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Abstract: G-quadruplexes (GQs) have become valid targets for anticancer studies in recent decades
due to their multifaceted biological function. Herewith, we aim to quantify interactions of potential
heterocyclic ligands (Ls) with model GQs. For seven 4-aminoquinazolines and three 2-heteroaryl
perimidines, seven of this ten-membered group so far unknown, we use routine quantum chemical
modeling. As shown in the literature, a preferred mode of interaction of heterocycles with cellular
structures is stacking to exposable faces of G-quadruplexes. To exploit the energy of this interaction
as a molecular descriptor and achieve the necessary chemical precision, we use state of the art
large-scale density functional theory (DFT) calculations of stacked heterocycles to a GQ. Actually, the
GQ has been simplified for the computation by stripping it off all pentose phosphate residues into
a naked model of stacked guanine quartets. The described model thus becomes computable. The
obtained heterocyclic ligand GQ.L stacking energies, that is, their GQ affinities, are the necessary
ligand descriptors. Using the ligand biological inhibitory activities (IC50) on a human malignant
melanoma A375 cell line, we obtain a good linear relationship between computed ligand stacking
affinities to GQ, and experimental log (IC50) values. Based on the latter relationship, we discuss
a putative mechanism of anticancer activity of heterocyclic ligands via stacking interactions with
GQs and thereby controlling cell regulatory activity. This mechanism may tentatively be applied to
other condensed five- and six-membered small heterocycles as well.

Keywords: nitrogen heterocyclic ligands; G-quadruplexes; stacking interactions; DFT GQ-ligand
affinity vs. IC50 relationship; quantum chemical calculations

1. Introduction

Alkaloids and their chemical analogs have long been among the most popular and
sought organic natural, laboratory, and industrial products for a leading reason—their ben-
eficial physiological activity on human health [1]. Recently, their activity and applications
have increasingly been related to their capability to interact with a particular category of
nucleic acids (NAs)—the four-stranded G-quadruplexes [1]. While not directly involved in
preserving and transferring genetic information, G-quadruplexes have been disclosed as
decisive participants in a plethora of cellular processes such as NA biosynthesis, replication,
transcription, oncogenesis, etc. Telomeres are known sites accumulating G-quadruplexes,
which are essential to their functioning in cell reproduction, aging, genetic stability, and
cancer. A G-quadruplex may inhibit telomerase activity, directly affecting cancer cells and
primary tumors [2]. A G-quadruplex may dissociate telomere-binding proteins, thus lead-
ing to dysfunction and, finally, to apoptosis or senescence [3]. A G-quadruplex interferes
with telomeric replication by impairing replication fork progression [4]. Thus, knowledge
of ligand structures stabilizing G-quadruplexes would allow for the specific design of
heterocyclic systems targeting cancer cell function [1,5].
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The recent decade has seen a number of efforts to quantify the anticancer activities of
a series of selected heterocycles on cultivated cancer cell cultures [1,6,7]. The results of these
efforts outline significant structure-activity trends in a series of quinazoline derivatives [6],
indeno-isoquinoline derivatives, specifically on an isolated MYC-cancer promoter [7], and
more generally in G-quadruplexes of various functions, structures, and sizes, as well as
quadruplex targeting heterocyclic ligands [8–10]. Conversely, the belief that G4-ligands
lack selectivity due to targeting multiple quadruplexes and, thus, many different sites in
the genome still has an important place in the literature [9]. This requires additional efforts
to reduce the effects of variable binding of G4-ligands [9] and references therein), which
remain attractive therapeutic agents nevertheless [10–13]. Moreover, one might consider
a G-quadruplex itself as determining selectivity and attracting whatever (larger size) het-
erocycles to stack to its large G4 plane. In these terms, G-quadruplex selectivity toward
crescent-shaped planar ligand chromophores has repeatedly been noticed [1,8] and ex-
ploited in search of novel anticancer heterocycles [13], even though the terms G-quadruplex
and mechanism of action have not been mentioned together in the latter review [13]. The
pressing demand for all studies of potential anticancer activity is the generalization of
their biochemical pharmacology data in the form of IC50, their structure-dependent activity
information, into the quantitative form [14]. For this purpose, understanding the IC50 of
a ligand as its inhibition constant [15] should possess a value exponentially dependent on
its G4 affinity. The latter quantity is computable theoretically.

We have ventured into the field while discussing the mechanism of biological activ-
ity of some quinazoline derivatives [16]. The latter has inevitably introduced us to the
possible involvement of G-quadruplexes in our problem and the necessity to bring up
adequate computational methodologies to its solution. Traditional molecular mechanics
MM and molecular dynamics MD approaches do not seem capable of bringing sufficiently
accurate results for G-quadruplex structures [17]. The problem is related to insufficient in-
trinsic computing accuracy and numerical noise developing with slow energy convergence
for polyatomic structures of the size of G-quadruplexes [17]. The necessary theoretical
and computational accuracy only looks achievable using large-scale quantum chemical
calculations [17,18]. To reduce the computational problem to reasonable limits and im-
prove accuracy as much as possible, we strip our G-quadruplex model off all nucleotide
residues [16]. This leaves the model a column of stacked guanine tetrads with a central
channel containing the pertinent stabilizing K+ or Na+ ions [8]. With a size of 130 to 260
and more atoms, the core G4-system is relatively easily amenable to quantum chemical
calculations using density functional theory, DFT [19,20]. Improved “chemical precision”
molecular orbital, MO, computations are also feasible [21,22].

2. Results
2.1. Synthesis

The studied ligands involve seven novel and three known compounds representing
two groups of heterocycles, 4-aminoquinazolines and 2-heteroaryl perimidines, summa-
rized in Table 1. Aminoquinazolines are synthesized from the parent 4-quinazolinone via
a two-step protocol. The intermediate chlorides are obtained according to a literature proce-
dure [22] and are used in the second step without purification to avoid decomposition. The
conditions are optimized, and pure compounds are isolated in moderate to excellent yields
depending on the amine reactivity. Perimidines are prepared from 1,8-diaminonaphthalene
and a heteroaromatic aldehyde via a two-step, one-pot protocol [23]. The conditions are
optimized, and pure compounds are isolated in moderate to excellent yields depend-
ing on the amine reactivity. Perimidines are prepared from 1,8-diaminonaphthalene and
a heteroaromatic aldehyde via a two-step, one-pot protocol [24].
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Table 1. Structure of the investigated compounds, experimentally determined IC50 values, mol,
and computed DFT wB97XD/6-31G(d,p)) and RI-MP2/6-31G(d,p)//wB97XD/6-31G(d,p) ligand
affinities, kcal·mol−1. Full energy data are given in the Supplementary Materials.

No Formula IC50
Affinity
(DFT)

Affinity
(RI-MP2)

1
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2.2. Biological Evaluation of the Effect of the Studied Heterocyclic Ligands

The cytotoxic activity of the studied heterocyclic ligands has been evaluated in vitro
by assessing their cytotoxicity on melanoma cancer cells (A375 cell line). Cell viability
has been estimated after 24 h of incubation with ligands. The cytotoxicity potential has
been examined using several concentrations in the range 5–200 µg/mL. The obtained
results for concentrations of 10 and 50 µg/mL. (Figure 1) have shown that the treatment
of A375 cells with five of the ligands, 5, 7, 8, 9, and 10, with the lower concentration of
10 µg/mL slightly decreased cellular viability (between 3% and 7%). In comparison, the
higher concentration of 50 µg/mL has significantly suppressed cell viability—up to 84%.
At the low concentration, two other ligands, 4 and 6, have reduced cell viability by 21 and
29%, whereas at the high concentration, the reduction has been 71 and 83%, respectively.
Ligands 2 and 3 have induced 46% and 38% inhibition of cell viability at the low concentra-
tion, and 81% and 92% at the high concentration. The most potent cytotoxicity effect on
A375 melanoma cells has been demonstrated by ligand 1 with an 81% reduction at the low
concentration and 91% at the higher concentration (Figure 1).

Figure 1. Cell viability analysis assessed by WST-1 assay. A375 melanoma cells are treated with
small heterocyclic ligands with 10 and 50 µg/mL concentrations for 24 hours. Data are normalized to
untreated cells and represent mean OD values± s.d. from triplicate experiments. Data are statistically
evaluated, and *, **, and *** denote p < 0.05, p < 0.01 and p < 0.001, respectively, compared with
the control.

The data obtained on cytotoxicity of the small heterocyclic ligands have been used
for calculations of half-maximal inhibitory concentrations (IC50) summarized in Table 1.
The results in Table 1 show that 2-quinolinyl-quinazolines 1–3 are the most active ligands
within the series studied. A comparison between quinazolines with identical 4-amino
substituents, tetrahydroisoquinolinyl entry 1 vs. entry 5) and morpholinyl (entry 2 vs.
entry 8), indicates that replacement of the 2-methyl substituent with 2-quinolinyl leads to
a significant reduction in IC50, by approximately an order of magnitude. Therefore, it can
be suggested that the aromatic substituent at the 2-position is essential for the activity of
the particular ligands, possibly completing the preferred crescent ligand shape [8,10] and
in line with the recent suggestion that quinoline residues would amplify G4 affinity to the
corresponding ligand [14].
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2.3. Computational Modeling

We have chosen the simplest G-quadruplex model, consisting of two guanine quartet
sandwich layers and a single stabilizing potassium ion in between [8,10]. With these
definitions, the ligand affinity has the simple form of

AQL = EQL − (EQ + EL),

where EQL, EQ, and EL are the computed total energies in vacuum for the quadruplex-
ligand complex, free quadruplex, and free ligand, each completely optimized at the chosen
theoretical level. An excerpt of the results is given in Table 1, and all data are summarized
in Table S1. A plot of experimental IC50 values against computed ligand affinities is shown
in Figure 2.
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3. Discussion

The clear trend revealed between experimental IC50 of studied small heterocyclic
ligands indicates, at first sight, the good likeliness of the suggested stacking mechanism of
their interactions with G-quadruplexes. Thus, the stacking of relatively small heterocyclic
molecules is probably a valid interaction mechanism, apart from known modes of interac-
tion with somewhat larger anticancer ligands targeting telomeres [16,24]. This suggestion
does not eliminate different methods of attachment of small heterocycles to G4 quadru-
plexes, let alone branched and macrocyclic ligands [14]. The multidimensional problem
of finding the minima of potential energy surfaces for these interactions has no unique
solution, even from a purely mathematical viewpoint. Some optimism in this direction may
be found in the earlier observation that molecular dynamics potential energy surfaces are
relatively flat with deep global minima for bound ligands [25,26]. We may then focus on
the structural properties of small ligands and the variations of their quadruplex interaction
energies elicited by ligand characteristics. A case of deviations of interaction energy may
arise from internal structural variations of a given ligand—the possibility for tautomeric
forms and rotational isomerism. Examples of this point are given by tautomers of 4-amino
quinazoline, with heterocyclic substituents at N4, 2-pyridyl, and 8-quinolyl, as shown
in Scheme 1.
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Scheme 1. Tautomerism and rotational isomerization of N4-heterosubstituted quinazolines.

The above intra-ligand processes may change the ligand affinities within a range of
0.5 to several kcal·mol−1. More serious changes are possible in cases where the ligand is
non-planar and can attach with either its “concave” or “convex” side. At the same time, the
overall energy changes of the G4-L complex energy remain within a couple of kcal·mol−1,
these attachments may also induce changes in the shape of the G4-stack in the complex, see
Figure 3. These ligand’s stacking and affinity variations may cause changes in the overall
trend of proportionality of ligand affinities against quadruplex functioning, expressed
in the above affinity against IC50 relationship. In the specific case of N4-2′-pyridyl and
N4-8′-quinolyl substituents (entries 9 and 10 in Table 1), the compounds are, in fact, outliers
to the generally linear relationship of affinities AL to activities, log (IC50).
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The demonstrated variability of ligand—G-quadruplex model interactions certainly
takes place in their interactions, in reality, thus bringing some scattering into computed
ligand affinities, also expressed in deteriorating the correlation coefficient of the relation-
ship. The latter deterioration of the correlation is even more pronounced with calcu-
lated RI-MP2 ligand affinities, only with R = 0.56, where the geometries of ligand com-
plexes are not optimized at the used level of theory. Thus, the apparent suggestion from
Figure 3 is that higher ligand affinity to G4 is associated with planar, crescent-like struc-
tures 1 to 4 as frequently noted in earlier work [8,10]; see also Figures 4 and S2. Here,
we manage to quantify the intuitive trend into a structure-activity relationship at the
wB97XD/6-31G(d,p) level of DFT theory [19,20] and remain convinced of the possibility
of a more extensive selection of example heterocyclic molecules to yield better correla-
tions of computed structural data, G4 stabilization affinities, against the experimental
anticancer activity.
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4. Materials and Methods
4.1. Synthesis

General: All reagents were purchased from Aldrich, Merck, and Fluka and used
without further purification. The deuterated solvents were purchased from DeuteroGmbH.
Fluka silica gel (TLC-cards 60778 with fluorescent indicator 254 nm) were used for TLC
and Rf-values determination. Merck Silica gel 60 (0.040–0.063 mm) (Darmstadt, Germany)
was used for flash chromatography purification of the products. The melting points
were determined in capillary tubes on SRS MPA100 OptiMelt (Sunnyvale, CA, USA)
automated melting point system with a heating rate of 1 ◦C per min. The NMR spectra
were recorded on Bruker Avance II+ 600 or NEO 400 spectrometers (Rheinstetten, Germany)
in an appropriate solvent; the chemical shifts were quoted in ppm in δ-values against
tetramethylsilane (TMS) as an internal standard, and the coupling constants were calculated
in Hz. The assignment of the signals is confirmed by applying two-dimensional COSY,
NOESY, HSQC, and HMBC techniques. The spectra were processed with the Topspin
3.6 program. The mass spectra were recorded in positive mode on Q Exactive Plus Hybrid
Quadrupole-Orbitrap Mass Spectrometer Thermo Scientific (ESI HR-MS). The spectra are
processed with Xcalibur Free Style version 4.5 (Thermo Fisher Scientific Inc., Waltham, MA,
USA) program.

The studied ligands (Table 1) include seven novel (2–7 and 10) and three known (1, 8
and 9) compounds and can be divided into two series; aminoquinazolines and perimidines.
Aminoquinazolines are synthesized from the corresponding quinazolinone via a two-step
protocol. The intermediate chlorides are obtained according to a literature procedure [22,27,28]
and are used in the second step without purification to avoid decomposition. The conditions
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are optimized, and pure compounds are isolated in moderate to excellent yields depending
on the amine reactivity. Perimidines are prepared from 1,8-diaminonaphthalene and
aromatic aldehyde via a two-step, one-pot protocol [23,29].

4.1.1. Synthesis of 4-Chloroquinazolines

4-chloro-2-methylquinazoline was prepared according to a known procedure [22]
from commercially available 2-methyl quinazoline-4(3H)-one. To a solution of 2-methyl
quinazoline-4-one (3 mmol) and Et3N (5 mmol) in benzene (15 mL), POCl3 (4.5 mmol)
was added, and the mixture was refluxed with stirring for 2.5 h. After cooling to room
temperature, the reaction mixture was poured into ice water and was consecutively washed
with aq. NaHCO3, brine, citric acid, brine, NaHCO3, and brine. The organic layer was
dried over MgSO4 and evaporated to dryness to give the crude product, which was further
used without purification.

4-chloro-2-(2-quinolinyl)quinazoline was prepared via a two-step protocol:
Step 1. A solution of anthranilamide (3 mmol), quinoline-2-carbaldehyde (3.3 mmol),

and p-TsOH (0.15 mmol) in THF (25 mL) was stirred at room temperature for 2 h. Iodine
(4.5 mmol) was then added, and the mixture was stirred at room temperature for 4 h. The
products were partitioned between EtOAc and aq. Na2S2O3 solution. The organic layer
was washed with brine and dried over MgSO4. The crude product was triturated with
MeOH to give pure 2-(2-quinolynyl)quinazoline-4(3H)-one: 59% yield; Rf 0.24 (DCM); m. p.
227.6–227.8 ◦C (lit. [16] 227.7–227.9 ◦C); 1H NMR (CDCl3) 7.555 (ddd, 1H, J 8.1, 7.1, 1.2,
CH-6), 7.81–7.84 (m, 2H, CH-7 and CH-7 Q), 7.897 (ddd, 1H, J 8.1, 1.2, 0.5, CH-8), 7.922
(ddd, 1H, J 8.1, 1.3, 0.8, CH-5 Q), 8.182 (dd, 1H, J 8.4, 0.9, CH-8 Q), 8.376 (bd, 1H, J 8.5, CH-4
Q), 8.396 (ddd, 1H, J 7.9, 1.5, 0.5, CH-5), 8.678 (d, 1H, J 8.5, CH-3 Q), 11.229 (bs, 1H, NH);
13C NMR (CDCl3) 118.48 (CH-3 Q), 122.66 (Cq-4a), 126.81 (CH-5), 127.60 (CH-6), 127.78
(CH-5 Q), 128.23 (CH-6 Q), 128.31 (CH-8), 129.32 (Cq-4a Q), 129.69 (CH-8 Q), 130.54 (CH-7
Q), 134.64 (CH-7), 137.67 (CH-4 Q), 146.79 (Cq-8a Q), 148.03 (Cq-2 Q), 149.00 (Cq-2), 149.09
(Cq-8a), 161.44 (C=O).

Step 2. To a solution of 2-(2-quinolynyl)quinazoline-4-one (3 mmol) and Et3N (5 mmol)
in benzene (15 mL) POCl3 (4.5 mmol) was added, and the mixture was refluxed with
stirring for 2.5 h. After cooling to room temperature, the reaction mixture was poured
into ice water and was consecutively washed with aq. NaHCO3, brine, citric acid, brine,
NaHCO3, and brine. The organic layer was dried over MgSO4 and evaporated to dryness
to give the crude product, which was further used without purification.

4.1.2. Synthesis of 4-Aminoquinazolines

General procedure: A solution of crude 4-chloro-2-methylquinazoline or 4-chloro-2-
(2-quinolynyl)quinazoline (2 mmol), amine (2.5 mmol) and Et3N (3 mmol) in ether, benzene
or DCE (20 mL) was stirred at room temperature or at 100 ◦C in a closed vessel for 5–20 h.
The reaction mixture was extracted with brine. The organic layer was dried over MgSO4
and purified by column choralography on silica gel.

For simplicity, the signals for quinoline nuclei are depicted as “Q” and those of
substituent at the 4th position as “Pip”, “Mor”, “THQ”, “AP”, and “AQ” for piperidine,
morpholine, tetrahydroquinoline, 2-aminopyridine, and 8-aminoquinoline, respectively.

2-methyl-4-(morpholin-4-yl)quinazoline: Conditions: ether, rt, 20 h; 94% yield (overall
from two steps); Rf 0.27 (EtOAc); m. p. 267.6–267.9 ◦C as HCl salt (lit. [24] m. p. not given);
1H NMR (CDCl3) 2.695 (s, 3H, CH3), 3.782 (m, 4H, CH2-3 and CH2-5 Mor), 3.905 (m, 4H,
CH2-2 and CH2-6 Mor), 7.409 (ddd, 1H, J 8.2, 7.0, 1.1, CH-6), 7.716 (ddd, 1H, J 8.3, 7.0,
1.3, CH-7), 7.847 (dd, 1H, J 8.3, 0.9, CH-5), 7.880 (bd, 1H, J 8.4, CH-8); 13C NMR (CDCl3)
25.16 (CH3), 50.26 (CH2-3 and CH2-5 Mor), 66.80 (CH2-3 and CH2-5 Mor), 114.36 (Cq-4a),
124.61 (CH-5), 124.80 (CH-6), 127.68 (CH-8), 132.68 (CH-7), 151.68 (Cq-8a), 163.04 (Cq-2),
164.63 (Cq-4).

4-(3,4-dihydroisoquinolin-2-yl)-2-methyl-quinazoline: Conditions: ether, rt, 18 h; 93% yield
(overall from two steps); Rf 0.34 (EtOAc:hexane 1:1); m. p. 107.1–107.3 ◦C; 1H NMR (CDCl3)
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2.704 (s, 3H, CH3), 3.175 (t, 2H, J 5.8, CH2-7 THQ), 4.027 (t, 2H, J 5.8, CH2-8 THQ), 4.928
(s, 2H, CH2-2 THQ), 7.20–7.22 (m, 4H, CH-3-CH-6 THQ), 7.405 (ddd, 1H, J 8.2, 6.9, 1.2,
CH-6), 7.701 (ddd, 1H, J 8.3, 6.9, 1.4, CH-7), 7.842 (bd, 1H, J 8.3, CH-8), 7.935 (dd, 1H, J 8.3,
1.1, CH-5); 13C NMR (CDCl3) 26.36 (CH3), 29.09 (CH2-7 THQ), 48.34 (CH2-8 THQ), 51.16
(CH2-2 THQ), 114.55 (Cq-4a), 124.41 (CH-6), 124.80 (CH-5), 126.36, 126.60, 126.72, 128.81
(CH-3-CH-6 THQ), 127.65 (CH-8), 132.41 (CH-7), 133.92 (Cq-2a THQ), 134.68 (Cq-6a THQ),
151.97 (Cq-8a), 163.03 (Cq-2), 164.12 (Cq-4); HR-MS(ESI+)m/z calcd. for C18H18N3

+ [M + H]+

276.1495, found 276.1488, ∆ = −0.7 mDa.
2-methyl-N-(pyridin-2-yl)quinazolin-4-amine: Conditions: DCE, 100 ◦C in a closed vessel,

6 h; 43% yield (overall from two steps); Rf 0.18 (5% MeOH in DCM); m. p. 111.7–111.9 ◦C;
the compound NMR spectra show a slow exchange between different sites at room tem-
perature, and so the chemical shifts for CH carbon signals are extracted from the HSQC
experiment. 1H NMR (CDCl3) 7.046 (bs, 1H), 7.518 (bs, 1H), 7.790 (bs, 2H), 7.861 (bs, 1H),
7.961 (bs, 1H), 8.345 (bs, 1H), 8.827 (bs, 1H), 15.191 (bs, 1H, NH); 13C NMR (CDCl3) 114.45
(CH), 118.96 (CH), 120.45 (CH), 126.14 (CH), 128.23 (CH), 133.09 (CH), 138.26 (CH), 145.50
(CH), 147.76; HR-MS(ESI+)m/z calcd. for C14H13N3

+ [M + H]+ 237.1135, found 237.1130,
∆ = −0.5 mDa.

2-methyl-N-(quinolin-8-yl)quinazolin-4-amine: Conditions: DCE, 100 ◦C in a closed vessel,
5 h; 71% yield (overall from two steps); Rf 0.35 (5% MeOH in DCM); m. p. 228.2–228.6 ◦C;
1H NMR (CDCl3) 3.009 (s, 3H, CH3), 7.584 (dd, 1H, J 8.2, 4.2, CH-3 AQ), 7.65–7.69 (m, 2H,
CH-5 and CH-6 AQ), 7.745 (bt, 1H, J 7.6, CH-6), 7.930 (bt, 1H, J 7.6, CH-7), 8.256 (d, 1H, J 8.2,
CH-5), 8.276 (dd, 1H, J 8.2, 1.4, CH-4 AQ), 8.404 (bd, 1H, J 7.4, CH-8), 8.955 (dd, 1H, J 4.2,1.5,
CH-2 AQ), 9.270 (dd, 1H, J 6.9, 1.9, CH-7 8-AQ), 11.382 (bs, 1H, NH); 13C NMR (CDCl3)
24.15 (CH3), 113.23 (Cq-4a), 118.27 (CH-7 AQ), 121.30 (CH-5), 122.23 (CH-3 AQ), 123.02
(CH-6 AQ), 123.80 (CH-8), 127.38 (CH-5 AQ), 127.96 (Cq-4a AQ), 128.05 (CH-6), 133.20 (Cq-8
AQ), 134.95 (CH-7), 136.84 (CH-4 AQ), 139.06 (Cq-8a AQ), 148.78 (CH-2 AQ), 157.18 (Cq-4),
163.02 (Cq-2); HR-MS(ESI+)m/z calcd. for C18H15N4

+ [M + H]+ 287.1291, found 287.1285,
∆ = −0.6 mDa.

4-(piperidin-1-yl)-2-(quinolin-2-yl)quinazoline: Conditions: benzene, rt, 16 h; 62% yield
(overall from two steps); Rf 0.28 (DCM:MeOH:NH4OH 100:3:1); m. p. 139.6–139.9 ◦C; 1H
NMR (CDCl3) 1.800 (m, 2H, CH2-4 Pip), 1.858 (m, 4H, CH2-3 and CH2-5 Pip), 3.868 (m, 4H,
CH2-2 and CH2-6 Pip), 7.448 (ddd, 1H, J 8.3, 6.9, 1.1, CH-6), 7.556 (ddd, 1H, J 8.0, 6.9, 1.1,
CH-6 Q), 7.72–7.76 (m, 2H, CH-7 and CH-7 Q), 7.845 (dd, 1H, J 8.1, 1.0, CH-5 Q), 7.909 (dd,
1H, J 8.3, 0.8, CH-5), 8.227 (dd, 1H, J 8.5, 0.5, CH-8), 8.292 (dd, 1H, J 8.5, 0.5, CH-4 Q), 8.435
(d, 1H, J 8.5, CH-8 Q), 8.699 (d, 1H, J 8.5, CH-3 Q); 13C NMR (CDCl3) 24.86 (CH2-4 Pip),
26.06 (CH2-3 and CH2-5 Pip), 51.02 (CH2-2 and CH2-6 Pip), 115.77 (Cq-4a), 121.29 (CH-3 Q),
124.95 (CH-5), 125.46 (CH-6), 127.08 (CH-6 Q), 127.32 (CH-5 Q), 128.43 (Cq-4a Q), 129.32
(CH-7 Q), 129.93 (CH-8), 131.01 (CH-8 Q), 132.31 (CH-7), 136.65 (CH-4 Q), 148.24 (Cq-8a
Q), 152.80 (Cq-8a), 156.02 (Cq-2 Q), 158.45 (Cq-2), 165.22 (Cq-4); HR-MS(ESI+)m/z calcd. for
C22H21N4

+ [M + H]+ 341.1761, found 341.1754, ∆ = −0.7 mDa.
4-(morpholin-4-yl)-2-(quinolin-2-yl)quinazoline: Conditions: benzene, rt, 17 h; 52% yield

(overall from two steps); Rf 0.17 (EtOAc); m. p. 266.7–266.9 ◦C as HCl salt; 1H NMR (CDCl3)
3.904 (m, 4H, CH2-3 and CH2-5 Mor), 3.950 (m, 4H, CH2-2 and CH2-6 Mor), 7.470 (ddd, 1H,
J 8.2, 6.9, 1.2, CH-6), 7.555 (ddd, 1H, J 8.0, 6.8, 1.4, CH-6 Q), 7.741 (ddd, 1H, J 8.4, 6.8, 1.4,
CH-7 Q), 7.774 (ddd, 1H, J 8.3, 6.9, 1.4, CH-7), 7.838 (bd, 1H, J 8.1, CH-5 Q), 7.903 (dd, 1H,
J 8.4, 0.9, CH-5), 8.253 (dd, 1H, J 8.4, 0.8, CH-8), 8.283 (bd, 1H, J 8.5, CH-4 Q), 8.430 (dd, 1H,
J 8.4, 0.5, CH-8 Q), 8.658 (d, 1H, J 8.6, CH-3 Q); 13C NMR (CDCl3) 50.32 (CH2-3 and CH2-5
Mor), 66.79 (CH2-2 and CH2-6 Mor), 115.60 (Cq-4a), 121.24 (CH-3 Q), 124.51 (CH-5), 125.98
(CH-6), 127.20 (CH-6 Q), 127.36 (CH-5 Q), 128.32 (Cq-4a Q), 129.45 (CH-7 Q), 130.25 (CH-8),
130.89 (CH-8 Q), 132.64 (CH-7), 136.73 (CH-4 Q), 148.22 (Cq-8a Q), 152.91 (Cq-8a), 155.74
(Cq-2 Q), 158.45 (Cq-2), 165.07 (Cq-4); HR-MS(ESI+)m/z calcd. for C21H19N4O+ [M + H]+

343.1553, found 343.1547, ∆ = −0.6 mDa.
4-(3,4-dihydroisoquinolin-2-yl)-2-(quinolin-2-yl)quinazoline: Conditions: benzene, rt, 16 h;

71% yield (overall from two steps); Rf 0.48 (EtOAc); m. p. 144.4–144.6 ◦C; 1H NMR
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(CDCl3) 3.251 (t, 2H, J 5.8, CH2-7 THQ), 4.201 (t, 2H, J 5.8, CH2-8 THQ), 5.141 (s, 2H, CH2-2
THQ), 7.25–7.26 (m, 4H, CH-3–CH-6 THQ), 7.517 (ddd, 1H, J 8.0, 6.9, 1.1, CH-6), 7.858
(ddd, 1H, J 8.0, 6.9, 1.1, CH-6 Q), 7.757 (ddd, 1H, J 8.5, 6.9, 1.3, CH-7 Q), 7.798 (ddd, 1H,
J 8.3, 7.0, 1.2, CH-7), 7.880 (dd, 1H, J 8.1, 0.8, CH-5 Q), 8.047 (dd, 1H, J 8.3, 0.7, CH-5),
8.305 (bd, 1H, J 8.4, CH-8), 8.343 (d, 1H, J 8.5, CH-4 Q), 8.457 (d, 1H, J 8.6, CH-8 Q), 8.738
(d, 1H, J 8.5, CH-3 Q); 13C NMR (CDCl3) 27.18 (CH2-7 THQ), 46.44 (CH2-8 THQ), 49.33
(CH2-2 THQ), 113.62 (Cq-4a), 119.30 (CH-3 Q), 122.83 (CH-5), 123.77 (CH-6), 124.53, 124.69,
124.91, 126.85 (CH-3–CH-6 THQ), 125.30 (CH-6 Q), 125.40 (CH-5 Q), 126.56 (Cq-4a Q), 127.51
(CH-7 Q), 127.90 (CH-8), 129.11 (CH-8 Q), 130.66 (CH-7), 131.84 (Cq-2a THQ), 132.77 (Cq-6a
THQ), 134.84 (CH-4 Q), 146.30 (Cq-8a Q), 150.54 (Cq-8a), 153.65 (Cq-2 Q), 156.30 (Cq-2),
162.48 (Cq-4); HR-MS(ESI+)m/z calcd. for C26H21N4

+ [M + H]+ 389.1761, found 389.1756,
∆ = −0.5 mDa.

4.1.3. Synthesis of Perimidines

General procedure: A solution of 1,8-diaminonaphthalene (2 mmol) and aldehyde
(2 mmol) in EtOH (20 mL) was stirred at room temperature for 6 h. Sodium pyrosulfite
(Na2S2O5,2 mmol) was then added, and the mixture was stirred at room temperature for
24 h. Finally, the solvent was removed in vacuo, and the residue was purified by column
chromatography on silica gel by using a mobile phase with a gradient of polarity from
2% MeOH in DCM to 5% MeOH in DCM.

2-(pyridin-2-yl)-1H-perimidine: 18% yield; Rf 0.43 (1% acetone in DCM); m. p. 171.3–171.6 ◦C
(lit. [28] 175–176 ◦C); 1H NMR (DMSO-d6) 6.711 (dd, 1H, J 7.3, 0.8, CH-2), 6.776 (dd, 1H,
J 7.4, 0.7, CH-7), 7.013 (dd, 1H, J 8.4, 0.6, CH-5), 7.078 (dd, 1H, J 8.4, 0.6, CH-4), 7.110 (dd,
1H, J 8.2, 7.6, CH-6), 7.186 (dd, 1H, J 8.2, 7.4, CH-3), 7.633 (ddd, 1H, J 7.5, 4.8, 1.1, CH-5 Py),
8.017 (td, 1H, J 7.8, 1.7, CH-4 Py), 8.304 (dt, 1H, J 7.9, 0.9, CH-3 Py), 8.738 (ddd, 1H, J 4.8,
1.7, 0.9, CH-6 Py), 10.991 (NH); 13C NMR (DMSO-d6) 104.00 (CH-7), 114.59 (CH-2), 118.20
(CH-5), 120.26 (CH-4), 122.11 (CH-3 Py), 122.80 (Cq-8a), 126.59 (CH-5 Py), 128.60 (CH-6),
129.31 (CH-3), 135.61 (Cq-4a), 138.04 (CH-4 Py), 138.49 (Cq-8), 145.31 (Cq-1), 148.89 (CH-6
Py), 149.84 (Cq-2 Py), 151.30 (N = Cq-NH).

2-(quinolin-2-yl)-1H-perimidine: 42% yield; Rf 0.52 (DCM); m. p. 264.7–265.1 ◦C (lit. [29]
m. p. not given); 1H NMR (DMSO-d6) 6.792 (dd, 1H, J 7.3, 0.9, CH-2), 6.847 (dd, 1H, J 7.4,
0.8, CH-7), 7.052 (bd, 1H, J 8.2, CH-5), 7.136 (dd, 1H, J 8.1, 0.7, CH-4), 7.159 (dd, 1H, J 7.9,
7.7, CH-6), 7.223 (dd, 1H, J 8.0, 7.4, CH-3), 7.737 (ddd, 1H, J 8.0, 6.9, 1.1, CH-6 Q), 7.904
(ddd, 1H, J 8.4, 6.9, 1.4, CH-7 Q), 8.110 (dd, 1H, J 8.1, 1.1, CH-5 Q), 8.254 (dd, 1H, J 8.5, 0.7,
CH-8 Q), 8.410 (d, 1H, J 8.6, CH-3 Q), 8.560 (d, 1H, J 8.6, CH-4 Q), 10.748 (NH); 13C NMR
(DMSO-d6) 104.05 (CH-7), 115.16 (CH-2), 118.31 (CH-5), 119.02 (CH-3 Q), 120.75 (CH-4),
122.90 (Cq-8a), 128.37 (CH-6 Q), 128.52 (CH-5 Q), 128.60 (CH-6), 129.16 (Cq-4a Q), 129.26
(CH-3), 129.52 (CH-8 Q), 130.81 (CH-7 Q), 135.72 (Cq-4a), 137.73 (CH-4 Q), 138.44 (Cq-8),
145.25 (Cq-1), 146.75 (Cq-8a Q), 150.05 (Cq-2 Q), 151.40 (N = Cq-NH).

2-(imidazol-2-yl)-1H-perimidine: 92% yield; Rf 0.34 (5% MeOH in DCM); m. p.
241.1–241.4 ◦C; 1H NMR (DMSO-d6; 353K) 6.685 (dd, 2H, J 7.4, 0.9, CH-2 and CH-7),
7.029 (bd, 2H, 7.8, CH-4 and CH-5), 7.129 (bd, 2H, 7.8, CH-3 and CH-6), 7.213 (bs, 2H,
2CHIm); 13C NMR (DMSO-d6; 353K) 113.42 (CH-2 and CH-7), 119.07 (CH-4 and (CH-
5), 128.76 (CH-4 and CH-5 Im), 122.48 (Cq-8a), 128.76 (CH-3 and CH-6), 137.83 (Cq-4a),
135.71 (Cq-1 and Cq-8), 140.77 (Cq-2 Im), 144.82 (N=Cq-NH); HR-MS(ESI+)m/z calcd. for
C14H11N4

+ [M + H]+ 235.0978, found 235.0975, ∆ = −0.3 mDa.

4.2. Biological Experiments
4.2.1. Cells and Cell Culture

A375, a human melanoma cell line (ATCC catalog no. CRL-1619™), has been used in
all cellular experiments. The cells have been maintained in culture flasks with complete
Dulbecco’s modified Eagle’s medium (DMEM) at 37 ◦C and 5% CO2 in a humidified
atmosphere incubator. When cells reached 80–90% confluence, they were harvested using
Trypsin/EDTA and were prepared for the following experiments.
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4.2.2. WST-1 Cell Proliferation Assay

WST-1 assay (Sigma-Aldrich Co., Darmstadt, Germany) was performed to assess the
cytotoxicity of the heterocyclic ligands as previously described [30,31]. Briefly, the cells
were seeded into 96-well plates at a density of 2 × 104 cells per well and incubated for 24 h
at 37 ◦C and 5% CO2. On the following day, the culture medium was replaced with fresh
medium, and the cells were exposed to increasing concentrations of the tested heterocyclic
ligands for another 24 h. At the end of incubation, the cell medium was aspirated, and
a new medium was provided. After that, the WST-1 reagent was added directly to the cells
in a ratio of 1:10 according to the manufacturer’s instructions. After 2 h incubation at 37 ◦C
in the dark, the amount of the produced formazan by the cells was measured by absorbance
at 450 nm using a standard microplate reader (Thermo Scientific Multiskan Spectrum,
Waltham, MA, USA). The cell proliferation data were normalized to the percentage of the
untreated control. The corresponding half-maximal inhibitory concentration (IC50) values
were calculated using GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA).

4.3. Computational Details

To obtain the necessary DFT [19,20] affinities of heterocyclic ligands to a model G-
quadruplex, we use the hybrid long range and dispersion corrected wB97XD functional [32,33]
at the 6-31G(d,p) basis set level, as implemented in the Gaussian 16 program system [34].
Default optimization criteria have been applied in Gaussian. Explicit electron correlated
energies are calculated at the RI-MP2/6-31G(d,p) level using GAMESS-US [35], with
an SVP auxiliary basis set [36] as single-point calculations at the optimized DFT geometries.

5. Conclusions

We have developed a model of the ligand with G-quadruplex interactions whereby the
approximately planar heterocyclic ligand system is stacked to a plane of the quadruplex [16].
Quantum chemical DFT calculations indicate that computed ligand affinities to the
G-quadruplex should correlate with ligand activities as anticancer agents. To verify this
hypothesis, we have synthesized some 4-aminoquinazolines and 2-hetarylperimidines and
have determined their anticancer activity quantitatively in the form of IC50. We have found
a good linear relationship of theoretically computed DFT ligand affinities, AL, and log (IC50).
This quantitative structure-activity relationship, QSAR, provides a means for the design of
novel small heterocyclic G4-ligands to be tested as anticancer agents under the described
putative stacking mechanism of novel drug-like heterocycles [37,38] to G-quadruplexes.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27217577/s1; Figure S1: The optimized Q2 com-
plex of 1; Figure S2: The optimized three-G4-layered Q3 complex of 1; Table S1: Computed electronic
energies with the 6-31G(d,p) basis set, in a.u., and ligand affinities, in kcal·mol−1, against experi-
mentally determined IC50 values, mol; Table S2: Ligand 1—Atomic coordinates of the optimized
two-layered G4-quadruplex Q2.
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