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Abstract: The recovery of strategic metals such as rare earth elements (REEs) requires the develop-
ment of new sorbents with high sorption capacities and selectivity. The bi-functionality of sorbents
showed a remarkable capacity for the enhancement of binding properties. This work compares the
sorption properties of magnetic chitosan (MC, prepared by dispersion of hydrothermally precipitated
magnetite microparticles (synthesized through Fe(II)/Fe(III) precursors) into chitosan solution and
crosslinking with glutaraldehyde) with those of the urea derivative (MC-UR) and its sulfonated
derivative (MC-UR/S) for cerium (as an example of REEs). The sorbents were characterized by FTIR,
TGA, elemental analysis, SEM-EDX, TEM, VSM, and titration. In a second step, the effect of pH
(optimum at pH 5), the uptake kinetics (fitted by the pseudo-first-order rate equation), the sorption
isotherms (modeled by the Langmuir equation) are investigated. The successive modifications of
magnetic chitosan increases the maximum sorption capacity from 0.28 to 0.845 and 1.25 mmol Ce g−1

(MC, MC-UR, and MC-UR/S, respectively). The bi-functionalization strongly increases the selectivity
of the sorbent for Ce(III) through multi-component equimolar solutions (especially at pH 4). The
functionalization notably increases the stability at recycling (for at least 5 cycles), using 0.2 M HCl
for the complete desorption of cerium from the loaded sorbent. The bi-functionalized sorbent was
successfully tested for the recovery of cerium from pre-treated acidic leachates, recovered from
low-grade cerium-bearing Egyptian ore.

Keywords: bi-functionalization; magnetic chitosan; cerium recovery; sorption isotherm; uptake
kinetics; metal desorption and sorbent recycling; cerium recovery from processed leachate

1. Introduction

Cerium is one of the light rare earth elements (LREEs). It is mainly used in industry as
a non-toxic pigment in the manufacturing of flat-screen monitors, low-energy light lamps,
and floodlights, and in the synthesis of catalysts (under oxide form, in applications such as
auto-cleaning systems, catalytic converters for diesel fuel, and so on). The relative supply
risk of cerium is ranked highly (9.5 on a 10-point scale). Indeed, most of its production
(about 97%) is located in three countries (i.e., China, Russia, and Malaysia), though the
reserves are more dispersed (50% of reserves being located in China, CIS countries, and
USA) [1]. These characteristics (commune with the complete family of REEs), combined
with the difficult substitutability of this metal, and the limited rate of recycling (evaluated as
close to 10%) may explain the strong attention paid to the development of processes focused
on the recovery of these strategic REEs (including cerium) from alternative resources, such
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as acid mine drainage (AMD) [2], marginal ores [3] and tailings [4–6], urban mines [7], and
waste electric and electronic equipment (WEEEs) [8,9].

The treatment of solid wastes and ores may involve (after dismantling and/or grind-
ing) gravimetric and magnetic separations. Roasting [10] and leaching [11] constitute the
processes most frequently applied to these solid wastes via the pyro- and hydro-branches
of extractive metallurgy, respectively [12]. The leaching steps may include acidic [13],
alkaline [14], or bioleaching solutions [6,15]. Simple precipitation techniques are poorly
selective for the treatment of leachates [16,17], and it is generally necessary to couple
selective precipitation steps [13,18,19] with complementary separation processes, such
as solvent extraction [20–22] or sorption processes [23,24]. Sorption processes are usu-
ally preferred to solvent extraction for the treatment of low-concentration effluents. A
wide range of materials have been reported for cerium or REE sorption, including biosor-
bents [25–30], carbon-based supports [24,31,32], inorganic sorbents [33,34], and chelating
and ionic-exchange resins [35–41].

The commercial resins applied to the recovery of rare earth elements may bear a
wide variety of functional groups, such as sulfonic (Amberlite 200C H, or Lewatit Mono-
plus SP112, Lewatit MDS 200H) or sulfonate (Amberlite 200C H), picolylamine (Dowex
M 4195, Dowex XUS43605) [36,41–43], sulfonic/phosphonic (Purolite S957) [44], imin-
odiacetic (Amberlite IRC748, Purolite S930, or Lewatit Monoplus TP208, Lewatit TP207),
aminophosphonic (Amberlite IRC747, Purolite S940, Purolite S950) [41,45], or diphospho-
nic/sulfonic/carboxylic groups (Diphonix) [46]. By comparison with these commercially
available resins, numerous investigations have focused on the grafting of supports with sim-
ilar functional groups, such as aminophosphonic onto activated carbon [47], an algal/PEI
support decorated with sulfonic groups [48] or phosphonate moieties [49], phosphonate
onto metal organic framework [50], and diethylenetriamine incorporated onto magnetic
chitosan microparticles [51]. Callura et al. [52] compared a series of aminated PS-DVB
beads grafted with a wide series of functional groups (phosphonoacetic acid, phospho-
nomethylglycine, or diethylenetriaminepentaacetic acid di-anhydride) for the sorption of
Nd(III), Gd(III), and Ho(III).

2. Selected Strategy for Sorbent Synthesis—Rationales

Chitosan (aminopolysaccharide) has been widely investigated for metal sorption due
to its hydrophilic character (associated with numerous hydroxyl groups) and the high
reactivity of the amine groups [53–55]. Chitosan is characterized by its unique cationic
behavior among carbohydrates. The protonation of the amine groups (at a pH below pKa,
in the range 6.2–6.7) has been used for binding metal anions and anionic dyes. On the
other hand, in near-neutral solutions, free amine groups can chelate metal cations. These
hydroxyl and amine groups have been used for preparing numerous derivatives through
the grafting of functional groups [56–58], or physical modifications (for preparing beads,
fibers, membranes, foams, etc.) [59,60].

One of the main drawbacks affecting chitosan’s application in water treatment consists
of the poor porosity and the residual crystallinity of the biopolymer that may explain its
slow mass transfer properties. This drawback can be overcome by using different strategies:
(a) coating the biopolymer onto a highly porous support [61,62], (b) re-conditioning the
biopolymer (the dissolving of chitosan reduces its residual crystallinity and the gelling
or neutralization step allows for the expansion of the hydrogel network, pending a strict
control of the final drying step) [63], and (c) reducing the size of the sorbent particles [64].

Reducing the size of sorbent particles decreases the diffusion path and, consequently,
the time required to reach the equilibrium, although this process necessitates the perfor-
mance a difficult solid/liquid separation at the end of the operative steps. This disadvan-
tage can be minimized through the incorporation of magnetic nanoparticles that facilitate
the magnetic separation of the sorbent at the end of the process [65,66]. In some cases, the
preparation of magnetic sorbents proceeds through the simultaneous synthesis of magnetite
nanoparticles and precipitation of chitosan (first, by mixing the Fe(III) and Fe(II) precursors
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with chitosan before processing the hydrothermal precipitation at a controlled pH). Herein,
the magnetite NPs were pre-synthesized before being embedded into chitosan hydrogel.

The solubility of chitosan in acidic solutions (with the remarkable exception of sulfuric
acid) usually requires the crosslinking of the biopolymer to reinforce the sorbent stability
when acidic conditions are involved in the lifecycle of the sorbent (especially for metal
desorption and sorbent recycling, [67]). In many cases, the crosslinking step results in a
loss of sorption properties because amine groups are frequently involved in the crosslinks
(typically, this is the case for glutaraldehyde crosslinker). When chelation mechanisms
constitute the main binding mechanisms, the sorption capacity dramatically falls, contrary
to ion exchange mechanisms, which are less affected. The sorption properties of raw
chitosan for rare earths are relatively limited (see below, MC sorbent: crosslinked magnetic
sorbent). Therefore, the functionalization is necessary for improving the potential of
magnetic chitosan.

Table S1 (Section SA in Supplementary Information) reports the maximum sorption
capacities of a series of functionalized sorbents for REE(III) metal ions (some of which
concern magnetic chitosan). It is remarkable to note that the beneficial effect of grafting new
functional groups onto supports strongly depends on the metal. For example, in the case of
the algal/PEI sorbent, the sulfonation of the hydrogel contributes to the material’s strong
sorption capacity for scandium (i.e., 3.16 mmol Sc g−1), while for cerium and holmium, the
sorption levels remain much lower (i.e., 0.71–0.61 mmol g−1) [48]. The bi-functionalization
of a support may increase the sorption performance, as in the case of La(III) and Ce(III)
with alginate sorbent functionalized with poly-glutamate [68]. The bi-functionalized sor-
bents that are most frequently reported for their REE sorption capacities bear amine and
carboxylic groups. The literature is less abundant concerning the sulfonic/amine multifunc-
tional materials. The current work investigated the functionalization of magnetic chitosan
particles by first grafting urea (mediated by formaldehyde) to produce an amine-enriched
sorbent (which is stabilized with glutaraldehyde crosslinking). In a second step, some of
these amine groups were grafted with sulfonated groups (through the use of a synthesized
sulfonated agent (N(SO3Na)3).

The comparison of the sorption performances for Ce(III) sorption offers insight into the
impacts of mono- and bi-functionalization (amine and sulfonic groups) on the enhancement
of the binding properties and the selectivity in sorption. The sorbents were characterized
using different analytical facilities (a detailed discussion appears in Supplementary In-
formation). The sorption properties are investigated within the scope of the pH effect,
uptake kinetics and sorption isotherms (with conventional models), selectivity properties
(at different pH values with multi-component solutions), desorption performance, and
stability in recycling. In the last part of the study, the bifunctional sorbent was applied to
metal recovery from the raffinate of the acidic leachate of Egyptian ore. The raw leachates
were pre-treated with Amberlite IRA-400 (for Fe(III) removal) and Dowex 50 X8 (for the
extraction of REEs). MC-UR/S was tested for the valorization of the residues. These tests
allowed us to evaluate the tested materials’ potential for the recovery of Ce(III) and REEs
from complex solutions.

3. Results and Discussion
3.1. Characterization of the Sorbents

The full characterization of the sorbents is detailed in Section SB (SI). Herein, the
main characteristics are summarized. The particles are characterized as elongated irreg-
ular objects with rounded edges (Figure S1 Supplementary Material). The average size
of the microparticles of MC-UR/S is 6 ± 4 µm. The embedded nanoparticles (NPs) of
magnetite are visible in the TEM images (Figure S2, with a size of around 5–7 nm). The
magnetic properties of MC-UR/S were quantified by vibrating sample magnetometry to
18.7 emu g−1, with limited coercivity and remanence. The particles are superparamagnetic
(Figure S3). This low value can be explained by the effect of the polymer coating of the
magnetic NPs and the low fraction of magnetite in the composite. Indeed, the TGA analysis
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shows that the residual weight (after reaching 800 ◦C) shows a progressive decrease with
the functionalization of the MC material, reaching 56.0%, 45.2% for MC-UR, and decreasing
to 26.4% for the sulfonated sorbent (Figure S4). In addition, the TGA profiles show three
main transitions corresponding to water release, followed by the depolymerization of
chitosan, together with the degradation of the end products (urea and sulfonated ends),
before recording the degradation of the char. Intermediary sub-waves are also observed
(and confirmed by the DrTG profiles, Figure S5), which are probably associated with the
degradation of functionalizing moieties.

The analysis of the FTIR spectra for MC-UR and MC-UR/S at different stages of
use (raw, after Ce(III) sorption, and after five cycles of re-use) shows, firstly, information
regarding the presence of reactive groups (amine, amide, carbonyl, and sulfonate) and their
interactions with cerium. Several characteristic bands of these functional groups are shifted
after metal binding and desorption (Figure 1, Table S2a).
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  Figure 1. FTIR spectra—(a) MC-UR and (b) MC-UR/S, raw, after Ce(III) sorption, and after 5th

desorption.

However, these changes may result not only from the interaction of the sorbent with
Ce(III). Indeed, the change in the environmental conditions, such as the pH for processing
the sorption (i.e., at pH 5) or the drastic acidic solution for processing the metal desorption
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(i.e., 0.2 M HCl), may also affect the chemical state of these reactive groups (and their
relevant vibrations in the FTIR spectra).

In Section SB, the comparison of the spectra with those of the sorbents conditioned
at pH 5 and exposed to 0.2 M HCl solutions is presented in Figures S6–S9 and Table S2b,c.
The discussion of the relevant differences shows specific modifications in the large band at
3430–3370 cm−1, which is assigned to the overlapping of ν(OH) and ν(NH) vibrations, at
≈1450 and ≈1375 cm−1 (amide and amine groups, respectively), and at ≈1250–1050 cm−1,
associated with ν(C-O) and δ(OH)) for MC-UR and with ν(S-O) for MC-UR/S. The in-
vestigation of the effects of metal desorption and sorbent recycling also shows substan-
tial changes (appearance/disappearance of the signals and shifts in their characteristic
wavenumbers, Figures S7 and S9, Table S2c). Despite these changes in the FTIR spectra, the
full desorption of the metal and the weak loss in the sorption capacity (see Section 3.2.5)
mean that these chemical modifications hardly affect their sorption performances.

The elemental analysis of the sorbent identified the iron content as being in the
range 30.7–32.5% (Table S3), meaning a higher value than that deduced from the TGA
analysis (at least for MC-UR/S). The successful amination (urea grafting, for MC-UR) and
sulfonation (for MC-UR/S) are also demonstrated by the increase in the nitrogen content
(around 6.5%, w/w; ≈4.6 mmol N g−1) and the appearance of the S element (around 3.3%,
w/w; ≈1 mmol S g−1). The pHPZC value of MC (close to 6.2) was increased to ≈6.6 after
the grafting of the urea (weakly basic groups), while the subsequent sulfonation of the
derivative caused the pHPZC to shift toward lower values (i.e., 5.4) (Figure S10). These
shifts allow us to anticipate differences in the pH profiles for Ce(III) sorption, correlated
with the deprotonation of the functional groups.

3.2. Sorption Properties
3.2.1. Effect of pH

Figure 2 compares the effects of the pHeq on Ce(III) sorption using MC, MC-UR, and
MC-UR/S (the triplicated experiments showed a good reproducibility). These results show
that the sorption capacity increases with the pH, almost linearly for MC and more marked
for MC-UR and MC-UR/S.
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dose, SD: 400 mg L−1; C0: 0.366 mmol Ce L−1; time: 48 h; v: 210 rpm; T: 22 ± 1 ◦C).

For the functionalized sorbents, the sorption slightly increases between 1.2 and 1.5
(with sorption capacities below 0.2 and 0.5 mmol Ce g−1). A steep increase is observed
up to pHeq 4–4.3 (qeq tends toward 0.8 and 1.3 mmol Ce g−1, for MC-UR and MC-UR/S,
respectively). Above pHeq 4.5, the sorption capacities stabilize. In order to avoid any risk of
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precipitation (especially at high concentrations, such as those used for sorption isotherms),
a pH above 6 was not tested, and further experiments were performed at pH0: 5.

Figure S11 shows the distribution of Ce(III) species as a function of the pH (under
experimental conditions selected for the study of the pH effect). At pH > 2, cerium is
present only as free Ce3+ species. In acidic solutions, the protonation of reactive groups (as
protonated amine groups, sulfonic acid moieties) involves the repulsion of Ce3+ cations
(and CeCl2+ at pH < 2) and limited sorption capacities. As the pH increases, this repulsion
decreases, and the sorption steeply increases, with this effect being especially notable below
pHeq 4–4.5. The sulfonated derivative shows a higher sorption capacity due to the increased
density of the reactive groups (amino and sulfonate groups).

Figure S12 shows that for MC and MC-UR, the sorption of Ce(III) is systematically
followed by a weak increase in the pH (by less than 0.3 units). On the other hand, for
MC-UR/S, consistent with its lower pHPZC value, the Ce(III) sorption slightly increases the
pH below pH 3, while above the equilibrium, the pH tends to decrease.

In ion exchange processes, the slope of the log10 plot of the distribution ratio D (D:
qeq/Ceq, L g−1) vs. pH gives the ionic charge of the exchanged metal ion [69]. Figure S13
shows that the linear plot for the functionalized sorbent is close to 0.5. This value is not
consistent with the theoretical interpretation described here, meaning that the binding
mechanism is not purely ion exchange.

3.2.2. Uptake Kinetics

The uptake kinetics are remarkably reproducible (note fine superposition of the tripli-
cated curves, Figure 3). The equilibrium is reached within 30–60 min. The micron size of
the sorbent particles may explain these fast equilibria. However, the t50 (time required to
reach 50% of the total sorption) is close to 15 min. The sorption kinetics may be controlled
by the proper reaction rate (which is frequently associated with a pseudo-first- or pseudo-
second-order rate equation, PFORE or PSORE, Table S4) and/or resistance to diffusion
(external and intraparticle diffusions). The lines in Figure 3 show the PFORE fits of the
kinetic profiles. The model roughly fits the experimental data. This is consistent with
the comparison of the statistical criteria (i.e., R2 and AIC) for PFORE, PSORE, and RIDE
(resistance to intraparticle diffusion, according to the Crank equation, Table S12a). The
quality of the fitting is demonstrated by the higher values of R2 and lower values of AIC
(the difference is significant when |∆AIC| > 2): PFORE > PSORE > RIDE.
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The PFORE slightly overestimates the qeq values (by 5–10%), which increase with
the successive functionalizations: 0.287 ± 0.012, 0.844 ± 0.010, and 1.233 ± 0.021 mmol
Ce g−1 (for the experimental values; 0.310 ± 0.017, 0.898 ± 0.008, and 1.310 ± 0.024 mmol
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Ce g−1 for the calculated values). The apparent rate coefficients (k1 × 102 min−1) are of the
same order for the three sorbents (though, in the case of MC, a greater dispersion of the
data is observed): 3.11 ± 0.73, 3.26 ± 0.05, and 3.81 ± 0.08 min−1, for MC, MC-UR, and
MC-UR/S, respectively. These values are of the same order of magnitude as the apparent
rate coefficients reported by Kołodyńska et al. [31] (0.8–1.4 10−2 min−1) for Nd(III), Ce(III),
and La(III) using composite biochar.

Sometimes, the fit of the kinetic profiles with the PFORE and/or PSORE is asso-
ciated with the prevalence of physi- or chemisorption. However, Simonin {Simonin,
2016 #2111 and Hubbe et al. {Hubbe, 2019 #4581} demonstrated the difficulty of cor-
relating the controlling mechanism with the mathematical fit because of the inappropri-
ate selection of the experimental conditions. Herein, the apparent rate coefficients of
PFORE are simply discussed as a tool for objectively comparing the systems. The RIDE
gives less accurate fits of the kinetic profiles, but the effective diffusivity coefficients de-
duced from these curves can be compared with the self-diffusivity of Ce(III) in water (i.e.,
D0(Ce3+): 3.72 × 10−8 m2 min−1} [70]). The values are several orders of magnitude lower
than D0(Ce3+), meaning that the resistance to intraparticle diffusion contributes to the
overall control of the uptake kinetics.

3.2.3. Sorption Isotherms

The sorption isotherms (i.e., plots of the sorption capacity vs. equilibrium concentra-
tion at fixed values of the pH and temperature) are represented in Figure 4 (herein, pH0 5; T:
22 ± 1 ◦C). The superposition of the triplicated curves confirm the good reproducibility of
the sorption experiments. The sorption isotherms are characterized by a pseudo-asymptotic
shape. The asymptote is correlated with the maximum sorption capacity (or sorption ca-
pacity at the saturation of the monolayer in the Langmuir model). This maximum sorption
capacity (i.e., qm,exp), consistent with previous observations, increases with the successive
functionalizations of the support: 0.549, 1.328, and 2.176 mmol Ce g−1 (for MC, MC-UR,
and MC-UR/S, respectively). The sorption capacity increases almost linearly with the num-
ber of potential reactive groups on the sorbent (i.e., Σ = n(N) + n(S), in molar units g−1):
qm = 0.647 Σ − 1.558.
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with the Langmuir equation (sorbent dose, SD: 400 mg L−1; C0: 0.007–3.57 mmol Ce L−1; time: 48 h;
v: 210 rpm; T: 22 ± 1 ◦C).

The sorption isotherms were fitted using the Langmuir, Freundlich, Sips, Temkin
and Dubinin–Radushkevich (D-R) equations (Table S12b). The Freundlich equation is an
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empirical model based on the concept of heterogeneous sorption, with possible interactions
of the sorbent molecules. Its mathematical expression (i.e., power-like function) is not
consistent with the asymptotic trend of the experimental profiles. Logically, this model gives
the poorest correlation between the experimental and fitted curves. The Langmuir equation
accounts for homogeneous sorption without interactions with the sorbed molecules and
with a similar distribution and binding energies. The Sips equation is a combination of the
Langmuir and Freundlich equations. Introducing a third adjustable parameter facilitates
the fitting of the experimental data (with a weaker physical significance). The adaptations
of the Temkin and the Dubinin–Raduskevich equations to liquid/solid systems are strongly
debated in terms of both the equations and interpretations [71,72]. Therefore, a case where
these equations closely fit the experimental profiles must be considered very carefully.
Tables S5–S7 summarize the parameters and the statistical criteria for the triplicates (and
for the composite isotherm obtained by combining the triplicates) for the five models and
the three sorbents. In the case of the MC sorbent, the Langmuir and the Sips equations gave
comparable qualitative fittings of the experimental curves. However, the fitting advantage
of the Langmuir equation consists of the closer values for qm,L with qm,exp (compared
with qm,S).

The Temkin equation fits the isotherms for MC-UR slightly better (preferentially
to Langmuir ≈ Sips). It is noteworthy that the energetic term (bT) decreases with the
functionalization of the material (according ≈21 > ≈11 > ≈5 J kg mmol−2). In the case of
MC-UR/S, the Langmuir equation is again the most appropriate for describing the Ce(III)
isotherm (Langmuir > Sips ≈ Temkin). Despite the less accurate fit of the isotherm with the
D-R equation, the characteristic free energy of the adsorption (EDR) can be used to analyze
and compare the sorption behavior of the three sorbents. The EDR for MC is a little lower
(i.e., around 3.6 kJ mol−1) than the values obtained for the functionalized sorbents (i.e.,
around 6 kJ mol−1).

The Langmuir equation shows a better fit for all of the three systems, making the
comparison of the model parameters easier (in addition to the more accurate determination
of the sorption capacity at saturation). The qm,L values increase from 0.626 ± 0.028 mmol
Ce g−1 to 1.305 ± 0.022 and 2.275 ± 0.017 mmol Ce g−1 for MC-UR and MC-UR/S,
respectively. The affinity coefficient (i.e., bL) for MC (≈1.506 ± 0.156 L mmol−1) is about
3 times lower than the values obtained for the functionalized sorbents (≈5.817 ± 0.720 and
≈5.379 ± 0.092 L mmol−1 for MC-UR and MC-UR/S, respectively). The grafting of the
urea onto MC doubles the maximum sorption capacity and almost quadruples the affinity
of the sorbent for Ce(III). After sulfonation, the affinity slightly decreases (by 8%), while
the maximum sorption capacity increases by 74% (proportionally to the change in the total
number of reactive groups).

MC-UR/S represents a good compromise in terms of the enhancement of the Ce(III)
sorption properties. These properties can be compared to those of alternative sorbents.
Table S8 shows that MC-U/S is comparable to the best sorbents reported in the literature.
The sorbents with the higher sorption capacities (i.e., higher than 2 mmol Ce g−1) are
based on magnetic cellulose [73], a carboxymethylcellulose highly opened monolith [74], a
polystyrene/poly(hydroxamic acid) copolymer sorbent [75], or a HKUST-1 metal–organic
foam [76]. It is noteworthy that MC-UR/S is characterized by one of the highest affinity co-
efficients (with the remarkable exception of HKUST-1-MOF). Combining these remarkable
characteristics, the fast kinetics, and the easy synthesis procedure, MC-UR/S is one of the
most promising sorbents described in the literature for Ce(III) recovery.

Based on the effect of the pH and the FTIR analysis, it is possible to suggest a series
of mechanisms involved in the binding of Ce(III) onto MC-UR/S (Scheme 1). In addi-
tion to the modes of interaction of lanthanides with sulfonate groups (as identified by
Kołodyńska et al. [42] for the Lewatit Monoplus SP112 macroporous cation exchanger),
the amine/amide groups present on urea moieties may also contribute to metal binding.
These sorption mechanisms may be affected by the reported oxidation of Ce(III) to Ce(IV).
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However, XPS analyses were not performed to verify the natural occurrence of oxidation
mechanisms under the selected experimental conditions.
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3.2.4. Sorption Selectivity

The selectivity of the sorbent is a key parameter in the design of new sorbents. To
evaluate the preference of the sorbents for the target metals (i.e., Ce(III) and, more generally,
REEs), the sorption properties of MC-UR and MC-UR/S were tested using equimolar
multicomponent solutions, including Ca(II), Mg(II) (among the alkali-earth elements),
Zn(II), Al(III), and Fe(III), as heavy metal ions (including trivalent cations), and Nd(III)
as a competitor REE. Figure S14 shows the log10 plot of the distribution coefficient vs.
the equilibrium pH for the two functionalized sorbents. Firstly, we can observe that the
distribution ratio is a little higher for the sulfonated sorbent. The bi-functionalization
allows for the increase in the selectivity for the REEs (herein, Nd(III) and Ce(III)), especially
at the highest pH values (at pHeq: 3.7–4.4).

In Figure 5, the selectivity coefficients SCCe/metal are compared for the different com-
petitor metals for the two functionalized sorbents, while Figure S15 visualizes the plots for
SCNd/metal. The improvement in the selectivity by sulfonation is due to the proper effect of
the sulfonate groups and the impact of the bi-functionality. The two REEs have comparable
SC values, and neither of the two sorbents can be used to directly separate the two metals.
The improvement in the selective separation by sulfonation (especially at the highest pH
values) is less marked in the case of Fe(III). The selectivity coefficients for MC-UR are less
influenced by the pH than those for MC-UR/S. Based on the SCCe/metal and SCNd/metal,
the preferential sorption follows the trends below:

For MC-UR: Ce(III) > Nd(III) > Fe(III) > Al(III) > Zn(II) > Mg(II) > Ca(II)

For MC-UR/S: Ce(III) > Nd(III) > Fe(III) > Zn(II) > Mg(II) > Al(III) > Ca(II).
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Figure 5. Selectivity tests for Ce(III) sorption using the MC-UR (a) and MC-UR/S (b) sorbents
and the multicomponent equimolar solutions—effect of the pHeq on SCCe/metal (SD: 1 g L−1;
C0: ≈1 mmol L−1; time: 10 h; v: 210 rpm; T: 22 ± 1 ◦C).

The sorption capacities are plotted vs. the Shannon ionic radius in Figure S16 at
different pH values for both the MC-UR and MC-UR/S sorbents. Irregular (parabolic)
trends appear in the acidic solutions. At pH 4.21–5.19 for MC-UR and at pH 3.89–4.75 for
MC-UR/S, the sorption capacities linearly increase with the radius of the trivalent metal
cations, while the opposite trend is observed for the divalent cations. Surprisingly, in the
case of MC-UR/S at pH 3.21, all the sorption capacities follow a linear increasing trend
with the Shannon ionic radius (without the breaking difference between the trivalent and
divalent cations).

Figure S17 explores another type of correlation plotting for the divalent and trivalent
cations, the sorption capacities vs. the ionic index (i.e., Z2/r, where Z is the ionic charge of
the metal ion and r is its ionic radius). The data were collected from the two sets of pH series,
identified in Figure S12 (as linear trends). The two groups of metal ions show relatively
good correlations with both MC-UR and MC-UR/S. The same test was performed by
plotting the sorption capacities vs. the covalent index (i.e., Xm

2 * r, where Xm is the Pauling
electronegativity, not shown). Herein, it was not possible to identify a clear correlation
between the parameters. Apparently, the binding of the metal ions mainly involves ionic
interactions rather than covalent bonds.

It is noteworthy that cerium sulfate was used for the study of sorption using multi-
component solutions. The control of the pH with HCl and the co-existence of competitor
metals, as chloride salts, contribute to maintain at least a fraction of the cerium as cerium
chloride cations (i.e., CeCl2+) in complement to Ce(SO4)2

−. The residual concentration of
Ce(III) is close to 0.4 mmol Ce L−1, with a sorption capacity close to 0.67 mmol Ce g−1.
Compared with the sorption capacity at Ceq: 0.4 mmol Ce L−1 in the sorption isotherm (i.e.,
≈1.5 mmol Ce g−1), the sorption was strongly reduced (by more than 2 times). This decrease
may thus be due to both the competition effects of other metals bound simultaneously and
the impact of changes in the metal speciation (due to the cerium sulfate salt).

3.2.5. Metal Desorption and Sorbent Recycling

As the sorption of cerium is favored at pH 5, acidic solutions are logically good
candidates for reversing the binding of the metal from loaded sorbents. This is confirmed
by a scan of the literature on cerium sorption, as 0.2 M HCl solutions were successfully used
for Ce(III) desorption from metal-bound biosorbents [26,77,78]. Vijayaraghavan et al. [28]
used 0.05 M HCl solutions in the case of brown algal biomass. Hamza et al. [48] used a
combination of HCl and CaCl2 (0.5 M/0.2 M CaCl2 solution) for the elution of REEs from
algal/PEI beads (calcium chloride contributes to the stabilizing of the alginate network).
Kołodyńska et al. [31] used zero-valent iron biochar composites for the sorption of REEs,
and they found that molar acidic solutions successfully desorb rare earths with a preference
for Ce(III) > Nd(III) > La(III), with HNO3 being more efficient (82–95%) than HCl (80–93%)
and H2SO4 (77–86%). Hamza et al. [79], using another type of magnetic chitosan derivative,
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showed that even with a 0.5 HCl solution, the release of iron does not exceed 1.1%, meaning
that the magnetite remains relatively stable. Herein, the HCl concentration was set to
0.2 M to limit the possible leakage of the iron and degradation of the magnetite. Figure S18
compares the Ce(III) desorption kinetics of MC, MC-UR, and MC-UR/S. The metal is
completely desorbed within 20–40 min, and the required time increases according to the
order of: MC-UR/S < MC < MC-UR. This is slightly faster than the proper uptake kinetics.

After demonstrating the effectiveness of the elution, the recycling of the sorbent was
evaluated over five successive cycles of sorption and desorption (Table 1). Comparing the
sorption and desorption efficiencies, we can see that the cerium is systematically, completely
eluted, meaning that the metal is not accumulated during the sorption lifecycle. On the
other hand, the sorption efficiency progressively decreases. However, the loss in the metal
recovery remains lower than 9% over the fifth cycle for the MC sorbent. The stability is even
better in the case of the functionalized sorbents; the loss in cerium removal is diminished
by 3.9% and 3.1% for MC-UR and MC-UR/S, respectively. The functionalization enhances
the stability of the sorption performance.

Table 1. Reuse of sorbents in the recovery of Ce(III)—sorption (SE, %) and desorption (DE, %)
efficiencies for five successive cycles.

Cycle
MC MC-UR MC-UR/S

SE (%) DE (%) SE (%) DE (%) SE (%) DE (%)

1
Aver. 16.1 100.6 45.9 99.9 71.8 100.4

Std. Dev. 0.6 0.5 0.5 1.1 1.5 0.5

2
Aver. 15.6 99.8 45.2 100.3 71.7 100.2

Std. Dev. 0.4 0.7 0.4 0.1 1.5 0.9

3
Aver. 15.5 100.3 44.9 100.6 70.8 99.7

Std. Dev. 0.6 0.2 0.7 0.4 1.1 0.5

4
Aver. 15.1 100.5 44.6 100.0 70.2 100.0

Std. Dev. 0.7 0.5 1.0 0.9 0.8 0.5

5
Aver. 14.7 99.9 44.2 100.0 69.7 100.3

Std. Dev. 0.7 0.4 0.8 0.5 0.8 0.2

Loss (5th/1st) (%) 8.7 - 3.8 - 3.1 -

Exp. Cond. for sorption—C0: 0.366 mmol Ce L−1; pH0: 5; SD: 0.4 g L−1; time: 24 h; v: 210 rpm; T: 22 ± 1 ◦C. Exp.
Cond. for desorption—eluent: 0.2 M HCl; SD: 2 g L−1; time: 2 h; v: 210 rpm; T: 22 ± 1 ◦C.

The weak loss in the sorption efficiency is apparently not associated with the progres-
sive saturation of the sorbent, since desorption is complete. Therefore, this may be due to
physicochemical changes derived from the sorbent processing. The successive incidences of
contact with pH 5 and the 0.2 M HCl solutions may cause some alterations in the sorbents.
The FTIR spectra of the sorbents after metal desorption (in the fifth cycle) were compared
with the spectra of the original materials but also with their spectra after being exposed to
the 0.2 M HCl solution (to isolate the respective contributions of the desorption and pH
change, see Section SB in the Supplementary Materials and Figure 1).

3.2.6. Application to Ore Raffinate

The ore was collected in the Abu Zenima area (in Southwestern Sinai, Egypt, Figure S19)
in a mineralogical Adedia formation (described in Section SD). This ore is mainly comprised
of phosphate minerals (iron, aluminum, magnesium, and rare earths) associated with
aluminosilicate (Table S9). In addition to these major elements, the mineralization is also
characterized by noticeable amounts of titanium, uranium, and lead.

The acidic leaching of the ore was processed at 150 ◦C in an agitated tank reactor for
2 h using concentrated sulfuric acid (200 g H2SO4 L−1). The solid/liquid ratio was set to
1/3. The composition of the leachate is summarized in Table S10. The most remarkable
concentrations were those of iron (i.e., 20.8 g Fe L−1), aluminum (i.e., 8.17 g Al L−1), calcium
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(i.e., 1.17 g Ca L−1), and manganese (i.e., 0.98 g Mn L−1). The acidic leachate also contains
high concentrations of REEs, with the global REE index being close to 8.7 g REE L−1, which
is, notably, comprised of neodymium (i.e., 0.98 g Nd L−1) and cerium (i.e., 0.43 g Ce L−1).

Uranium is another important element identified in the leachate (i.e., 200 mg U L−1),
which serves to decrease the possible contamination of the valorized REEs with hazardous
radio-elements (potentially including thorium). A pre-treatment of the leachate was con-
ducted at pH 1.8 using an Amberlite IRA-400 column (quaternary ammonium salt resin).
The uranyl removal reached 81%, while the loss in the REEs and cerium was less than 5%
(up to 11% for neodymium).

The high concentration of iron in the residue of the sorption may interfere with the
further steps in the valorization of strategic metals. After controlling the pH to 4, 98.8%
of the residual iron was precipitated (global loss, GL: 98.9%). This step hardly changed
the residual concentrations of U (GL: 83.5%) and the REEs (GL: 9.3%), including 10.1% for
Ce(III) and 18.1% for Nd(III).

The next step in the process consists of the recovery of the REEs using a strong cation
exchange resin (bearing sulfonic groups), Dowex 50X8, at pH 4. The resin collected 93.7%
of the REEs contained in the residue of the pH 4 precipitation step, and 84.8% for Ce(III)
and 87.2% for Nd(III) (Table S11). The residual concentrations of REEs stand at 498.6 mg
REE L−1 (58.8 mg Ce L−1 and 102.7 mg Nd L−1).

About 38.8% of the initial aluminum content remained in the outlet of the Dowex 50X8
column, and the residual concentration reaches about 5 g Al L−1. A new precipitation step
was processed at pH 5 to remove the aluminum (to limit its competition effect in the next
sorption step while using MC-UR/S). After this step, the uranium concentration was barely
changed, while the residual concentrations of the REEs remained close to 211 mg REE L−1,
57 mg Nd L−1 and 32.1 mg Ce L−1).

Figure S20 summarizes the distribution of the main relevant elements in the different
compartments of the pre-treatment leachates. Rare earth elements are mainly accumulated
in the Dowex 50X8 sulfonic resin (71.5–85.0%), which also binds lead (21.2%), while the
relative fractions of the other metals are systematically lower than 7.2%. Iron is mainly
present in the precipitate collected at pH 4 (i.e., 94.5%). The precipitation at pH 5 recovers
59.3% of Al(III), 39.4% of Cu(II), 17.7% of Mn(II), and 12.0% of Ca(II). The quaternary
ammonium salt resin Amberlite IRA-400 recovers 81.1% of U(VI) (14.8% remains in the
raffinate, to be treated with MC-UR/S), and up to 20.6% of Si(IV) is bound to the resin, while
for the other metal ions, the relative fractions remain below 10.6%. In fact, the raffinate
contains appreciable fractions of Ni(II) (80.4%), Si(IV) (i.e., 66.7%), Pb(II) (i.e., 53.8%), Ca(II)
(i.e., 50.9%), and Cu(II) (i.e., 40.0%), and 14.8% U(VI) (referring to the amounts present in
the leachate).

The raffinate contains limited values of REEs (between 2.4 and 7.5%), and the residual
concentrations are limited to 32.1 mg Ce L−1 (i.e., 0.242 mmol Ce L−1) and 57.4 mg Nd L−1

(i.e., 0.398 mmol Nd L−1). These concentration ranges are compatible with the conditions
for the effective application of MC-UR/S. The treatment of the raffinate solution was
performed at different pH values. Figure S21 shows that for all the elements, the sorption
capacity increases with the pH of the solution. Under the most favorable conditions (i.e.,
pHeq: 4.87), the recovery of metal ions from the raffinate reaches 59.4% for Ce(III) and
38.7% for Nd(III) (60.4% for the global REE index). Uranyl was also co-extracted (SE: 33.6%)
together with Fe(III) (SE: 32.7%).

Figure S22 reports the log10 plot of the distribution ratio vs. pHeq. The rare earth
elements show higher relative distribution ratios than the other metal ions or metalloids.
The sensitivity to pH is demonstrated by the slopes of the plots: the highest sensitivities
to pH are reported for Ce(III) > U(VI) > Pb(II) > Fe(III) > Nd(III) > Ca(II) ≈ Ni(II) >
Al(III) ≈ Si(IV) > Mn(II). There is no direct correlation between this ranking and the
intrinsic physicochemical properties of the target metals. The effects of the differential
concentration levels cannot apply to the relationships established above for the equimolar
multi-component solutions (in Section 3.2.4).
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The comparison of the molar distribution of the main elements in the raffinate
(Figure S23a) and in the residue of the sorption using MC-UR/S at the optimum pH
(Figure S23b) shows that, for most of the target elements, the molar fraction increases with
the sorption. The extent depends on the metal or metalloid, according to the following series:

Pb(II) > Ce(III) ≈ Fe(III) > U(VI) >> Mn(II) > Al(III) ≈ Ni(II) >> Nd(III) >> Ca(II) ≈ Si(IV).

This scale can be used to evaluate the potential of the sorbent to selectively enrich
some metals on the sorbent.

Figure S24 compares the plots of the selectivity coefficients SCCe/metal and SCNd/metal
at different pH values. The sorbent has a marked preference for Ce(III) against the heavy
metals. This preference is more marked than that for Nd(III). The SC values are globally
better at pHeq 4.15, which represents a good compromise, taking into account both the
sorption capacities and efficiencies, as well as the selectivity parameters. The exception is
the selectivity of MC-UR/S against Pb(II), which is maximal at pH 2.19, considering both
Ce(III) and Nd(III).

This work focused on the recovery of cerium from processed leachate using MC-
UR/S. It would be easy to recover the REE through acidic desorption (as illustrated by
Section 3.2.5) and then process the eluate by specific precipitation. Indeed, the metal could
readily be recovered using oxalic acid for the precipitation of the REE under controlled pH
conditions (i.e., pH 1.5) [80,81].

Han and Kim [82] reported that at a low H2SO4 concentration (0.1–0.2 M), CeSO4
+ and

Ce(SO4)2
− may coexist, while at a higher concentration (>1 M), the only species present

in the solution is the anionic form. Obviously, the environmental conditions may affect
the affinity of the sorbent for cerium through variations in the metal speciation. Under
the conditions selected for the tests on the processed ore leachate, cerium may be present
at least partially under a different speciation than that in the preceding study (where the
metal exists as CeCl2+). Therefore, the decrease in the sorption performance, compared
with the synthetic solutions, may be due to the cross-effects of the competition with other
metals for binding on the reactive groups and the change in the speciation (charge of the
cerium species).

4. Materials and Methods
4.1. Materials

Sodium bisulfite ~40%, formaldehyde 38% in H2O, chitosan (25% degree of acetylation,
DA), epichlorohydrin (EPI) 98%, urea >99%, NaOH anhydrous ≥98%, calcium chloride
anhydrous >97%, glutaraldehyde solution (25% w/w), and sodium nitrite ≥99.0% were
supplied by Sigma-Aldrich (Merck-KGa, Darmstadt, Germany). Neodymium sulfate
(used in the selectivity experiments) and cerium sulfate were provided by the National
Engineering Research Center of Rare Earth Metallurgy and Functional Materials Co.,
Ltd. (Baotou, China). MgCl2·6H2O, AlCl3·6H2O, CuSO4, and ZnCl2 were obtained from
Guangdong Guanghua, Sci-Tech Co., Ltd. (Guangdong, China).

4.2. Synthesis of Sorbents

The synthesis of the sorbents includes a series of steps that are described in detail in the
Supplementary Information (Section SE). Briefly, the magnetite nanoparticles were prepared
by the thermal co-precipitation of Fe(II) and Fe(III) salts. The magnetite chitosan particles
were obtained by the dispersion of the magnetite nanoparticles into a chitosan solution.
After adding glutaraldehyde to the suspension, the magnetic chitosan (MC) microparticles
were collected. For the synthesis of MC-UR, we mixed the magnetite nanoparticles with
urea and formaldehyde before mixing them with a chitosan acid solution and adding,
in the last step, glutaraldehyde (for the crosslinking). A sulfonating agent (N(SO3Na)3)
was prepared through a controlled reaction of sodium bisulfite with sodium nitrite in
solution. This reagent was used for sulfonating the MC-UR microparticles and producing
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(at a controlled temperature) MC-UR/S. Scheme 2 reports the suggested structures of the
selected sorbents.
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4.3. Characterization of Sorbents

The morphology of the sorbents was observed by SEM analysis (Phenom-ProX SEM
Eindhoven-Netherlands-Thermo Fisher Scientific, Waltham, MA, USA), while the chem-
ical composition was obtained by semi-quantitative EDX analysis (coupled with SEM).
FT-IR spectra were collected for the sorbents at different stages of use (raw, after metal
sorption, and after the fifth desorption). The samples were incorporated into KBr pellets
and analyzed using an IR-Tracer 100 FT-IR (Shimadzu, Tokyo, Japan). The thermogravi-
metric properties were characterized using a Netzsch STA-449-F3 Jupiter thermal analyzer
(Netzsch-Gerätebau-HGmbh; Selb, Germany) under nitrogen, with a ramp of 10 ◦C min−1.
The BET-surface area and porous characteristics were collected through the acquisition of
nitrogen adsorption–desorption isotherms (Micromeritics-TriStar, II-Norcross, USA-system,
77 K) using the BET and BJH equations. The samples were swept at 120 ◦C under N2
for 4 h. The size of the sorbent particles was determined by TEM analysis (JEOL, 1010-
JEOL Ltd., Tokyo, Japan). The pHpzc (pH of zero charge) was performed by the pH drift
method [83]. The pH was measured using a compact pH ionometer, S220 Seven (Mettler-
Toledo, Shanghai, China). Filtration was performed on the samples before the analysis
using 1.2 µm membranes. The elements were measured using ICP-AES (ICPS-7510, Shi-
madzu, Tokyo-Japan). The magnetic properties (M-H loop) were analyzed using a Lake
Shore 7410 vibrating sample magnetometer (VSM, Lake Shore Cryotronics, Westervill,
OH, USA). The elemental composition (C, S, N, H, and O weight contents) analysis was
carried out on the sorbent using an element analyzer (CHNOS, Vario EL III, Elementar
Analysensysteme GmbH, Sonaustraβe, Langenselbold, Germany).

4.4. Sorption Studies

Sorption studies were systematically performed in batch systems. A fixed volume of
the solution (V, L) containing a given concentration of metal (C0, mmol L−1) was mixed
with a fixed amount of the sorbent (m, g). The experiments were carried out at room
temperature (i.e., 20 ± 1 ◦C) under agitation (at 210 rpm). The initial pH was controlled by
sulfuric acid and NaOH solutions (1/0.1 M). Although the pH was not controlled during
sorption, the equilibrium pH (i.e., pHeq) was systematically monitored at the end of the
experiments. At given contact times (for uptake kinetics) or at equilibrium (24–48 h), the
samples were collected by filtration (and/or magnetic separation), and the residual metal
concentration (C(t) or Ceq, mmol L−1) was analyzed by inductively coupled plasma atomic
emission spectrometry (ICPS-7510, Shimadzu, Tokyo, Japan). The mass balance equation
enables the calculation of the sorption capacity (q, mmol g−1): q = (C0 − Ceq) × V/m. The
same protocol was used for the experiments involving the presence of different metals or
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salt (i.e., Na, Cl, etc.). For the study of the cerium desorption, the metal-loaded sorbents
(collected from the uptake kinetics experiments) were also processed in batch systems in the
presence of 0.2 M HCl solutions. Water-rinsing steps were systematically applied between
the sorption and desorption operations. The sorption tests were triplicated. The extensive
experimental conditions are systematically reported in the captions of the figures.

In the final application, the cerium recovery was investigated using MC-UR/S in pre-
treated solutions resulting from the leaching of an Egyptian ore (sulfuric acid concentrated
solutions). A series of pre-treatments were processed on the acidic leachate, including U
recovery using the Amberlite IRA-400 ion exchange resin (in fixed-bed column), pH control
(at pH 4 for the partial precipitation and co-precipitation of the base metals), and REE
recovery using the Dowex 50 X8 ion exchange resin. The outlet of the resin column was
controlled at pH 5 (to precipitate mainly Al(III)) before carrying out the sorption tests on
this raffinate using MC-UR/S (at different pH values) in an agitated reactor. The detailed
presentation of the experimental procedures is reported in the Supplementary Materials.

4.5. Modeling of the Sorption Properties

Conventional equations were used to model the uptake kinetics (including the pseudo-
first- and pseudo-second-order rate equations, and the Crank equation, Table S12a) and
sorption isotherms (including Langmuir, Freundlich, Sips, Temkin and Dubinin–Raduskevich
equations, Table S12b). The determination coefficient and the Akaike information criterion
(AIC) were systematically determined to compare the fitting of the experimental data
with these models. Non-linear regression analysis (Mathematica®, Wolfram Research,
Champaign, IL, USA) was systematically applied to optimize the selection of the fitting
parameters.

5. Conclusions

This work demonstrates that simple procedures for the functionalization of magnetic
chitosan microparticles (≈6 µm in size) can be used to successively immobilize amine
groups and grafted sulfonate moieties (confirmed by elemental analysis: ≈4.6 mmol N g−1,
and 1 mmol S g−1, when relevant).

The FTIR analysis confirms the contributions of different reactive groups to the binding
of the metal (amine/amide and hydroxyl/carbonyl from the chitosan and urea, and S-
based groups after the sulfonation of the sorbent). The magnetite nanoparticles (5–7 nm)
embedded in the polymer matrix confers superparamagnetic properties on the composite
(MC-UR/S).

The sorption capacity at pH0 5 doubled for the aminated sorbent and tripled after
dual functionalization (amination and sulfonation). The improvement in the sorption
performance is not correlated with the density of the reactive groups, and this enhancement
also results from the synergetic effects of the bi-functionalization. The fast kinetics (though
partially controlled by the resistance to intraparticle diffusion) enable the reaching of the
equilibrium within 60 min of contact, and the kinetic profiles are effectively described by
the pseudo-first-order rate equation. The acidic solutions (0.2 M HCl) are highly efficient
in the cerium elution from the metal-loaded sorbents. Despite the changes observed in
the FTIR spectra after the metal desorption and sorbent recycling (in the fifth cycle), the
comparisons of the desorption efficiency (which remained close to 100%) and sorption
efficiency (which lost only 3–4% for the functionalized sorbent vs. 11% for the raw MC)
confirm the outstanding stability of the functionalized sorbents.

The study of the pH effect on the metal sorption using the equimolar multi-component
solutions shows that the functionalized sorbents have a marked preference for rare earth
elements against heavy metals in mild acidic solutions. The sorption performances are corre-
lated with the intrinsic physicochemical characteristics of the metals; the sorption capacities
for the grouped metals (according to their ionic charge) are correlated with their ionic index
as an indication of the preference for ionic interaction rather than covalent bonding.
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The acidic leachate of an Egyptian ore generates leachates containing high concen-
trations of Al, Fe, and U, REEs that can be pre-treated using resins for the recovery of U
(Amberlite IRA-400) and REEs (Dowex 50X 8) and for the removal of excessive amounts
of Al and Fe (by precipitation). However, the effluent still contains appreciable quantities
of REEs. In order to valorize this effluent, MC-UR/S was successfully applied for the
sustainable recovery of REEs. We observed that the sorbent has a great selectivity against
heavy metals, especially at a pHeq of around 4.2 (iron being the least efficiently separated
within this series of competitor ions).
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