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Abstract: The importance of the circadian clock in maintaining human health is now widely acknowl-
edged. Dysregulated and dampened clocks may be a common cause of age-related diseases and
metabolic syndrome Thus, circadian clocks should be considered as therapeutic targets to mitigate
disease symptoms. This review highlights a number of dietary compounds that positively affect
the maintenance of the circadian clock. Notably the polymethoxyflavone nobiletin has shown some
encouraging results in pre-clinical experiments. Although many more experiments are needed
to fully elucidate its exact mechanism of action, it is a promising candidate with potential as a
chronotherapeutic agent.
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1. Introduction—Circadian Clock

The 24 h rotation of the earth along its axis exposes all terrestrial organisms to light
and dark cycles as well as to daily temperature fluctuations. In this environment, having a
mechanism that can anticipate these changes instead of merely responding, provides an
evolutionary advantage. Hence, an endogenous ~ 24 h circadian clock (from the Latin
circa diem meaning ‘about a day’) allows an organism to coordinate physiological activities
according to cycling changes in the environment, food availability and predator risk [1].
Although initially observed in plants by Jean Jacques d’Ortous de Mairan (1729), the first
genetic proof of circadian clock existence was made in 1971 by Konopka and Benzer who
isolated the first arrhythmic Drosophila melanogaster mutants [2]. Fifteen years later, the
period gene (per) was cloned in fruit flies [3] and another ten years later, the second circadian
gene timeless (tim) was identified in fruit flies and soon thereafter also in mice [4,5]. Hall,
Rosbash and Young, who were awarded the Nobel prize for physiology and medicine in
2017, elegantly demonstrated that the circadian rhythmicity is generated and sustained
by transcriptional and translational feedback loops in which PER/TIM complexes inhibits
their own CLOCK:CYCLE (CLK/CYC) activators [6-8]. A second interconnected feedback
loop made by vrille and Pdple (Par domain protein 1¢) sustains rhythmic transcription of
clk, thus enhancing the stability of both cycles [9]. This model, initially described in fruit
flies, was shown to be highly conserved across the kingdoms ranging from cyanobacteria
and plants to insects and humans, although the function of some genes may have diverged
between organisms [10]. In mammals, the CLOCK:BMAL1 heterodimer activates Per and
Cryptochrome (Cry) transcription. Then, as in Drosophila, the PER:CRY complex translocates
back to the nucleus to repress its transcription via CLOCK:BMALL interaction [11]. This
primary negative feedback look is sustained by a second regulatory loop in which BMALL1
cyclic expression is maintained by the ROR («,  and v) activator and REV-ERB («x and
() repressor proteins [12] (Figure 1). Approximately 24 h are required to complete a full
circadian cycle but several posttranscriptional and posttranslational events finely regulate
these oscillators [13]. For example, casein kinase 1¢/6 (CK1e/9), plays a fundamental role
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in the establishment of a new circadian cycle by phosphorylating PER and CRY. Upon PER
and CRY degradation by the 26 S proteasome complex, the suppression of CLOCK:BMAL1
activity is released allowing the cycle to start again [14]. Large gene expression profiling
analyses have allowed the identification of several circadian-output genes [15,16]. While
roughly 50% of genes in mammals show a level of circadian expression, researchers have
highlighted that their profiles exhibit tissue-specific rhythms [17]. Strikingly, clocks have
shown to regulate a multitude of pathways within the cells including their epigenetic profile,
phosphorylation and metabolic profiles, and the microbiome in the organism [18-22].
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Figure 1. Main feedback loops regulating the circadian clock.

In mammals, as in other multicellular organisms, virtually all tissues possess circa-
dian oscillators, making the system organisation highly complex. The light-entrainable
pacemaker is in the suprachiasmatic nucleus (SCN) of the hypothalamus and its function
is to synchronize peripherical clocks. While all these oscillate within a period close to
24 h, it is essential that they are synchronized with the external environmental conditions.
Hence, the key function of the SCN clock is to receive environmental light information by
retinohypothalamic track and synchronize other molecular oscillators, both within the SCN
and in peripheral organs [23]. While the synchronization signal is transmitted by neuro-
transmitters and neuropeptides within the brain regions, hormonal secretion and neural
innervation are used to synchronize the peripheral tissues [24]. Melatonin and glucocorti-
coids (Figure 2) are two examples of the manifestation of the circadian clock in mammals.
Light information received from the SCN is transmitted to the pineal gland for nocturnal
melatonin secretion. Circulating melatonin can entrain peripherical clocks interacting
with molecular clock mechanisms acting as a signal for the dark phase of the photope-
riod [25]. In the adrenal glands, the secretion of the hormone glucocorticoid—regulating
glucose homeostasis—is also under circadian regulation. Indeed, cortisol concentration
levels peak during the morning and during active periods in diurnal organisms, while its
concentration is reduced during the sleeping phase [26]. While photic cues are the main
circadian synchronisers for the SCN pacemaker, other non-photic zeitgebers such as arousal
stimuli (e.g., social interaction or exercise), food/feeding regimes and temperature can
also act as cues in the peripheral clocks. Moreover, in this complex network, a hormone
and metabolic signal-based bi-directional communication exists between the SCN and
non-SCN oscillators, providing plasticity to the system and optimal adaptation to the
environment [27,28].
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Figure 2. Key hormones regulating circadian rhythms. 1 = melatonin, 2 = corticosterone.

Due to the impact of circadian oscillators on the physiology and behaviour of organ-
isms, their dysregulations and disruptions are associated with the development of diverse
pathologies. In mouse models, mutations or deletions in core circadian genes (e.g., BMAL1)
cause increased levels of glucose and lipids, leading to premature ageing [29]. Interest-
ingly, BMAL1 downregulation leads to tissue-specific dysfunctions causing metabolic and
triglyceride biosynthesis impairments in the muscle, or obesity when knocked-down in
adipose tissue [30,31]. Similarly, surgical removal of the SCN is linked to the onset of
tumour growth and alteration in the microbiota and immune cells, in the intestine of mouse
models [32,33]. In humans, one of the major contributions to circadian disorders is the
misalignment between the endogenous clock and the environmental rhythms (such as
the day-night cycle). Artificial light, shift work, travel and social lags are all clock mis-
alignments introduced by the modern lifestyle. For example, night shift workers show
an increased risk to develop several types of cancer, cardiovascular and metabolic disor-
ders, psychiatric disorders, obesity and type-2 diabetes [34-36]. Traveling across multiple
time zones, causes circadian rhythm desynchronization which ultimately leads to changes
in sleep architecture, mood, hormone profiles, and gastrointestinal dysfunctions [37]. A
great proportion of the teenage population experience social jet lag in which a variation
in sleep pattern is observed between school/work days versus school/work free days.
Notably, social jet lag is associated with an elevated consumption of alcohol and tobacco,
as well as a higher incidence of obesity, diabetes, cancer, and cardiovascular disease [38,39].
Because circadian clocks regulate several cellular mechanisms such as oxidative stress,
inflammation, neurotransmitter biosynthesis and metabolism, they have been linked to
the development and progression of human neurodegenerative disorders [40]. While at
present, the bi-directional relation between circadian disruption and neurodegeneration is
not fully understood, evidence indicates that desynchronization of the clock over a lifetime,
enhances the deposition of misfolded protein aggregates in Alzheimer’s and Parkinson’s
diseases [41]. Moreover, in humans, single-nucleotide polymorphisms in core clock genes
(e.g., CLOCK, BMAL1 and PER1) have been shown to increase the risk of Alzheimer’s and
Parkinson’s Disease development [42].

Considering the importance of these oscillators, they are becoming novel therapeutic
targets for the prevention or treatment of several pathologies. While these clocks can be
enhanced and stabilised by non-invasive strategies such as phototherapy, restricted diet
and exercise [43], synthetic and natural compounds are future candidates in circadian
medicine, to help improve clock-regulated processes and treat clock misalignment diseases.

2. Effects of Natural Products on Circadian Rhythm

Phytochemicals, compounds derived from plants, have been known to influence
a wide range of pharmacological processes. Many phytochemical compounds, such as
flavonoids, alkaloids, polyphenols and melatonin, have been reported to have a regulatory
effect on expression of genes linked to the circadian clock, and are thus expected to play a
role in regulating the internal environment [44]. Flavonoids (Figure 3) in particular raised
interest as compounds that may affect circadian rhythm and diseases related to appropriate
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regulation of circadian rhythm [45]. In spite of a wealth of information showcasing the role
of flavonoids in various disease states, very little work has been done so far to specifically
ascertain the effects of these molecules on the circadian physiology. Nevertheless, these
studies are a rich source of information, and help us understand the significant role played
by flavonoids in modulating different circadian systems. A flavonoid-rich fraction of the
plant Cyclocarya paliurus was shown to have modulatory effects on both the liver clock
genes as well as intestinal microbiota in a circadian rhythm disorder mice model. A robust
rhythmic expression in most liver clock genes was observed, mainly Clockl, Per1, Per2,
Per3, Bmall, Sirt1, Cryl and Cry2 over a 24 h period. Analysis of the plant extract showed
kaempferol-3-O-f-glucuronide as the predominant flavonoid, with kaempferol-3-O-«-L-
rhamnopyranoside, quercetin and quercetin-3-O-glucoside (isoquercitrin) found in varying
proportions [46]. Other studies investigating the effect of flavonoids on circadian rhythms
in different mice models showed similar outcomes [47-50]. Most flavonoids have poor
bioavailability in mammals, and merely pass through the digestive tract to be metabolised
by intestinal microbes in the colon. Therefore, some authors leave open the option that
flavonoids may not directly affect mammalian physiology but do so indirectly by altering
the gut microbiota which then, in turn, produce metabolites that affect the mammalian
circadian system [46,50]. The concept of the gut-brain axis is intriguing and attracting
increasing interest, though much still remains to be further explored.

Figure 3. Flavonols and flavones 3 = Kaempferol, 4 = Quercetin, 5 = Isorhamnetin, 6 = Myricetin,
7 = Baicalein, 8 = Luteolin, 9 = Silybin A.

Interestingly, mutations that alter Arabidopsis flavonoid metabolism, concomitantly
affect the plant’s circadian clock [51]. This indicates that flavonoids can affect circadian
rhythms in both the animal and plant kingdom, which may be seen as further confirmation
that the mechanism of the circadian clock is highly conserved. Some flavonoids and their
effects on the circadian variations are expanded on below:

The bioflavonoid quercetin has a significant effect on the sleep-wake cycle in male
Sprague Dawley rats [52]. When sleep-wake states were classified as wakefulness, rapid eye
movement (REM) sleep and non-REM sleep, a post hoc analysis of the rat’s diurnal cycle
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after quercetin administration (200 mg/kg) showed a notable decrease in REM sleep during
the first three hours, an effect which was seen almost immediately. Additionally, a decrease
in wakefulness and increased non-REM sleep during the last four hours were observed. The
proposed pathway through which quercetin exerts its effects was the GABAergic pathway
and GABA-independent mechanisms. Similarly, baicalein, a flavonoid found in Scutellaria
baicalensis, affects the same pathway. It was shown to promote increase in sleep time via
GABAergic non-benzodiazepine sites in mouse brains [53-55].

Quercetin further showed anti-metastatic activity against light/dark shift-induced
metastasis in BJ]MC3879Luc2 mouse breast cancer cells transplanted into BALB/c mice [56],
and was proven to affect circadian clock and age-related genes in fibroblast cells [57].and
The flavonol is thought to have anti-obesity activity through the adenosine monophosphate-
activated protein kinase (AMPK) signalling pathway [58], a pathway also known to be
influenced by variations in the circadian clock [59]. Ditto, in mice (—)-epigallocatechin-3-
gallate (EGCG), the major catechin found in green tea, appeared to regulate cell signalling
pathways in the central nervous system (CNS) that are linked with diurnal rhythms.
However, there was a lack in the diurnal rhythmic expression of the core clock genes Bmall
and Clock in the hypothalamus [60]. Similar studies reported AMPK-mediated ameliorative
effects of EGCG in liver hepatocytes (HepG2 cells) [61].

Furthermore, the regulatory effect of EGCG on the circadian clock metabolic disorders
resulting from a high-fat/high-fructose diet was evaluated, and it was observed that
EGCG administration improved the diet-dependent decline in circadian function via the
Sirt1-PGClaloop [48,62].

Dietary proanthocyanidins (Figure 4) are the most abundant flavonoids in the Western
diet. They have been found to have numerous beneficial effects on different diseased-
states [63], and have also been proven to have a regulatory effect on glucose and lipid
metabolism within the liver by adjusting the circadian rhythm via the modulation of Nampt
gene expression, Bmall acetylation and influencing NAD levels. Acute administration of a
grape seed proanthocyanidin extract (GSPE) to male Wistar rats resulted in an increased
expression pattern of the core clock genes, whereas a decrease in Nampt protein and mRNA
levels was observed 3 h after administration [64]. In addition, GSPE treatments altered the
oscillations of some plasma metabolites while no change in nocturnal melatonin levels was
observed at ZT3 [65,66].
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Figure 4. Catechins: 10 = catechin, 11a = Epicatechin, 11b = Epigallocatechin, 12a = Epicatechin
gallate, 12b = Epigallocatechin gallate (EGCG) Proanthocyanidins are di-, tri, tetra-, or oligomers of
these units.
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Discussed above are the most commonly occurring flavonoids which have been re-
searched for their effect on the circadian cycle. However, the effect of other less-abundant
flavonoids cannot be ignored. One of such is luteolin, a compound known to have neuro-
protective ability [67] in diseases such as Alzheimer’s and epilepsy. This flavone also has
the ability to promote sleep in male C57BL/6 mice [68]. In particular, oral administration of
3 mg/kg of luteolin, increased sleep durations up to 64.8 £ 1.2 min. An increase in NREM
sleep by about 16.7% and decreased wake time by 40.9% was also reported.

Silybin A from Silybum marianum, was also shown to modulate the circadian clock by
disrupting the CRY1-CLOCK interaction [69]. Additionally, Myricetin, known for its more
hydroxylated structure and increased biological activity [70,71], significantly decreased
serum melatonin levels and locomotor activity in nocturnal rats, by inhibiting the enzyme
serotonin n-acetyltransferase [72]. In addition, Isorhamnetin has also been shown to affect
circadian rhythms of DNA synthesis in the human oesophageal Eca-109 cell line [73].

3. Effects of Nobiletin Circadian Rhythm and Metabolism

Nobiletin (Figure 5) is a polymethoxy flavone that almost uniquely accumulates in the
peel of Citrus fruits. Dried citrus peel, known as Citri Reticulatae Pericarpium or Chenpi in
Chinese has traditionally been used to promote the circulation of gi (energy) throughout the
body. The concept of ‘qi’ does not translate easily into western concepts of pharmacology,
but Chenpi is used to sooth emotions including anger and irritability, and to supplement
treatment of indigestion, and abdominal fullness through promotion of gastrointestinal
motility [74].

Figure 5. Nobiletin.

A considerable body of work, done at the Department of Biochemistry and Molecular
Biology of the University of Texas Health Science Center at Houston, has indicated that
nobiletin can have a beneficial effect on human metabolism and acts through modulation
of circadian clocks. Using a high-throughput chemical screening assay, based on fibroblasts
expressing a PER2::Luc reporter gene construct [75,76], nobiletin was identified as a par-
ticularly effective clock amplitude-enhancing small molecule. Moreover, the assay shows
that this flavone can directly affect the mammalian circadian system [44,77]. Furthermore,
pharmacokinetic studies revealed significant brain and systemic exposure to nobiletin is
feasible after oral administration [44]. We might speculate that this lipohilic flavone with its
planar structure may mimick the activity of corticosterone (Figure 1), much like flavonoid
phytoestrogens are known to mimick the activity of gonadocorticoids.

In high-fat diet-induced obese mice, treatment with nobiletin (200 mg/kg body weight
via oral gavage every other day, for 10 weeks), significantly diminished body weight gain
relative to the control group. In circadian clock-impaired Clock?!%/A1 mutant mice that
had been fed a high-fat diet, nobiletin treatment only resulted in a very modest reduced
body weight. Throughout the circadian cycle, wild-type mice treated with nobiletin showed
increased oxygen consumption compared with the controls, with the largest increase found
in early dark phase; no such increase was observed in the ClockA19/A19 mytant mice [44].
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Mice raised on a high-fat diet showed a build-up of intramuscular fat which in turn
can impair energy homeostasis, partly as a result of a declined mitochondrial function.
In addition, behavioural changes can be seen in the animals, e.g., reduced activity in
circadian wheel-running assays [78]. If the mice were fed the same high-fat diet but with
an added 0.1% nobiletin, fat accumulation in the muscle tissue was decreased and the
animals were more active, showing circadian behaviour with clear increased activity at
dawn and dusk [79]. Further mechanistic studies were done on skeletal muscle tissue
isolated from mice, and on the mouse myoblast cell line C2C12. The data indicated
that nobiletin activated mitochondrial OXPHOS gene expression [80] and in addition,
nobiletin enhanced mRNA expression levels of mitochondrial glutathione peroxidase 1
(Gpx1) and thioredoxin 2, two enzymes that limit the build-up of reactive oxygen species
(ROS), which are by-products of mitochondrial activity. Crucially, when Ror-a, Ror-,
or Ror-a/y genes were inactivated using CRISPR-guided DNA, cells failed to respond
to nobiletin [80]. Further involvement of the circadian clock with mitochondrial activity
in skeletal muscle was found following the metabolism of cardiolipin, a phospholipid
that is critical for mitochondrial membrane structure and for integrity of mitochondrial
respiratory chain complexes. Expression of the genes involved in cardiolipin biosynthesis
shows circadian oscillation regulated by RORs; in aged muscle cells, as in Ror-deficient
C2C12 cells, expression of Taz and Ptpmt] was disrupted or diminished. Nobiletin could
partially restore transcription of these genes [81].

Skeletal muscle is the largest, mitochondria-rich metabolic organ and plays a key
role in activity, thermogenesis, and overall energy homeostasis. However, other metabolic
processes, like the urea cycle in the liver, are also controlled by the circadian clock. Nobiletin
(200 mg/kg p.o. every other day) significantly lowered serum ammonia levels in mice
that had been fed a high -protein diet. In the circadian clock-impaired mouse mutant,
Clock®19/A19 | the restorative effect of nobiletin was markedly reduced [82]. Further, in
a murine Alzheimer’s disease model, real-time qPCR analysis revealed that nobiletin
supplementation (0.1% in the normal diet) increased expression of several core clock
genes in the mouse cerebral cortex, notably Bmall, Npas2 (a paralogue of clock), and Ror-a.
Additionally, nobiletin activated various clock-controlled metabolic genes that are involved
in insulin signalling and mitochondrial function. Thus, the flavone normalized exaggerated
respiratory activity that is a symptom of Alzheimer’s. The normalizing effect was especially
seen during the late dark phase in circadian cycle [83].

Using the PER2::Luc reporter gene expressed in transgenic mice, it could be shown
that in the control group, PER2 activity gradually increases over the course of a day with
a peak at midnight; no such PER2 circadian variation was observed in genetically obese
mice that had developed hepatic steatosis. In lipid-laden PER2::LUCIFERASE reporter
macrophages, nobiletin restored PER2 amplitude. Consistent with these in vitro properties,
RT qPCR data showed that nobiletin significantly upregulated expression of Clock and
Dbp (a circadian clock related transcription factor) in obese mice [84]. The clock-enhancing
properties of nobiletin have been postulated to make the polymethoxy flavone a promising
candidate for the treatment of postoperative cognitive dysfunction. Doses of 50 mg/kg
body weight for 7 consecutive days dramatically down-regulated mRNA levels of Bmall,
Rev-erba, Rora, Rory, and Per2 and simultaneously attenuated neuroinflammation and
cognitive impairment [85].

Intestinal L cells respond to food intake by secretion of the incretin hormone glucagon-
like peptide-1 (GLP-1). In rodents, the cells are under circadian regulation, with response
being greater at the onset of the dark/feeding period as compared to the light/fasting
period. In humans too, responses vary by time-of-day. High-fat diet in rodents causes a
loss of the circadian rhythm in the GLP-1 secretory response, an effect that is ameliorated
by nobiletin application (0.3% w/w with food). In vitro experiments with male colonic
murine (m) GLUTag L cell line (a model of the intestinal L cell) confirmed suppression
of clock genes by palmitate which was ameliorated by nobiletin (20 pM) treatment [86].
Similarly, primary cultured mouse hepatocytes treated with palmitate were used as a model
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for fatty liver and insulin resistance. As in the GLUTag L cell line, palmitate treatment
resulted in dampened daily oscillations of circadian clock genes Cry2, Per2, Rev-erbax and a
concomitant disturbance glycolipid metabolism and reduced insulin sensitivity. Treatment
with rather high concentration of nobiletin (200 uM) restored clock gene activity to normal
levels [87]. The hepatic lipid metabolism imbalance was ameliorated via modulation of the
AMPK-Sirt1 signalling pathway, similar effects had been reported previously for quercetin
and EGCG [58,61].

Circadian clocks in pancreatic islets derived from type-2 diabetic human donors were
shown to display a dampened amplitude and altered synchronization properties. No-
biletin (20 uM) was shown to boost the amplitude of circadian gene expression in cultured
pancreatic islets, with a concomitant increase in insulin secretion [88]. Overexpression of
Bmall in transgenic 3-Bmal1®V mice resulted in enhanced amplitudes of circadian clock in
pancreatic islets and increased glucose-stimulated insulin secretion (GSIS). Transgenic mice
were protected against obesity-induced glucose intolerance. Administration of nobiletin
(10 uM) to Per2!"*/+ Ins1GFP/+ double transgenic isolated islets in vitro, showed that the
flavone enhanced the amplitude of Per2-driven luciferase oscillations and augmented GSIS.
Nobiletin did not augment GSIS in islets from mice that were lacked Bmall (B-Bmall~/~
transgenic mice) [89].

4. Conclusions and Future Prospects

The importance of the circadian clock in maintaining human health is now widely
acknowledged. Dysregulated and dampened clocks may be a common cause of age-
related diseases—hearing loss, cataracts and refractive errors, back and neck pain and
osteoarthritis, chronic obstructive pulmonary disease, depression and dementia—and
metabolic syndrome—the combination of diabetes, hypertension and obesity, which in turn
creates an increased risk of getting coronary heart disease, stroke and other conditions that
affect the blood vessels. Thus, circadian clocks should be considered as therapeutic targets
to mitigate disease symptoms. Clock-enhancing small molecules as novel preventive and
therapeutic agents is an area wide open for exploration [90].

Chrononutrition may become a discipline in its own right, e.g., dedicated to the
identification of dietary chronobiotics that can prevent or ameliorate chronic diseases and
that can help with healthy ageing [91,92]. At present, there is scientific consensus that a
diet rich in fruits and vegetables is key to a prevention of a range of noncommunicable
diseases that are collectively responsible for 74% of all deaths worldwide. However, there
is no agreement on which specific molecule(s) in the diet play the main role. Polyhydroxy
flavonoids have been widely considered, but their generally poor bioavailability makes
it unlikely that they directly affect human homeostasis—though they may act indirectly,
e.g., via the gut-brain axis. The polymethoxy flavone discussed in this review, nobiletin,
has shown some encouraging results in initial in vitro screening, and in further in vivo
pharmacokinetic and pre-clinical experiments. We speculate that nobiletin might partially
mimick the activity of corticosterone. Although many more experiments are needed to
fully elucidate its exact mechanism of action, it is a promising candidate with potential as a
chronotherapeutic agent.
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