivity of the studied azides was measured with a K-44-II impact
machine set No. 1, [42] with a 10 kg drop weight and a height of 25 cm. The frequency of
explosions was determined by the number of explosions from 25 tests performed.
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Caution! Although we have encountered no difficulties during preparation and han-
dling of these compounds, they are potentially explosive energetic materials. Manipulations
must be carried out by using appropriate standard safety precautions.

2-Nitraza-4-oxa-5-(chloromethyl)-6-chlorohexane (2a) (General Procedure). To a so-
lution of 1-chloro-2-nitrazapropane (1a, 10 g, 80.3 mmol) in DCE (80 mL) was added
1,3-dichloropropanol-2 (8.6 g, 66.67 mmol). The resulting solution was stirred under reflux
for 12 h, and the solvent was removed under vacuum to an yellow oil (~16.6 g). The crude
product and 5% NaHCO3 (~150 mL) were intensively stirred at 75 ◦C for 1 h. The mixture
was extracted with benzene (2 × 100 mL,), and the combined organic layers were washed
with water (50 mL) and dried (Mg2SO4). The benzene from the combined extract was
evaporated under reduced pressure to give a light yellow oil 2a in 76% yield (11 g, NMR
purity of ≥95%). nD

22 = 1.4973. IR, ν, cm−1: 1079 (C-O-C), 1300 (NNO2 sym.), 1532 (NNO2
asym.); 1H NMR, δ (MHz, DMSO-d6): 3.40 (s, 3H, CH3NNO2), 3.76 (qd, J = 11.7, 5.1, 4H,
2 × CH2Cl), 4.08 (m, 1H, OCH(CH2Cl)2), 5.36 (s, 2H, O2NNCH2O) (Figure S1); 13C NMR δ

(DMSO-d6): 37.8 (CH3NNO2), 44.3 (2 × CH2Cl), 77.9 (OCH), 79.4 (NCH2O). Found %: C
27.75; H 4.58; N 12.79. C5H10Cl2N2O3. Calculated %: C 27.67; H 4.64; N 12.91.

2-Nitraza-4-oxa-6,7-dibromheptane (2b). Following the general procedure, 1-chloro-
2-nitrazapropane 1a and 2,3-dibromopropanol-1 gave the desired product in 84% yield:
nD

22 =1.5392; IR, ν, cm−1: 1083 (C-O-C), 1298 (NNO2 sym.), 1531 (NNO2 asym.); 1H NMR,
δ (DMSO-d6): 3.39 (s, 3H, CH3NNO2), 3.92 (m, 4H, CH2O, CH2Br), 4.56 (dt, J = 10.4, 5.1,
1H, CHBr), 5.27 (s, 2H, O2NNCH2O) (Figure S4); 13C NMR δ (DMSO-d6): 34.9 (CH2Br),
38.4 (CH3NNO2), 50.8 (CHBr), 71.1 (OCH2), 80.6 (NCH2O). Found %: C 19.90; H 3.17; N
9.11. C5H10Br2N2O3. Calculated %: C 19.63; H 3.29; N 9.16.

2-Nitraza-4-oxa-6,6-bis(bromomethyl)-7-bromheptane (2c). Following the same pro-
cedure, 1-chloro-2-nitrazapropane 1a and 2,2-bis(bromomethyl)-3-bromopropanol-1 gave
the desired product in 71.4% yield: mp 73–74 ◦C (Et2O); IR, ν, cm−1: 1096 (C-O-C), 1296
(NNO2 sym.), 1526 (NNO2 asym.). 1H NMR, δ (DMSO-d6): 3.40 (s, 3H, CH3NNO2), 3.51 (s,
6H, 3 × CH2Br), 3.56 (s, 2H, OCH2C), 5.24 (s, 2H, O2NNCH2O). 13C NMR δ (DMSO-d6):
34.7 (3 × CH2Br), 37.9 (CH3NNO2), 43.2 (tC), 67.5 (OCH2), 80.1 (NCH2O). Found %: C
20.48; H 3.01; N 6.77. C7H13Br3N2O3. Calculated %: C 20.36; H 3.17; N 6.78.

1,12-Dichloro-3,10-dioxa-5,8-dinitrazadodecane (2d). Following the same procedure,
1,6-dichloro-2,5-dinitrazahexane 1b and 2-chloroethanol-1 gave the desired product in
71.5% yield: mp 42–43 ◦C (Et2O). IR, ν, cm−1: 1091 (C-O-C), 1275 (NNO2 sym.), 1541 (NNO2
asym.); 1H NMR, δ (DMSO-d6): 3.74 (dd, J = 10.1, 4.2, 4H, 2 × OCH2CH2Cl), 3.81 (dd,
J = 6.1, 3.9, 4H, 2 × OCH2CH2Cl), 4.12 (s, 4H, NCH2CH2N), 5.24 (s, 4H, 2 × OCH2NNO2).
13C NMR δ (DMSO-d6): 43.5 (2 × CH2Cl), 47.8 (2 × CH2NNO2), 69.5 (2 × OCH2), 79.6
(2 × OCH2N). Found %: C 28.74; H 4.94; N 16.65. C8H16Cl2N4O6. Calculated %: C 28.67;
H 4.81; N 16.72.

2-Nitraza-4-oxa-5-(azidomethyl)-6-azidohexane (3a) (General Procedure). A mix-
ture of compound 2a (11.0 g, 50.7 mmol), NaN3 (16.5 g, 253.2 mmol), tetrabutylammonium
bromide (TBAB, 4.08 g, 36.5 mmol) and water (150 mL) was heated under reflux overnight.
After the mixture was cooled to room temperature, reaction mixture was extracted with
benzene (2 × 70 mL.) The organic layer was washed with H2O (2 × 30 mL) and dried with
MgSO4. Solvent was removed in vacuo to give the product 3a in 87% yield (10.15 g) as a
light-yellow mobile liquid: d4

19 = 1.3130 g cm−3; nD
22 = 1.5096. IR, ν, cm−1: 1087 (C-O-C),

1299 (NNO2 sym.), 1533 (NNO2 asym.), 2103 (N3); 1H NMR, δ (DMSO-d6): 3.36–3.52 (m,
7H, CH3NNO2, 2 × CH2N3), 3.94 (m, 1H, OCH(CH2N3)2), 5.35 (s, 2H, O2NNCH2O). 13C
NMR δ (DMSO-d6): 37.7 (CH3NNO2), 51.4 (2 × CH2N3), 77.2 (OCH), 79.4 (NCH2O). 14N
NMR δ (DMSO-d6): −27.7, −132.8, −175.4. Found %: C 26.61; H 4.36; N 48.30. C5H10N8O3.
Calculated %: C 26.09; H 4.38; N 48.68.

2-Nitraza-4-oxa-6,7-diazidoheptane (3b). Following the same procedure, 2-nitraza-4-
oxa-6,7-dibromoheptane (2b) gave the desired product in 80.6% yield, as a light-yellow
mobile liquid: d4

19 = 1.3188 g cm−3, nD
22 = 1.5129. IR, ν, cm−1: 1092 (C-O-C), 1297 (NNO2

sym.), 1529 (NNO2 asym.), 2103 (N3). 1H NMR, δ (DMSO-d6): 3.39 (s, 3H, CH3NNO2), 3.49
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(m, 2H, CH2N3), 3.70 (ddd, J = 17.4, 10.4, 5.5, 2H, CH2O), 3.92 (ddd, J = 11.2, 7.2, 4.1, 1H,
CHN3), 5.24 (s, 2H, O2NNCH2O). 13C NMR δ (DMSO-d6): 37.7 (CH3NNO2), 50.7 (CH2N3),
60.1 (CHN3), 69.0 (OCH2), 80.3 (NCH2O). 14N NMR δ (DMSO-d6): −27.5 −134.4, −171.
Found %: C 26.59; H 4.10; N 48.59. C5H10N8O3. Calculated %: C 26.09; H 4.38; N 48.68.

2-Nitraza-4-oxa-6,6-bis(azidomethyl)-7-azidoheptane (3c). Following the same pro-
cedure, 2-nitraza-4-oxa-6,6-bis(bromomethyl)-7-bromoheptane (2c) gave the desired prod-
uct in 93.2% yield, as a light-yellow liquid: d4

19 = 1.3117 g cm−3, nD
22 = 1.5262. IR, ν, cm−1:

1092 (C-O-C), 1298 (NNO2 sym.), 1534 (NNO2 asym.), 2103 (N3). 1H NMR, δ (DMSO-
d6): 3.38 (s, 9H, CH3NNO2, 3 × CH2N3), 3.44 (s, 2H, OCH2C), 5.21 (s, 2H, O2NNCH2O).
13C NMR δ (DMSO-d6): 37.8 (CH3NNO2), 44.0 (tC), 51.4 (3 × CH2N3), 68.0 (OCH2), 80.4
(NCH2O). 14N NMR δ (DMSO-d6): −27.5, −133.2, −171.5. Found %: C 28.48; H 4.01; N
51.92. C7H13N11O3. Calculated %: C 28.10; H 4.38; N 51.49.

1,12-Diazido-3,10-dioxa-5,8-dinitrazadodecane (3d). Following the same procedure,
1,12-dichloro-3,10-diox-5,8-dinitrazadodecane (2d) gave the desired product (95.2%), as
a light-yellow liquid: d4

19 = 1.3655 g cm−3, nD
22 = 1.5185. IR, ν, cm−1: 1082 (C-O-C),

1275 (NNO2 sym.), 1539 (NNO2 asym.), 2104 (N3). 1H NMR, δ (DMSO-d6): 3.43 (m, 4H,
2 × OCH2CH2N3), 3.73 (m, 4H, 2 × OCH2CH2N3), 4.12 (s, 4H, NCH2CH2N), 5.23 (s, 4H,
2 × OCH2NNO2). 13C NMR δ (DMSO-d6): 47.8 (2 × CH2N3), 50.0 (2 × CH2NNO2), 68.1
(2 × OCH2), 79.6 (2 × OCH2N). 14N NMR δ (DMSO-d6) −30.5, −133.3. Found %: C 27.67;
H 4.61; N 40.14. C8H16N10O6. Calculated %: C 27.59; H 4.63; N 40.22.

1,3-Diazidopropan-2-ol (12). Following the same procedure, 1,3-dichloropropan-2-ol
11 gave the desired product (99%), as a light-yellow liquid. The spectroscopic data are
identical with those reported [36–38].

N-(3-Hydroxy-2-(hydroxymethyl)-2-methylpropyl)-N-methylnitramine (8). A mix-
ture of 3-methyl-3-(methylnitramino)methyl oxetane [35] (7, 10.9 g, 68 mmol), H2SO4
(3.7 mL, 70 mmol), water (10 mL) and dioxane (24 mL) was heated at 60 ◦C for 4 h. After
the mixture was cooled to room temperature, it was neutralized with Na2CO3, and ex-
tracted with boiling chloroform (2 × 50 mL), and the combined organic layers were dried
(MgSO4) and evaporated to a slightly yellow oil, which crystallized on standing; yield:
10.3 g (57.8%); mp 82–83 ◦C (CHCl3). IR, ν, cm−1: 1051 (2 × CH2OH), 1280 (NNO2 sym.),
1503 (NNO2 asym.); 1H NMR (DMSO-d6), δ: 0.78 (s, 3H, CH3C), 3.26 (m, 4H, 2 × CH2OH),
3.38 (s, 3H, CH3NNO2), 3.78 (s, 2H, CH2NNO2), 4.62 (t, J = 5.0, 2H, 2 × OH). 13C NMR
(DMSO-d6), δ: 17.34 (CH3C), 40.6 (NCH3), 43.1 (tC), 55.6 (CH2N(NO2)), 64.5 (CH2OH).
Found %: C 40.53; H 8.11; N 15.97. C6H14N2O4. Calculated %: C 40.44; H 7.92; N 15.72.

2-Methyl-2-(methyl(nitramino)methyl)propane-1,3-diyl bistosylate (9). Compound
8 (1.6 g, 8.53 mmol) in pyridine (10 mL) was cooled in an ice–salt bath. To this solution,
TsCl (4.78 g, 25 mmol) was added at 0 ◦C. After addition, the reaction mixture was stirred
for 30 min at 0 ◦C, allowed to warm to room temperature with stirring and then left for
3 days. The mixture was diluted with conc. HCl (25 mL) in an ice–salt bath. The resulting
aqueous solution was removed from the sticky solid precipitate, which was dissolved in
CH2Cl2 (20 mL). The organic solution was washed with water (2 × 10 mL), saturated
Na2CO3 (2 × 5 mL) and water (3 × 5 mL), dried over Na2SO4, filtered, concentrated by
rotary evaporation, and purified by recrystallization (EtOH) to afford colorless solid 9
(3.58 g, 86.2%): mp 96–97 ◦C. IR, ν, cm−1: 1179 (-O-SO2-), 1361 (-O-SO2-), 1280 (NNO2
sym.), 1512 (NNO2 asym.). 1H NMR, (DMSO-d6), δ: 0.85 (s, 3H, CH3C), 2.44 (s, 6H, CH3Ar),
3.23 (s, 3H, CH3NNO2), 3.77 (s, 2H, CH2NNO2), 3.88 (q, J = 9.8, 4H, 2CH2OTs), 7.49 (d,
J = 8.2, 4H, Ar), 7.74 (d, J = 8.3, 4H, Ar). 13C NMR (DMSO-d6), δ: 16.5 (CH3C), 21.1 (CH3Ar),
40.9 (CH3NNO2), 41.2 (tC), 55.6 (CH2NNO2), 71.3 (CH2OTs), 127.6 (Ar), 130.2 (Ar), 131.7
(Ar), 145.2 (Ar). Found %: C 49.41; H 5.40; N 5.66. C20H26N2O8S2. Calculated %: C 49.37;
H 5.39; N 5.76.

N-(3-Azido-2-(azidomethyl)-2-methylpropyl)methylnitramine (10). To a solution of
sodium azide (11.05 g, 170 mmol) in DMSO (120 mL) was added compound 9 (27 g,
55.5 mmol). The resulting solution was then left to stir at 110 ◦C for 8 h. The reaction was
then cooled to room temperature, and water (250 mL) was added slowly. The resulting emul-
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sion was extracted with a mixture of ethyl acetate/petroleum ether (1:2, 4 × 80 mL). The
organic layers were combined, washed with water (8 × 10 mL) and dried (MgSO4), and the
solvent removed in vacuo to afford a flaxen oil; yield: 12.53 g (54.9%); d4

19 = 1.2622 g cm−3;
nD

22 = 1.5268. IR, ν, cm−1: 1279 (NNO2 sym.), 1514 (NNO2 asym.), 2104 (N3); 1H NMR
(DMSO-d6) δ: 0.94 (s, 3H, CH3C), 3.36 (s, 3H, CH3NNO2), 3.42 (s, 4H, 2 × CH2N3), 3.77 (s,
2H, CH2NNO2). 13C NMR (DMSO-d6), δ: 19.2 (CH3C), 41.8 (CH3NNO2), 42.3 (tC), 56.0
(CH2N3), 57.3 (CH2NNO2). 14N NMR (DMSO-d6), δ: −26.9, −134.2, −174.8. Found %: C
31.99; H 5.08; N 47.93. C6H12N8O2. Calculated %: C 31.58; H 5.30; N 49.10.

1,3-Diazido-2-nitroxypropane (13). At −10 ◦C, a solution of compound 12 (8.78 g,
61.8 mmol) in CH2Cl2 (12 mL) was added dropwise slowly to a mixture of nitric acid (98%,
11 mL), acetic anhydride (12 mL) and CH2Cl2 (10 mL). The solution was stirred at −10 ◦C
for 20 min then poured into ice water (80 mL). Organic layer was separated, and water
was extracted using CH2Cl2 (3 × 6 mL). The combined organic layers were then washed
with water (2 × 10 mL), aqueous sodium bicarbonate solution (3 × 10 mL), and water
(2 × 10 mL) again. The organic solution was dried (MgSO4), filtered and evaporated to a
colorless oil; yield: 10.5 g (90.7%); nD

22 = 1.4985. 1H NMR, δ (J, 300.13 MHz, DMSO-d6):
3.74 (ddd, J = 20.3, 13.8, 5.1, 4H, 2 × CH2N3), 5.36–5.49 (m, 1H, CHONO2). Found %: C
19.40; H 2.72; N 52.35. C3H5N7O3. Calculated %: C 19.26; H 2.69; N 52.40.

4. Conclusions

We have described a novel protocol leading to functionalized dialkyl ethers bearing
both azido and nitramino groups. The methodology described is significant as (i) it is
easy to implement and gives targeted products with good to excellent yields; (ii) it uses
commercially available or easy-to-prepare precursors; (iii) the process is scaled to produce
at least tens of grams of products.

All azido plasticizers of this study are more thermally stable, less volatile and have
a more acceptable sensitivity to impact than benchmark nitroglycerin. Most of these
azides have low glass transition temperatures, which makes them attractive as possible
plasticizers of frost-resistant energetic materials. All the studied azides are capable of
self-sustained combustion.

For the selected azides, it is shown that they can be used as plasticizers of NC and
polyethere uretane polymer. With a plasticizer content of up to 70%, the plasticizer–polymer
compositions are in a highly elastic state in a wide temperature range.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27227749/s1. Figures of thermograms for decom-
position in non-isothermal conditions, for relaxation and phase transitions, as well as curves of
decomposition in isothermal conditions, and copies of 1H, 13C and 14N NMR spectra are available in
supplementary information.
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