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Abstract: Epidemiological studies have shown that the consumption of a high-fat diet (HFD) is
positively related to the development of obesity. Lycopene (LYC) can potentially combat HFD-
induced obesity and metabolic disorders in rats. This study aimed to investigate the effect of LYC on
metabolic syndrome and assess its anti-inflammatory and antioxidant effects on the liver and adipose
tissue in rats fed an HFD. Thirty-six male Wistar albino rats were divided into three groups. Group I
(the control group) was fed a normal diet, group II (HFD) received an HFD for 16 weeks, and group III
(HFD + LYC) received an HFD for 12 weeks and then LYC (25 mg/kg b.wt) was administered for four
weeks. Lipid peroxidation, antioxidants, lipid profile, liver function biomarkers, and inflammatory
markers were determined. The results showed that long-term consumption of an HFD significantly
increased weight gain, liver weight, and cholesterol and triglyceride levels. Rats on an HFD displayed
higher levels of lipid peroxidation and inflammatory markers. Moreover, liver and white adipose
tissue histopathological investigations showed that LYC treatment mended the damaged tissue.
Overall, LYC supplementation successfully reversed HFD-induced changes and shifts through its
antioxidant and anti-inflammatory activity. Therefore, LYC displayed a therapeutic potential to
manage obesity and its associated pathologies.
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1. Introduction

Obesity is one of the most significant public health problems affecting populations
worldwide. The concern is not about the extra fat tissue gained but the major health
consequences accompanying obesity, such as dyslipidemia, cardiovascular diseases, type 2
diabetes, hypertension, and certain cancers, contributing to an increased risk of mortality as
well as a reduced life expectancy and nonalcoholic fatty liver disease (NAFLD) [1–6]. Dur-
ing the past decades, experts, policymakers, educators, scientists, and health professionals
have attempted to combat the obesity epidemic by designing efforts and strategies to raise
awareness. Even so, unfortunately, it has been increasing dramatically worldwide [7,8].
The etiology of obesity is complex and involves many factors that interact with one an-
other, such as dietary patterns, sedentary lifestyle, socioeconomic status, genetics, and
psychological profile [3]. Epidemiological studies have demonstrated that eating a high-fat
diet (HFD) is positively associated with the development of obesity. An HFD induces the
overconsumption of calories leading to weight gain and fat accumulation [9].

Obesity: Treatments, Conceptualizations, and Future Directions for a Growing Problem

NAFLD has become one of the leading causes of chronic liver diseases in the industrial-
ized world, with an estimated global prevalence of 25–30%, rising to 90% in morbidly obese
patients [10]. Monitoring of markers of liver function, such as aspartate aminotransferase
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(AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and albumin, and
markers of lipid metabolism such as triglycerides (TG), cholesterol, high-density lipopro-
tein (HDL), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL), as
well as abdominal ultrasound, are the most commonly used methods for assessing various
diseases including NAFLD risk [11–14]. However, since the early stages of NAFLD usually
disclose no apparent symptoms, the prevalence of obesity-driven NAFLD and consequent
morbidity can be considered one of the main health crises of the next decade [8,10,15].

Outside the liver, adipose tissue can secrete various bioactive peptides that pro-
duce multiple effects at local and systemic levels [16–19]. In the NAFLD state, enlarged
adipocytes appear to secrete more adipokines. It has been observed that adipose tissue
secretes about fifty adipokines, which impact inflammation and body weight homeosta-
sis. These include leptin, adiponectin, tumor necrosis factor-alpha (TNF-α), interleukin
6 (IL-6), and resistin [17,18,20,21]. Some markers of oxidative stress and antioxidants have
been studied to assess the redox state in NAFLD. Oxidative stress biomarkers including
lipid peroxides, malondialdehyde (MDA) and nitric oxide (NO) had increased activities
in most NAFLD clinical models [22]. Additionally, NAFLD decreased the activities of
antioxidant markers, superoxide dismutase (SOD) and catalase (CAT) in patients with
NAFLD [23,24]. Plant-based food is classically associated with fighting obesity due to its
macronutrient composition and micronutrients, such as carotenoids [25–27]. Lycopene
(LYC), a red-colored carotenoid, has attracted the interest of nutritionists, medical experts,
and researchers because it can be used in the treatment of various human diseases such as
cancer, diabetes, obesity, cardiovascular disease, and respiratory disease [28–31]. Before
intestinal absorption, ingested LYC is emulsified and solubilized into micelles. They are
contained in chylomicrons for transportation to the liver and secreted into the lymphatic
system. Carotenoids are stored or secreted by the liver in LDL and VLDL in the fed state.
Plasma carotenes are mainly present in LDL in a fasting state. LYC is converted into
apo-10-lycopenoid and apo-lycopenbic acid by carotene 9,10-oxygenase, a mitochondrial
enzyme found in the liver and other organs [32]. These metabolites are transported into
peripheral tissues to perform their biological functions [33,34].

LYC had a protective role in a rat model of NAFLD by lowering liver enzyme levels,
such as AST, ALT, ALP, and albumin, and lipid metabolites such as TG, cholesterol, HDL,
LDL, and VLDL [34–38]. LYC could protect redox homeostasis and inhibit the overpro-
duction of proinflammatory cytokines [39]. Several studies have reported that LYC has
a modulating effect by reducing TNF-α, IL-6, leptin, adiponectin, resistin, and oxidative
stress markers such as MDA and NO. Moreover, studies have also reported that it elevates
the levels of the antioxidant enzymes SOD and CAT in the livers of obese mice [34,40,41].
The present study aimed to consider the potential effect of LYC on controlling obesity and
its adverse sequelae by assessing liver function parameters, lipid profiles, inflammatory
markers, oxidative stress biomarkers, and antioxidant enzymatic activities. Furthermore, a
histopathological study was performed on the liver and white adipose tissue of rats fed
an HFD.

2. Results
2.1. Effect of LYC on Body Weight and Abdominal Fat

The food intake and liver weight index of the HFD group and HFD + LYC rats recorded
a significant decrease (p < 0.05) compared to the control rats. In addition, significant in-
creases were observed in weight gain, abdominal fat, and the abdominal fat index (p < 0.05)
in the HFD and HFD + LYC rats relative to the control rats. Furthermore, HFD + LYC
rats presented a significant decline (p < 0.05) in the abdominal fat index. Additionally, no
significant difference was observed in liver weight between groups (Table 1).
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Table 1. Food intake, body weight gain, liver weight, liver index, abdominal fat, and abdominal fat
index following treatment with LYC (HFD + LYC rats).

Parameters Control HFD HFD + LYC

Food intake (g/rat/day) 29.34 ± 0.35 23.61 ± 0.39 ### 23.26 ± 0.75 ###

Weight gain (%) 58.47 ± 4.62 104.94 ± 8.22 ### 109.29 ± 8.45 ###

Liver weight (g) 11.48 ± 0.30 11.58 ± 0.29 ns 12.32 ± 0.40 NS

Liver weight index (%) 3.12 ± 0.10 2.47 ± 0.06 ### 2.61 ± 0.13 ##

Abdominal fat (g) 4.70 ± 0.52 24.89 ± 2.51 ### 20.33 ± 1.35 ###

Abdominal fat index (%) 1.47 ± 0.20 5.23 ± 0.48 ### 4.02 ± 0.27 ###, *
HFD: high-fat diet group; HFD + LYC: high-fat diet supplemented with lycopene. Data are expressed as the
mean ± SEM (n = 12). Different markers correspond to statistically significant differences between groups at high
significance (## p < 0.01) and very high significance (### p < 0.001) compared with the control; * p < 0.05: significant
difference compared to the HFD group; NS: nonsignificant.

2.2. Effect of LYC on Liver Function Biomarkers

Rats fed an HFD displayed notable elevations (p < 0.05) in AST, ALT, and ALP levels
compared to those who received a normal diet. Meanwhile, the HFD + LYC group showed
no significant difference in the serum level of AST and a notable reduction in ALT and ALP
levels (p < 0.05) compared to the control group. Additionally, HFD + LYC rats showed
a significant decrease (p < 0.05) in AST, ALT levels and no significant change in ALP
levels relative to rats in the HFD group. Further, the serum level of albumin was reduced
significantly in rats fed HFD compared to the control group. There was no significant
change in albumin in HFD + LYC rats compared to the control and HFD groups (Figure 1).

Figure 1. Serum levels of liver function biomarkers AST, ALT, ALP, and albumin following treatment
with LYC in rats fed an HFD. Data are expressed as the mean ± SEM of two replica (n = 12 rats).
Different markers correspond to statistically significant differences between groups. # p < 0.05,
## p < 0.01, and ### p < 0.001 indicate significant, highly significant, and very highly significant
compared with the control, respectively. ** p < 0.05 and *** p < 0.001 indicate a highly significant and
a very highly significant difference compared to the HFD group, respectively. ns: nonsignificant.
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2.3. Effect of LYC on Lipid Profiles

Marked rises (p < 0.05) were noticed in serum levels of TG, cholesterol, and VLDL.
However, there was no significant change in the level of HDL and LDL in rats submitted
to an HFD compared to those fed a normal diet. TG and VLDL serum levels showed
notable elevations in the HFD + LYC group compared to the control group. There was no
significant difference in the serum level of cholesterol in the HFD + LYC when compared
to rats on a normal diet. A significant increase (p < 0.05) in the serum level of HDL was
observed in the HFD + LYC group compared to the control and HFD groups. In contrast,
no statistically significant difference was noted in the HFD group compared to the control
group. Additionally, a significant decrease (p < 0.05) was observed in the serum level of
LDL in HFD + LYC rats compared to rats fed an HFD, although there was no significant
difference in HFD rats compared to the control groups (Figure 2).

Figure 2. Serum levels of lipid profiles: TG, cholesterol, HDL, LDL, and VLDL, following treatment
with LYC in rats fed an HFD. Data are expressed as the mean ± SEM of two replica (n = 12 rats).
Different markers correspond to statistically significant differences between groups. # p < 0.05 and
### p < 0.001 indicate significant and very highly significant compared to the control, respectively.
* p < 0.05 indicates a significant difference compared to the HFD group. ns: nonsignificant.

2.4. Effect of LYC on Inflammatory Biomarkers

Levels of hepatic TNF-α, IL-6, leptin, and resistin exhibited notable increases (p < 0.05)
in the HFD-administered group, while adiponectin was noted to show no significant
difference compared to the control group. Additionally, no significant change was observed
in the TNF-α, IL-6, and leptin of HFD + LYC rats compared to the group fed a normal
diet. However, a remarkable decrease (p < 0.05) was observed in the adiponectin level. A
significant increase in the level of resistin was found in the HFD + LYC group compared to
the group fed a normal diet. A significant decrease was observed in TNF-α, IL-6, and leptin
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levels in the HFD + LYC group. There was no significant change in the hepatic adiponectin
and resistin of the HFD + LYC group compared to HFD rats (Figure 3).

Figure 3. Hepatic levels of inflammatory markers TNF- α, IL-6, leptin, adiponectin, and resistin
following treatment with LYC in rats fed an HFD. Data are expressed as the mean ± SEM of two
replica (n = 12 rats). Different markers correspond to statistically significant difference between
groups. # p < 0.05, ## p < 0.01, and ### p < 0.001 indicate significant, highly significant, and very
highly significant differences compared with the control, respectively. * p < 0.05 indicates a significant
difference, while *** p < 0.001 indicates a very highly significant difference compared to the HFD
group. ns: nonsignificant.

2.5. Effect of LYC on Hepatic Oxidative and Antioxidant Status

As shown in Figure 4, there was a significant increase (p < 0.05) in the level of MDA
in HFD rats. There was no significant change in NO, SOD, and CAT levels compared to
the normal control group. Likewise, there was no statistically significant change in the
MDA, NO, SOD, and CAT levels in the HFD + LYC group compared to the normal group.
Further, a notable decrease (p < 0.05) was observed in the level of MDA in the liver of the
HFD + LYC group, while no statistically significant difference was shown in the level of NO
compared with the HFD group. However, HFD + LYC rats exhibited marked antioxidant
effects as witnessed by increases (p < 0.05) in the levels of SOD and CAT compared with
the HFD group.



Molecules 2022, 27, 7736 6 of 16

Figure 4. Hepatic levels of oxidative stress and antioxidant markers lipid peroxidation (MDA),
nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT) following treatment with LYC in
high-fat diet (HFD) rats. Data are expressed as the mean ± SEM of two replica (n = 12 rats). Different
markers correspond to statistically significant differences between groups. ### p < 0.001: very highly
significant compared with the control. ** p < 0.05 and *** p < 0.001 indicate a highly significant and a
very highly significant difference compared to the HFD group. ns: nonsignificant.

2.6. Histopathological Findings
2.6.1. Liver

The livers of the control group were deep red, moist, shiny, and robust when seen
with the naked eye (Figure 5a). In contrast, yellow necrotic foci, lackluster appearance,
and swelling were observed in the HFD group (Figure 5b). Additionally, in HFD + LYC
rats the liver was a bright red color without yellow necrotic foci (Figure 5c). In H&E-
stained sections, in the HFD and HFD + LYC groups, the periportal area exhibited extensive
steatosis. Hepatocytes contained macrovascular fat vacuoles (MAFVs) and microvascular
fat vacuoles (MIFVs). MAFVs in certain hepatocytes pushed the nucleus to the periphery.
Additionally, a ballooned hepatocyte with a Mallory body was present. Mononuclear
inflammatory cells (ICs) and eosinophils infiltrated the entire zone. Congestion occurred in
the central veins (CVs) and hepatic arteries (Figure 5e,f).

2.6.2. White Adipose Tissue

The white adipose tissue (WAT) in the HFD group had larger fat cells due to the
accumulation of stored fat in the form of lipid droplets that coalesced into a single large
droplet that expanded and covered most of the cytoplasm (Figure 5h). In contrast, the
control group had a normal adipocyte distribution and cell size (Figure 5g). Adipocyte
sizes and histology were also reduced in the LYC cotreated rats, similar to the control group
(Figure 5i).
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Figure 5. Liver gross anatomy and H&E of the control group (a,d), HFD group (b,e), and HFD + LYC
group (c,f). All pictures were taken at 40×magnification. Histological changes in the WAT stained
with H&E in (g) the control group, (h) the HFD group and (i) following treatment with LYC in
HFD-induced obesity in rats, magnification was 20×.

3. Discussion

Obesity is considered a global public health concern; an effort is needed to understand
both the reason behind the rapid increase in its prevalence and its relationship with chronic
diseases. An HFD is often overconsumed which leads to an increased body weight in
mammals [42]. The overproduction of free radicals and oxidative damage have been
associated with developing dyslipidemia and related events; therefore, several studies have
suggested that using natural antioxidants may be beneficial in HFD-related problems. In
this sense, the present study investigated dietary supplementation with LYC in obese rats.
We evaluated hepatic function by measuring liver enzymes and monitored the lipid profiles
of the rats. The responses of inflammatory markers, oxidative stress, and the antioxidant
defense system were also measured.

Obesity in humans is often caused by an imbalance between energy intake and con-
sumption. It is defined by abnormal accumulation of body fat and persistent low-grade
inflammation. In the current study, the feed intake of the HFD group was significantly
lower than that of the control group. However, the increased fat content in the diet con-
tributed to an increase in obesity and relative fat mass. The higher caloric intake in the HFD
group may have promoted weight gain due to the increased fat mass [41]. These findings
are supported by previous studies [43–45].

Consistent with previous findings, rats fed the HFD had significant elevations in
serum AST, ALT, and ALP compared to those fed the standard diet [46,47]. Commonly,
these enzymes are found in large quantities in the cytoplasm or mitochondria of liver
cells, while in hepatopathy, they leak to the bloodstream. The degradation of hepatocyte
membranes and the resulting loss of integrity and permeability may be responsible for
the increased levels of serum enzymes in the HFD group [48,49]. These findings were
confirmed by histopathological examination of the liver, which showed that the HFD group
had centrilobular liver necrosis, balloon-like degeneration, dilated sinusoids with many fat
bodies, hepatocyte vacuolation, and infiltrating lymphocytes [34,50]. In contrast, serum
levels of AST and ALT in HFD rats coprotected with LYC were decreased. According
to a study by Jiang et al. [50], concomitant treatment with LYC at a dose of 20 mg/kg
significantly lowered blood levels of AST and ALT in a rat model of NAFLD. Additionally,
mice fed a high-saturated-fat and high-cholesterol diet supplemented with dried tomato
peel showed consistent results [51]. In addition, albumin levels were considerably lower
in rats fed an HFD compared to the control group. Hepatocytes are primarily responsible
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for the production of albumin. Therefore, its decrease in serum is a marker for liver
disease [41,52–55]. The decrease in serum albumin could be due to albuminuria, a condition
associated with renal dysfunction caused by abdominal obesity [56,57]. Albumin is an
antioxidant protein that decreases obesity-related inflammatory states. Consequently, the
decrease in albumin levels promotes oxidative stress in obese rats [41,58,59].

The current study showed that rats fed an HFD had drastically altered lipid profiles,
resulting in dyslipidemia in TG, cholesterol, and VLDL levels. This was also reported
by [60–62]. Elevated TG in association with higher levels of LDL and lower levels of HDL
shown in the HFD group is a characteristic of dyslipidemia in obesity. Another significant
finding of our study was that LYC cotreatment resulted in considerable reductions in
LDL levels in conjunction with increased HDL in obese rats. This finding is similar to
that of previous research that found that LYC significantly enhances serum parameters
of lipid metabolism [40,63,64]. Previous research has shown that LYC can affect choles-
terol metabolism in several ways. The HDL metabolic pathway has revealed the main
processes regulating HDL levels in the blood. Lecithin cholesterol acyltransferase (LCAT)
and cholesteryl ester transfer protein (CETP) esterify HDL particles composed of lipids,
proteins, and free cholesterol. In addition, these two proteins regulate the conversion of
TG in VLDL and LDL to cholesterol ester in HDL [65]. McEneny et al. examined the
effect of LYC on HDL-associated inflammation in moderately overweight, middle-aged
individuals. They found that LYC supplementation reduced CETP and increased LCAT
activities in the serum [66]. On the other hand, LYC decreases cholesterol synthesis through
the reduction in 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase activity
and modulation of the LDL receptor and acyl-coenzyme A transferase (ACAT) activity [67].

In addition, elevated levels of inflammatory cytokines TNF- α and IL -6 were found
in the current study. Our results agree with those of [44,68,69]. According to previous
studies, LYC has successfully produced anti-inflammatory effects and a hepatoprotective
effect by lowering cytokine activity [40,70]. Apo-10’-lycopenoic acid, a metabolite of LYC,
significantly reduces liver inflammation in mice fed an HFD by inhibiting the release of
cytokines and lowering TNF, IL-6 and NF-B p65 [71]. Furthermore, increased fat mass in
the present study promoted leptin and resistin levels, which is consistent with the findings
of [72,73]. Leptin controls body weight and energy balance, curbs appetite and is often
called the “satiety hormone” or “starvation hormone”. In an obesity state, leptin levels
are higher, but leptin activity is lower due to leptin resistance. Increased leptin levels also
positively affect the incidence of metabolic syndrome and cardiovascular disease [74]. In
our study, the HFD effectively increased the leptin levels and weight gain, resulting in
hyperleptinemia. Elevated levels indicate leptin resistance, which alters energy expen-
diture and causes lower food intake [75]. LYC coadministration significantly reduced
hyperleptinemia by modulating epididymal fat mass and adipocyte circumference, and by
reducing inflammatory cytokines that may down-regulate leptin in adipocytes [76].

Leptin has recently emerged as a critical link between metabolic responses and inflam-
mation. It is thought that elevated levels of leptin in obese individuals can contribute to
low-grade chronic inflammation, which could lead to degenerative diseases and autoim-
mune reactivity [77]. Our results confirm that body fat mass positively correlates with
serum leptin levels and negatively correlates with adiponectin levels [78]. Adiponectin
secretion inhibited by several factors, including a high level of TNF-α and oxidative
stress [79]. Therefore, our data show decreased adiponectin levels in the HFD group,
associated with increased levels of TNF-α and oxidative stress, confirming the correlation
between adiponectin levels and an inflammatory state [80]. Accordingly, our data indicate
that a high leptin/adiponectin ratio in HFD rats is associated with more elevated inflam-
mation markers. The analysis of the additional proinflammatory adipokines showed that
HFD raised the levels of resistin, and our results are corroborated by reports from other
laboratories [74].

Resistin is a peptide hormone synthesized by mature adipocytes in mice, and by
macrophages and monocytes in humans [81]. It induces and increases IL-6 and TNF-α in
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human monocytes and can directly suppress adiponectin’s anti-inflammatory activities [82].
Resistin secretion is elevated in obesity, and it plays a crucial role in activating inflammatory
M1-type macrophages and synthesizing protective adiponectin in adipose tissue [74]. LYC
coadministration reduced adipocyte hypertrophy in rats fed an HFD. Regarding the effects
of LYC, this result is consistent with previous studies that found oral LYC supplementation
reduced adipocyte hypertrophy in mice [83,84].

Increased metabolic changes in oxidation, the Krebs cycle and oxidative phosphory-
lation are used to fight lipids’ excessive formation in hepatic tissue. Deficient metabolic
adaption, however, leads to excessive ROS production and oxidative stress during an
extended period of overnutrition [40]. The current study showed a significant elevation in
MDA in the HFD group [60,85–87]. Increased levels of MDA and severe lipid peroxidation,
which are essential contributors to the development of oxidative stress and may harm
the integrity of cellular membranes, were seen in the obese state [88,89]. Administering
LYC effectively reduced the oxidative stress caused by obesity and increased antioxidant
reserves. The antioxidant properties of LYC control the production of antioxidant enzymes
such as SOD and CAT while directly scavenging free radicals [90–93]. In vitro studies
show that LYC is two times more effective than β-carotene and ten times more effective
than α-tocopherol in inhibiting singlet oxygen. In addition, it can interrupt the effects
produced by free radicals, including radical peroxides and hydroxyl radicals [90,94,95].
LYC’s chemical composition and liposolubility may be associated with its ability to prevent
diseases such as oxidative stress. It is an important protective factor integrated into cell
membranes. In addition, it contains many double bonds, a characteristic that enhances its
antioxidant capacity [96–98].

A study was conducted on hyperhomocysteinemic Wistar rats receiving lycopene
(5 mg/kg) for three months, which showed a reduction in MDA concentrations indicating
that lycopene could regulate redox imbalances [88], which is consistent with our findings.
In an NAFLD model, SOD and CAT activities were elevated in Sprague Dawley rats after
four-week lycopene (20 mg/kg) treatment, according to [86]. LYC decreases MDA and
increases CAT activity in a rat model of hepatic ischemia and reperfusion [99]. Additionally,
LYC administration in diethylnitrosamine-induced hepatocarcinogenesis in Wistar rats
decreased MDA levels while increasing SOD and CAT activity [100]. In addition, Sheik
Abdulazeez et al. and Imran et al. found that lycopene can reduce oxidative stress in
a Wistar rat model of D-galactosamine/lipopolysaccharide-sensitized liver injury by de-
creasing MDA levels and increasing antioxidant defenses such as CAT and SOD [37,101].

4. Materials and Methods
4.1. Animals and Ethical Statement

A total of thirty-six male albino rats (Wistar strain), weighing approximately 200 ± 10 g
(~7 weeks old), were used in this study. The rats were randomly assigned into three groups,
12 rats per group (with four rats kept in each cage), and kept in a quiet, stress-free envi-
ronment, with a temperature of 20–22 ◦C and humidity of 60%, on a 12 h light/dark cycle.
Rats were supplied with standard pellet chow with free access to tap water for two days
before the experiment for acclimatization. This study was approved by the King Abdulaziz
University’s Ethics Committee (approval No. 518-20) and followed the Animal Care and
Use Committee guidelines at King Fahad Medical Research Center (KFMRC).

4.2. Standard Animal Diet

A standard nutritionally balanced diet was obtained from KFMRC. The diet was
composed of the following ingredients: crude protein 20.0%, crude fat 4.0 %, crude fiber
3.50%, mixed vitamins 1.0%, mixed minerals 3.50%, choline chloride 0.25%. The mixture
was made up to 100% with corn starch, and its energy equaled 2850 kcal/kg. The diet
was purchased from Grain Silos and Flour Mills Organization, KSA. Since protein and
carbohydrate both contain 4 kcal/g, and fat contains 9 kcal/g, the 67.75 g of carbohydrate
in our standard diet provided 271 kcal, the 20 g of protein provided 80 kcal, and the 4 g of
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fat provided 36 kcal. Hence, every 100 g of standard diet produced 387 kcal (271 + 80 + 36),
where 70% of the calories are derived from carbohydrates, 20.6% from protein, and 9.3%
from fat (percent by calorie).

4.3. Preparation of the High-Fat Diet (HFD)

DL-methionine, vitamins and mineral mix were added to overcome the limitation of
casein and prevent vitamin and mineral dilution. For this purpose, a powdered normal-
pellet diet (NPD) (1000 g), butter (500 g), casein (125 g), DL-methionine (3 g), and vitamin
and mineral premixes (50 g) were thoroughly mixed to produce 1678 g of HFD. Since each
1000 g of NPD contained 677.5 g of carbohydrate, 200 g of protein, and 40 g of fat, by adding
the above compounds to this base, the final amounts of fat, protein, and carbohydrate
reached 540 g, 325 g, and 677.5 g, respectively. To acquire the weight percentage, if 1678 g
of our HFD contains 540 g of fat, 325 g of protein, and 677.5 g of carbohydrate, then
100 g of this HFD would hence have 32.181 g of fat, 19.368 g of protein, and 40.375 g of
carbohydrate [102].

4.4. Preparation of LYC

LYC (purity 98%, Xian Tongze Biotech Co., Ltd., Shanxi, China) was mixed with
sunflower oil and stored at 4 ◦C in the dark until use. The tomato oleoresin–sunflower oil
mixture was stirred for 20 min in a water bath at 37 ◦C before being fed to the animals. The
dose of LYC was selected according to [103–105].

4.5. Experimental Design

The rats were divided into three groups, each with 12 rats:
Group I received a normal diet during the whole experimental period (12 weeks), and

then, the rats were gavage-fed sunflower oil (~2 mL/kg /B. W/day) for the remaining
four weeks.

Group II received the HFD during the whole experimental period (12 weeks), and then
the rats were gavage-fed sunflower oil (~2 mL/kg/B.W/day) for the remaining four weeks.

Group III received the HFD throughout the experimental period (12 weeks) and then
the rats were gavage-fed LYC (25 mg/kg/B.W/day) for the remaining four weeks. The
weights of all rats from different groups were recorded during the experiment.

4.6. Sampling and Tissue Preparation

At the end of the experimental period, all rats fasted for 10 h, water was not con-
strained, and then blood samples were drawn under the effect of isoflurane inhalation
anesthesia from the retroorbital venous plexus of the eyes into clean gel tubes. Blood
samples were centrifuged at 3000 rpm for 15 min to separate serum and then divided into
several aliquots and stored at −20 ◦C for biochemical analysis (Kilany et al., 2020). After
that, the rats were sacrificed by an overdose of isoflurane. Each rat’s liver and adipose tissue
were immediately enucleated, washed with buffered saline (0.9% NaCl solution), blotted
with filter paper, and then weighed. A part of the liver and adipose tissue was immersed in
a 10% paraformaldehyde solution for histopathological investigations. The remaining liver
parts were kept at −80 ◦C for liver tissue homogenate preparation to estimate oxidative
stress and antioxidant enzymes [106].

4.7. Serum Biochemical Parameters
4.7.1. Liver Function Tests and Lipid Profile

The serum levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline
phosphatase (ALP), albumin, triglycerides (TG), cholesterol, and high-density lipoprotein
(HDL) were determined using standard kit methods using a fully automated COBAS®
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8000 modular analyzer series in the King Fahad Armed Forces Hospital, Jeddah, Saudi Ara-
bia. The levels of LDL and VLDL were assessed according to Friedewald’s equation [107]:

LDL = TC-HDL − (TG/5)

VLDL = TG/5

4.7.2. Determination of Inflammatory Markers

The serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), leptin,
adiponectin, and resistin were assayed using Cat. No: SEKR-0009, Cat. No: SEKR-0005,
Cat. No: SEKR-0051, Cat. No: SEKR-0063, and Cat. No: 0092 (Solarbio, Maju Bridge Town,
Beijing, China), respectively.

4.8. Oxidative Stress Markers

To assess biomarkers for oxidative stress, malondialdehyde (MDA) and nitric oxide
(NO) levels were measured using Cat No: BC0025 and Cat. No: BC1475 (Solarbio, Maju
Bridge Town, Beijing, China), respectively.

4.9. Antioxidant Enzymatic Activities

Superoxide dismutase (SOD) and catalase (CAT) activities were determined using Cat
No: BC0175 and Cat. No: BC0205 (Solarbio, Maju Bridge Town, Beijing, China), respectively.
The procedures of 2.6.2, 2.7, and 2,8 were determined using ELISA kits followed according
to the manufacturers’ enclosed pamphlet.

4.10. Histological Examination

Histological examinations were performed to evaluate the liver and fat deposition
within the white adipose tissue. For this purpose, liver and adipose tissues were fixed in
a 10% paraformaldehyde solution and then embedded in paraffin. The embedded tissue
samples were sectioned (5 µm) and stained with hematoxylin and eosin (H&E) to examine
general histological features.

4.11. Statistical Analysis

GraphPad Prism 9 was used to analyze all data, presented as the mean ± standard
error of the mean. All data were compared between the groups using a one-way analysis
of variance (ANOVA) and Tukey’s post hoc test. A value of p < 0.05 was used to determine
statistically significant differences between groups.

5. Conclusions

In this study, we found that HFD consumption was associated with weight gain, fat
accumulation in the abdomen and liver, elevated liver enzymes, dyslipidemia, and distur-
bances in the assessed inflammatory and oxidative stress parameters. The administration
of LYC ameliorated the development of these abnormalities by restoring the levels of TG,
cholesterol, HDL, LDL, and VLDL. In addition, treatment with LYC improved inflam-
mation by lowering inflammatory biomarkers TNF-α, IL -6, and leptin. The reduction
in MDA levels indicated an improvement in the lipid peroxidation status. Nevertheless,
supplementation of LYC increased the activities of antioxidant enzymes, including CAT
and SOD, in the livers of obese rats. Additionally, LYC amended obesity-induced hepatic
injury. Histopathological examination of the adipose tissue and liver showed the ame-
liorative effect of lycopene, as evidenced by a reduction in adipocyte size and lower fat
accumulation in the liver. Overall, the present study suggests that treatment of obese rats
with LYC protected the body from the harmful effects of an HFD through its antioxidant
and anti-inflammatory properties. Further studies on the effect of LYC on other HFD com-
plications such as diabetes, cardiovascular disease, and kidney failure are recommended.
Additionally, since obesity is caused by a defect in fat metabolism, it would be interest-
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ing to conduct more studies on the organelles responsible for lipid metabolism such as
mitochondria and peroxisomes.
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