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Abstract: The present work deals with the micellar state study of sodium cholate and sodium
deoxycholate in the aqueous solution of a bioactive peptide, namely glycyl dipeptide, having different
concentrations through conductivity and fluorescence methods at different temperatures. The data
obtained from conductivity is plotted against the concentration of Bile salts, and CMC (critical micelle
concentration) values are calculated. The results realized have been elucidated with reference to
Glycyl dipeptide–bile salts hydrophobic/hydrophilic interactions existing in solution. In addition,
the CMC values converted to mole fraction (Xcmc) values have been used to evaluate the standard
thermodynamic factors of micellization viz., enthalpy H, free energy ∆G0

m, and entropy (∆S0
m)

which extract information regarding thermodynamic feasibility of micellar state, energy alteration,
and the assorted interactions established in the existing (bile salts–water–glycyl dipeptide) system.
Furthermore, the pyrene fluorescence spectrum has also been utilized to study the change in micro
polarity induced by the interactions of bile salts with glycyl dipeptide and the aggregation action of
bile salts. The decrease in modification in the ratio of intensities of first and third peaks i.e., (I1/I3)
for the pyrene molecules in aqueous bile salts solution by the addition of dipeptide, demonstrates
that the micelle polarity is affected by glycyl dipeptide. This ratio has also been utilized to determine
CMC values for the studied system, and the results have been found to be in good correlation with
observations made in conductivity studies.

Keywords: aggregation; bile salts; bioactive peptide; glycyl dipeptide; micellization

1. Introduction

Biologically significant macromolecules are the building blocks of living organisms
and are prerequisites for all forms of life. As the research related to new chemical and phar-
maceutical formulations has grown extensively in recent years, the industries are turning
more progressively towards biologically active compounds such as peptides/proteins in
search for better drug formulation [1]. In this regard, a considerable impetus is driven by
the unique requirement of proteins/peptides, because they provide procedures that are
more unwavering and have effectual bioavailability, and facilitate the sound development
of drugs. Peptides are short polymers formed by the connection of (≤100) amino acids
which encompass a few of the indispensable components of various biological processes of
living beings, such as enzymes, antibodies, sundry hormones, etc. They are the significant
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building units that create the workhorses for living entities known as proteins [2,3]. The
physiological action of a peptide is the manifestation of an assortment of interactions, which
they endure with several metabolites present in the body of living beings. To facilitate
discerning between these interactions, a logical acquaintance of solution behavior of such
chemical constituents makes it possible to extend a more general idea of association and
stability of bio-molecules such as amino acids, peptides, proteins, drugs, carbohydrates
etc. in aqueous solutions [4,5]. It is therefore also a step closer to understanding protein
self-aggregation, which perhaps is the reason behind several biological interactions.

Bile salts, the naturally occurring bio surfactants, are compounds containing steroid
ring structures, which comprise the hydroxyl group (2/3) with the carboxylic group holding
a side chain [6]. The steroidal framework of the molecules bear a puckered ring structure,
where theCH3 groups (having a low affinity towards water) occupy the concave side,
rendering the molecule amphiphilic characteristics, as shown in Figure 1. In aqueous
solution at concentration near to their critical micelle concentration (CMC), the bile salts
self-associate to make primary aggregates, which consists five to ten monomers, where
the convex side encounters the internal part of the aggregate and the concave side en-
counters the aqueous part [7,8]. The schematic presentation of micelle formation is shown
in Scheme 1. Furthermore, at a higher concentration these primary aggregates again as-
semble to produce secondary aggregates mediated through hydrophobic interactions and
hydrogen bonding. They are naturally prevailing amphiphiles that are synthesized in the
liver and play an imperative role in the solubilization of large hydrophobic constituents,
such as fats in living organisms [9,10]. They have received attention for their inimitable
characteristics, for instance their surface activity, self-aggregation, and solubilization of
aquaphobic molecules [11], and have many uses in the petrochemical, food, cosmetic, agro-
chemical, pharmaceutical, paint, textile, and coating industries, being used as emulsifiers,
solubilizers, suspension stabilizers, and wetting and foaming agents [12–15]. Thus, the
possibility of enhancing the use of the surfactants in various fields has motivated much
contemporary research.
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Scheme 1. Schematic presentation of micelle formation.

Furthermore, in contradiction to conventional surfactants, bio surfactants (bile salts)
possess a particular structure and stiff steroid backbone with an extended alkyl chain of
numerous lengths ending with the carboxylic acid group, which leads to a distinctive
aggregation behavior of bile salts and features which are more advantageous than conven-
tional surfactants [16,17]. They are small aggregates which help to solubilize and disperse
hydrolyzed fat and lipids that are derived from food. Bio-surfactants have a lesser amount
of toxicity and are formed from renewable substrates, and many display stabilities under
some conditions, viz. pH, temperatures, and ionic strength [18,19]. Interestingly, studies
on micellar aggregates of bile salts help us to understand the interactions of biological
membranes, hydrolysis, biliary secretion, and solubilization of cholesterol and hence are
able to disclose certain physiological processes [20–22]. In this paper, we intend to in-
vestigate the micellar action of bile salts, viz., sodium cholate (NaC) (C24H39O5Na) and
sodium deoxycholate (NaDC) (C24H39O4Na), in aqueous glycyl dipeptide, for attaining
the proper understanding of their properties and applications in various fields viz. chemi-
cal, biochemical, pharmaceutical and industrial fields. The system has been analyzed in
terms of variation in the micellar behavior of NaC and NaDC in the presence of glycyl
dipeptide, by investigating critical micelle concentration (CMC) and related parameters.
The analyzed system consists glycyl dipeptide, which may be considered to be the model
component of enzyme and may further give valuable information on the interactive na-
ture of biologically important compounds consisting of protein-bile salt. The study may
further lend a hand in understanding the self-aggregation mechanism of bile salts in the
presence of proteins/enzymes, which may be helpful in explaining the several biological
interactions and processes. The molecular structures of these compounds are shown in
Figure 1. Several physicochemical properties, for instance CMC, aggregation number,
degree of dissociation, thermodynamic parameters, and micellar properties of bile salts,
etc., have been frequently analyzed with the support of various investigating approaches,
for instance, conductivity, density, fluorescence, surface tension, viscosity, diffusion, light-
scattering, electron (nuclear) spin resonance methods (E(N)SR), osmometry, and refractive
index measurements [23–26]. Moreover, the micelle formation of bile salts is affected by
their external conditions, including the presence of co-solutes [27–31]. Thus, it is imperative
to study the micellization properties of these surfactants that accommodate to manage the
potency of various interactions affecting protein-surfactant systems.

2. Experimental Details
2.1. Chemicals

Distilled solvent water, used for the entire experiment, was obtained from a Millipore–
Elix system with conductivity (2 to 3) µS·cm−1 and pH~6.8−7.0 at temperature 298.15 K.
Analytical grade NaC and NaDC were purchased from Himedia Pvt. Ltd. (Mumbai, India)
and recrystallized from ethanol as per the method conveyed in our previous studies [29].The
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glycyl dipeptide was obtained from Spectrochem Pvt. Ltd. (Mumbai, India) and was
utilized by itself without applying any supplementary action. Pyrene of A.R. grade, used as
a fluorescent probe, was obtained from Merck (Darmstadt, Germany) and utilized without
passing through any treatment. Molecular weight, purity, and sources of the chemicals
used in our study are provided in Table 1.

Table 1. Various specifications of chemicals taken in the present study.

Chemical Name Source Mol.Wt./kg·mol−1 Purification Method Mass Fraction Purity a

Glycylglycine
(C4H8N2O3) Spectrochem Pvt. Ltd. 0.132 None 0.98

Sodium cholate
(C24H39O5Na) Himedia Pvt. Ltd. 0.431 Recrystallization 0.98

Sodium deoxycholate
(C24H39O4Na) Himedia Pvt. Ltd. 0.415 Recrystallization 0.98

Pyrene (C16H10) Merck 0.202 None 0.96
a Declared by the supplier.

2.2. Experimental Process
2.2.1. Conductivity Measurements

The desired solutions of sodium cholate (NaC) (1–20 mmol·kg−1) and sodium deoxy-
cholate (NaDC) (1–10 mmol·kg−1) were made in aqueous stock mixture of Glycyl dipeptide
(0.001, 0.005, and 0.010 mol·kg−1). The chemicals were weighed using a Shimadzu scale-
with the precision of ±0.0001 g. Conductivity was measured via digital conductivity meter
Cyberscan CON 510, whose procedure and principle of working has been elucidated ear-
lier [32]. The temperature was upheld constantly at ±0.1 K by flowing thermostated water
through a double-walled conductivity vessel containing the solution. The reproductivity of
the conductivity measurements was assessed to be ±15 µS·cm−1.

2.2.2. Fluorescence Measurements

The fluorescence spectral analysis was completed with an LS–55 Perkins Elmer Fluo-
rescence Spectrophotometer. The principle of working and procedure isdescribed in our
prior study [31]. The samples were analyzed by using a quartz cuvette with a 10 mm path
length. The wavelength for excitation was set aside at 334 nm and for the emission at 373
and 384 nm. The excitation slit was managed at 8.0 nm while the emission slit was kept at
2.5 nm. The pyrene solutions (2 µmol kg−1) utilized as a probe were prepared by following
the procedure documented in the literature [31].

3. Results and Discussion
3.1. Conductivity Studies
3.1.1. Micellization of Bile Salts in Aqueous Medium of Glycyl Dipeptide

This section employs the conductivity method to analyze the effect of micellization
on the interaction of NaC and NaDC with glycyl dipeptide in an aqueous medium at
fluctuating amounts (0.001, 0.005 and 0.010 mol·kg−1) and temperatures (from 293.15 K up
to 313.15 K). The conductivity data of NaC and NaDC in the aqueous solution of glycyl
dipeptide at different temperatures are encapsulated in Table S1 in the supporting data. The
illustrative plots between κ [NaC/NaDC] are presented in Figure 2. The plot displays a kink
at the point of aggregation i.e., critical micelle concentration (CMC). The (CMC) values of
NaC as well as NaDC have been extracted and are then turned into their mole fraction unit,
Xcmc, before exposing these values for a discussion of energetic micelle formation. However,
it is important to mention that the κ values increase linearly as a function of bile salt content,
prior (i.e., pre-micellar) and subsequently (i.e., post-micellar) to the point of aggregation,
i.e., critical micelle concentration (CMC), for all studied temperatures, as shown in Figure 2.
However, the CMC in the conductivity curves for NaC and NaDC cannot be identified
clearly as the change in conductivity near the CMC region is not very fine, which has a
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characteristic quality when coupled with bile salts [33,34] and with some binary mixtures
of conventional ionic surfactants. The elevation in κ values occurs more in pre-micellar
than post-micellar regions, because the conductivity of bile salts solution results from the
dependence of conductivity upon ions present on surfactants’ heads as well as the mobility
of ions. At lower concentrations, NaC and NaDC act as strong electrolytes and undergo
complete dissociation into ions and are free to move, therefore contributing significantly
toward conductivity value. Furthermore, as the bile salts content increases, the association
of bile salt initiates leads to the construction of self-organized molecular assemblies called
micelles [35]. The aggregation and incorporation of counter-ions into these aggregates cause
a diminishment in the number of free ions and hence a smaller increment in conductivity
values [36,37]. However, the conductivity κ values are of higher magnitude for sodium
cholate (NaC) in contrast to sodium deoxycholate (NaDC) for all the experimented systems.
This can be explained by considering the structural relationship between NaC and NaDC,
as NaDC has one less –OH group and hence lesser number of ions will be present for
the movement, resulting in lower conductivity values. Moreover, the conductivity values
escalate with the concentration of glycyl dipeptide for both the bile salts, and have been
found to increase with bile salt concentration. The increase in conductivity values with bile
salt concentration may be attributed to the fact that the number of charge carriers (ions)
increases with addition of bile salts as well as glycyl dipeptide [37].
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318.15 K (J).

3.1.2. Critical Micelle Concentration (CMC)

Furthermore, on the investigation of CMC values from Table 2, we infer that values
for bile salts in pure water are similar to those in the literature [38–41], decreasing while
proceeding towards higher concentrations of glycyl dipeptide. This leads to the following
outcomes on the addition of glycyl dipeptide:

1. There is a decrease in the thickness of the solvation layer surrounding the (ionic) head
groups of the bile salts.

2. The electrostatic repulsive kind of interactions are also lessened amongst the nega-
tively charged part of the bile salts.

These two outcomes are responsible for the net diminution in the hydrophilicity of
NaC and NaDC, i.e., their adsorption on the surface is increased and molecules assemble
effortlessly on the surface and within the solution and hence CMC values decrease. Herein,
it is imperative to remark that the dipeptides typically occur in the zwitterion and diffuse
into ions alike amino acids, for the reason that dipeptide bonds do not detach. This may
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firmly lead towards the formation of ion pairs among differently-charged head assemblies
of bile salts and molecules of glycyl dipeptide, by means of electrostatic interactions
triggering solubilization of the glycyl dipeptide. Nevertheless, it has been noticed that the
solubilization for the ion-pairs interaction of the glycyl dipeptide is privileged for NaC
compared to NaDC; this can be attributed to the lack of –OH group in the latter, which
makes it more hydrophobic. Precisely, glycyl dipeptide has been known to play a dual role,
as it also reinforces the arranged solvent molecules surrounding the steroidal backbone
of bile salt monomers with water molecules [38] or else the adding of glycyl dipeptide
molecules lessens the electrostatic repulsive-type interactions among polar head parts of
NaC/NaDC molecules and the ionic group of glycyl dipeptides. Moreover, the structured
water surrounding of the steroidal backbone of bile salt monomers may have been ruptured
withthe addition of glycyl dipeptide molecules [39]. This fortifies the solvophobicity of
the studied bile salts system and establishes an easier micelle formation, thus, a steady
decrease was observed for the CMC values. The uncertainty in the CMC values was
±0.03 × 10−3 and ±0.02 × 10−3 for NaC and NaDC, respectively.

Table 2. CMC values of bile salts in studied concentration of aqueous glycyl dipeptide at various
temperatures and experimental pressure, p = 0.1 MPa.

T (K)
CMC, 103

NaC, mmol·kg−1 NaDC, mmol·kg−1

Water 0.001 0.005 0.010 Water 0.001 0.005 0.010

293.15 14.4
(14.4) a 13.9 13.5 12.9 5.1 4.5 4.1 3.9

298.15

14.0
(14.1) a

(13.8) b

(12.9) c

(16.0) d

13.3 13.1 12.5 5.4 4.0 3.8 3.6

303.15 13.9
(14.0) a 13.5 13.3 12.8 5.7 4.5 4.2 4.0

308.15 14.1
(14.1) a 13.8 13.6 13.2 5.9 5.0 4.7 4.4

313.15 14.2
(14.3) a 14.1 13.9 13.5 6.1 5.4 5.1 4.8

a [38], b [39], c [40], d [41].

3.1.3. Temperature Dependence of XCMC (or CMC)

The variations of Xcmc (or CMC) with temperature sheds light on micelle formation
and micellar transitions to a large extent, and helps to identify the effect on the CMC of the
amphiphiles. The Xcmc values of bile salts in the considered solvent systems are recorded
in Table 3 and displayed against temperatures in Figure 3. A careful scrutiny of these plots
reveals that the values of Xcmc confirm a deep minimum at around 298.15–308.15 K for
NaC as well as for NaDC, and then escalate with rise in temperature. The variation in
the Xcmc values for NaC shows a typical U-type curve at the studied temperature range.
However, for NaDC, a sheer decrease can be observed from Figure 3.The steepness in the
Xcmc curves for NaC and NaDC clearly expose that the micellization behavior of these bile
salts is affected by temperature for all the concentrations. The larger diminishment in the
Xcmc values for NaDC along with temperature is the manifestation of the more hydrophobic
character of NaDC. These types of characteristics for several ionic and non-ionic surfactants
have already been suggested in the literature [40–42]. The temperature dependence on
the values of Xcmc for these bio-surfactants in aqueous systems can be construed as
hydrophobic and likewise hydrophilic hydrations [43–45]. In the pre-micellar region,
both the hydrations (i.e., hydrophobic along with hydrophilic hydrations) are equally
important, whilst the hydrophilic hydrations are feasible in the post-micellar region of
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amphiphilic systems. After micellization, hydrophobic and hydrophilic hydrations decrease
with temperature [43]. A lessening of hydrophilic hydration promotes the formation of
aggregates (micelles), whereas the lessening of hydrophobic hydration demotes the self-
assembling of amphiphilic molecules on escalating temperatures [45]. Subsequently, the
supremacy of these two outcomes will be decisive factors for governing the magnitude of
the CMC (or Xcmc) values in the studied temperature range. The uncertainty in the XCMC
values was ±0.0002 × 10−3 and ±0.0001 × 10−3 for NaC and NaDC, respectively.

Table 3. XCMC values of bile salts in studied concentration of aqueous glycyl dipeptide at various
temperatures and experimental pressures, p = 0.1 MPa.

T (K)

XCMC, 104

NaC, mmol·kg−1 NaDC, mmol·kg−1

Water 0.001 0.005 0.010 Water 0.001 0.005 0.010

293.15 2.59 2.48 2.43 2.32 10.44 8.09 7.37 7.01
298.15 2.52 2.41 2.36 2.25 9.72 7.19 6.83 6.47
303.15 2.48 2.45 2.39 2.3 9.9 8.09 7.55 7.19
308.15 2.54 2.5 2.45 2.37 10.44 8.99 8.45 7.91
313.15 2.56 2.55 2.5 2.43 10.98 9.71 9.17 8.63
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Alternatively, the increase in CMC values for studied bile salts in aqueous solutions
of glycyl dipeptide could also be ascribed to the thermal motion of existing species in
the ternary solution. It has also been observed that, with escalation in temperature, the
kinetic energy of the molecules (bile salts and solvent) piles up, owing to the upsurge in the
thermal motion of these molecules which ensures that the rupture of the water structure
and the formation of micelles becomes intricated. Thus, with the elevation in temperature,
disaggregation of micelles occurs; consequently, there is an increase in the XCMC or CMC
values for the studied system.

3.1.4. Thermodynamics of Micellization of NaC and NaDC in Aqueous Glycyl Dipeptide

The distinctive thermodynamic parameters in relation to the micellization process of
NaC and NaDC in analyzed solvent system have been calculated using the XCMC data
summarized in Table 3. The standard enthalpy for the formation of micelles, ∆H0

m for NaC
and NaDC have been estimated by using the Equation (1) [46,47]:

∆H0
m = −RT2(2 − α)[d(lnXcmc )/dT (1)
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where d(lnXCMC/dT) is the slope of lnXCMC versus T plots and α implies the degree of
counter–ion dissociation, given as (2).

α = S2/S1 (2)

where S1 and S2 signifies the slopes before and after the CMC region, respectively, calculated
by subjecting conductivity data to linear regression, and having a correlation factor greater
than 0.998. The standard free energy of micellization, (∆G0

m) nd entropy of micellization,
(∆S0

m, have been calculated from the following equations [46]:

∆G0
m = (2 − α)RTlnXcmc (3)

∆S0
m =

(
∆H0

m − ∆G0
m
)

T
(4)

The values of ∆H0
m, ∆G0

m, and ∆S0
m for NaC and NaDC in different concentrations of

glycyl dipeptide are tabulated in Table 4. In addition, their variations with temperature are
shown in Figure 4.
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Table 4. Counter ion dissociation, α and thermodynamic parameters, ∆H0
m (kJ·mol−1), ∆S0

m
(kJ·K−1·mol−1) and ∆G0

m (kJ·mol−1) for NaC and NaDC in studied concentration of aqueous glycyl
dipeptide at various temperatures and experimental pressure, p = 0.1 MPa.

T/K

NaC NaDC

α
∆H0

m
(kJ·mol−1)

∆S0
m

(J·K−1·mol−1)
∆G0

m
(kJ·mol−1)

α
∆H0

m
(kJ·mol−1)

∆S0
m

(J·K−1·mol−1)
∆G0

m
(kJ·mol−1)

Water

293.15 0.804
(0.790) a

6.72
(5.18) a

0.105
(0.099) a

−24.07
(−24.06) a

0.677
(0.662) a

31.32
(22.92) a

0.207
(0.179) a

−29.40
(−24.06) a

298.15
0.803

(0.791) a

(0.850) b

3.17
(1.79) a

(0.97) b

0.093
(0.088) a

(0.086) b

−24.59
(−24.50) a

(−24.60) b

0.667
(0.668) a

(0.780) b

18.11
(15.74) a

(0.57) b

0.163
(0.154) a

(0.098) b

−30.41
(−30.13) a

(−28.50) b

303.15 0.799
(0.780) a

−0.65
(−1.86) a

0.081
(0.077) a

−25.10
(−25.14) a

0.762
(0.761) a

03.44
(0.757) a

0.107
(0.120) a

−28.89
(−28.68) a

308.15 0.847
(0.828) a

−4.55
(−5.55) a

0.065
(0.062) a

−24.46
(24.29) a

0.774
(0.765) a

−10.76
(0.00) a

0.059
(0.095) a

−29.02
(−29.12) a

313.15 0.861
(0.834) a

−8.63
(−9.50) a

0.051
(0.048) a

−24.53
(−24.65) a

0.756
(0.755) a

−26.23
(−08.11) a

0.012
(0.069) a

−29.86
(−29.76) a
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Table 4. Cont.

T/K

NaC NaDC

α
∆H0

m
(kJ·mol−1)

∆S0
m

(J·K−1·mol−1)
∆G0

m
(kJ·mol−1)

α
∆H0

m
(kJ·mol−1)

∆S0
m

(J·K−1·mol−1)
∆G0

m
(kJ·mol−1)

[Glycyl Dipeptide] = 0.005 mol·kg−1

293.15 0.877 −6.13 0.135 −46.46 0.848 11.53 0.156 −34.13
298.15 0.919 −6.35 0.135 −47.17 0.821 1.40 0.122 −35.02
303.15 0.906 −6.56 0.134 −47.86 0.878 −9.47 0.086 −35.42
308.15 0.881 −6.77 0.133 −48.54 0.844 −21.00 0.048 −35.80
313.15 0.925 −6.98 0.132 −49.13 0.891 −33.75 0.010 −36.79

[Glycyl Dipeptide] = 0.005 mol·kg−1

293.15 0.907 −7.79 0.134 −47.92 0.734 14.39 0.168 −34.77
298.15 0.935 −8.05 0.133 −48.58 0.777 4.97 0.136 −35.58
303.15 0.939 −8.33 0.132 −49.28 0.796 −5.16 0.102 −36.07
308.15 0.945 −8.59 0.132 −49.91 0.721 −15.93 0.067 −36.49
313.15 0.92 −8.87 0.131 −50.58 0.803 −27.79 0.031 −37.50

[Glycyl Dipeptide] = 0.010 mol·kg−1

293.15 0.947 −11.37 0.123 −47.98 0.765 14.98 0.173 −35.72
298.15 0.952 −11.75 0.122 −48.60 0.765 6.11 0.143 −36.57
303.15 0.959 −12.18 0.12 −49.30 0.779 −3.40 0.110 −36.68
308.15 0.966 −12.6 0.119 −50.01 0.779 −13.49 0.077 −37.23
313.15 0.975 −12.95 0.118 −50.43 0.804 −24.55 0.044 −38.26

a [38], b [48].

A fascinating feature about the data related to Table 4 is that the values of ∆H0
m are

endothermic (i.e., positive) at a lower temperature up to 303.15 K for both bile salts, and
then turn to exothermic (i.e., negative) with a rise in temperatures for all the studied
systems of glycyl dipeptide, irrespective of the variation in concentration. The larger lack of
the –OH group in NaDC compared to NaC can be clearly noticed from more positive ∆H0

m
values for NaDC for all the concentrations of glycyl dipeptide. The micellization process
becomes more entropy-controlled for NaDC than that of NaC, as revealed by the fact
that the transferring of NaDC molecules is associated with more breakages of the solvent
structure to the micellar region, altogether explaining (for NaDC) > ∆S0

m (for NaC). This
seems to be steady with the actuality that the solubilization of glycyl dipeptide in NaDC is
more than NaC, and thus, signifying larger involvement of glycyl dipeptide towards the
thermodynamics process of micellization for NaDC.

Figure 4 depicts that the ∆H0
m and ∆S0

m values in aqueous and various concentrations
of glycyl dipeptidedecline with an upsurge in temperature. This behavior is vindicated by
the fact that the hydrophobic dehydration (being accountable for more positive ∆S0

m values
at low temperatures) displays the role of hydrophobic type interactions in micellization.
Similar results have been found for bile salts in binary solvent mixtures in aqueous sys-
tems [49]. This effect remains more effective for NaDC as attributed to larger positive ∆S0

m
values. Further, the decrease in ∆S0

m values with the rise in temperatures can be manifested
by the lessening of hydrogen bonding in spatial structures of water. Subsequently, when
the temperature is elevated, less energy is needed in the disruption of spatial arrangements,
owing to which more negative ∆H0

m values being observed [49]. Both the bile salts seem to
add their existence to this outcome, as recognized by more negative ∆H0

m values in the
presence and absence of glycyl dipeptide (Table 4). Similar outcomes have been revealed
by others [50] which suggested that the dispersion forces of interactions responsible for
negative ∆H0

m values, which characterize the foremost attractive force in the process of
micellization.

The ∆S0
m values become positive under the examined experimental temperature,

which makes the process of micellization for bile salts entropically favorable. As we know,
micellization is a process where the system endures transformation from a monomeric
state to micellar state, and thus a decline in ∆S0

m values have been observed. However,
more positive ∆S0

m values have been observed due to breakage in the arranged structure of
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solvents around the hydrophobic chains, leading to more randomness in the mixture [51].
However, the decline in ∆S0

m values with temperature may be explained in terms of the
enhanced randomness of hydrophobic chains in mixture solution as a result of breakage of
the ordered structure of solvent molecules [48].

In view of the evidence reported above, it is definite that, during the micelle formation
of bile salts, entropy driven at lower temperatures and enthalpy controlled at higher
temperatures occurs in different investigated concentrations of glycyl dipeptide. It was also
observed that hydrophobic as well as electrostatic interactions between bile salts and glycyl
dipeptide seem to be the outcomes of the temperature effect on ∆H0

m and ∆S0
m values. A

similar effect has also been reported in the literature [52,53] for ∆H0
m and ∆S0

m values for
ionic surfactants

It can be inferred from Table 4 that ∆G0
m, values seem to be negative and lie within the

range of −23 to −42 kJ·mol−1 for diverse surfactants other those non-ionic in nature [53].
This displays the feasibility for spontaneous process at all the studied temperature ranges
for the formation of micelles of NaC and NaDC in the studied system. The negative
values of ∆G0

m do not virtually depend on temperature orthe nature of glycyl dipeptide.
This behavior is accountable for the compensation among ∆S0

m and ∆H0
m values and

parting ∆G0
m values nearly unaffected. ∆G0

m is the summation of the (∆H0
m) and (−T∆S0

m)
contributions, but as the temperature escalates, the enthalpy influence to the free energy
rises, while the entropic influence declines, as revealed in Figure 4. Thus, the supremacy of
entropy is shifted to enthalpy at the mid-temperature range analyzed for both bile salts.

The above discussions on thermodynamic parameters have given an indication of a
significant contribution towards the micellization process by the size of the hydrophobic
assemblies. Thus, it is possible that the typical characteristic behaviors of glycyl dipeptide
in the presence of NaC and NaDC has been observed, as a result of the hydrophobicity in
the −R group as well as the hydrophilicity as a consequence of –NH3

+ and –COO− groups
present in the glycyl dipeptide. This may be the prime aspect in estimating the energetic
micelle formation of studied bile salts in aqueous glycyl dipeptide.

3.1.5. Enthalpy–Entropy Compensation for Micelle Formation

Enthalpy–entropy recompense stretches linear reliance amidst the variation in en-
thalpy (∆H0

m) and variation in entropy (∆S0
m) and acts as a basic foundation for the thermo-

dynamic investigation of the scarce and associated properties of micellization in numerous
solvent systems [29,54]. The process of micellization was studied as an influence of follow-
ing two consequences: (a) the “de-solvation” part, i.e., the dehydration of the hydrocarbon
tail of surfactant molecules, and (b) the “chemical” part, i.e., the accretion of the hydrocar-
bon tails of surfactant molecules in the process of micelle formation [55].

Basically, the recompense phenomenon amid ∆H0
m and ∆S0

m in the numerous proce-
dures is as follows [56]:

∆H0
m = ∆H∗

m + Tc ∆S0
m (5)

where Tc is the compensation temperature and signifies the slope of the ∆H0
m versus ∆S0

m
curve, and can be construed as solute–solvent interactions, i.e., anticipated as a degree of
the “de-solvation” part in the process of self-aggregation. The intercept ∆H0

m symbolizes
the solute–solute interaction and is considered as per an index of the “chemical” part during
micelle formation

In the present study, there seems to be an excellent relationship between the ∆H0
m and

∆S0
m values for NaC and NaDC at all the concentrations, with the correlation constantly

falling within the range of 0.997 to 0.999, as revealed by Figure 5. The plots divulge that
the compensation temperature Tc (277.15–303.15 K) lies in a close conformity with the
values given in the literature (270.15–300.15 K) [57], which recognize solvent structural
deviations accompanying the process of micelle formation etc. [57–59]. The intercept ∆H∗

m
decreased to some extent as we moved from values in water to aqueous glycyl dipeptide
was at a smaller proportion in aqueous NaDC than the NaC system, i.e., ∆H∗

m values are
more negative for NaDC than NaC at all studied solvent systems. The factor ∆H∗

m is the
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enthalpy at ∆S0
m = zero and points to the steadiness of micelles, thus, the higher the value

of ∆H∗
m, the lesser the firmness of the micelles [57]. Hence, the obtained results specify

the involvement of chemical parts in micellization, and the stability of the micelle formed
is improved with the addition of glycyl dipeptides, and this is more distinct with NaDC
than NaC. Analogous enthalpy—entropy recompense has also been reported in the case of
SDS—amino acid systems [60].
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0.010 mol·kg−1 aqueous glycyl dipeptide.

3.2. Fluorescence Probe Studies of NaC and NaDC

In this section, we explain fluorescence spectra for bile salts viz. NaC and NaDC for
the estimation of the CMC values in aqueous and aqueous solutions of glycyl dipeptide at
room temperature.

Pyrene, being a colorless solid used for the spectral measurements, is comprised of
four fused rings (benzene), which results in a flat aromatic arrangement. Pyrene is prepared
in partial organic complexes. The fluorescence spectrum of pyrene is quite sensitive to the
polarity of the solvent system, so it is used as a probe to assess the environments of the
solvent. This is because its excited state has non-planar shape, unlike that of the ground
state. Definite emission bands remain unaffected, but others may vary in intensity owing
to the strength of various interactions with the solvent.

The I1/I3 dependence of pyrene on the content of NaC and NaDC is demonstrated
in Figure 6. The I1/I3 remains unchanged up to a definite concentration of bile salts and
then drops down abruptly above it. The first break points in the fluorescence spectra
investigation by using pyrene solution as a probe are due to the solvent reliance of the
vibrational band intensities of the pyrene fluorescence spectra. The fluorescence spectra of
pyrene display five emission peaks at 373, 379, 383, 389, and 393 nm, detected for pyrene
solution (2 µmol·kg−1) and fluorescence spectra in water [61]. It has been perceived for
pyrene that the fraction of intensity of I1 to I3 at 373 and 384 nm, respectively, is a sensitive
parameter to characterize the polarity around the probe’s environment. The lower value
of the I1/I3 point to a polar environment [62–64] since pyrene has a lesser solubility in
aqueous mediums (~10−7 mol·kg−1) than that of hydrophobic solvent (0.075 mol·kg−1). It
is powerfully dispersed into micelles as quickly as they are formed, and since the conversion
can be observed by a rapid decline in the ratio of I1/I3, we can assume the commencement
of the micelle formation when the bile salts are mixed in the pyrene solution.



Molecules 2022, 27, 7561 12 of 15Molecules 2022, 27, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 6. Plots of I1/I3 versus concentration of (a) NaC and (b) NaDCin pure water and in 0.001 (■), 

0.005 (●), and 0.010 (▲) mol∙kg-1 glycyl dipeptide. 

The plots of I1/I3 versus the amount of NaC and NaDC in water and aqueous glycyl 

dipeptide are illustrated in Figure 6. When the micelles are not formed, i.e., below CMC 

pyrene undergoes the polarity from the environment around the water molecules that 

ultimately result in higher values of the I1/I3 ratio. However, when the micelles are 

formed, i.e., above the CMC, pyrene molecules are solubilized into the interior part of 

the micelle due to their more hydrophobic nature. Thus, the environment around the 

pyrene senses a hydrophobic solvent, which has smaller polarity owning to a decrease 

of I1/I3 values. It has been observed from the plots of I1/I3 that the values follow the se-

quence water > NaC > NaDC, which reflects the increasing nature of the hydrophobicity 

in the solvent system. 

The values for CMC have been computed by plotting the ratio of I1/I3against the con-

centration of bile salts by using the sigmoidal Boltzman equation (SBE) [64], where all the 

plots display sigmoidal nature. The CMC values for NaC and NaDC at lab temperature 

for the considered solvent systems are presented in Table 5. The CMC values measured 

by this method were also in a similar fashion to those found by conductance measure-

ments. The results corroborate the observations obtained from the conductance measure-

ments. 

Table 5. CMC of NaC and NaDC in studied concentration of aqueous glycyl dipeptide at room 

temperature and experimental pressure, p = 0.1 MPa. 

a m/mol∙kg−1 

CMC/mmol∙kg−1 

Fluorescence Probe Study Conductivity Study 

NaC NaDC NaC NaDC 

water 14.1 5.3 14 5.4 

0.001 13.5 4.1 13.3 4 

0.005 12.9 3.9 13.1 3.8 

0.010 12.6 3.8 12.5 3.6 
a m is the molality of Glycyl dipeptide in water. 

4. Conclusions 

The conductivity studies lead to a clear picture of the thermodynamic behavior of 

dipeptides; eventually the polypeptide and hence protein interactions in aqueous envi-

ronment will also be estimated easily. As shown in the present case, the interaction 

Figure 6. Plots of I1/I3 versus concentration of (a) NaC and (b) NaDC in pure water and in 0.001 (�),
0.005 (•), and 0.010 (N) mol·kg-1 glycyl dipeptide.

The plots of I1/I3 versus the amount of NaC and NaDC in water and aqueous glycyl
dipeptide are illustrated in Figure 6. When the micelles are not formed, i.e., below CMC
pyrene undergoes the polarity from the environment around the water molecules that
ultimately result in higher values of the I1/I3 ratio. However, when the micelles are formed,
i.e., above the CMC, pyrene molecules are solubilized into the interior part of the micelle
due to their more hydrophobic nature. Thus, the environment around the pyrene senses a
hydrophobic solvent, which has smaller polarity owning to a decrease of I1/I3 values. It
has been observed from the plots of I1/I3 that the values follow the sequence water > NaC >
NaDC, which reflects the increasing nature of the hydrophobicity in the solvent system.

The values for CMC have been computed by plotting the ratio of I1/I3 against the
concentration of bile salts by using the sigmoidal Boltzman equation (SBE) [64], where all
the plots display sigmoidal nature. The CMC values for NaC and NaDC at lab temperature
for the considered solvent systems are presented in Table 5. The CMC values measured by
this method were also in a similar fashion to those found by conductance measurements.
The results corroborate the observations obtained from the conductance measurements.

Table 5. CMC of NaC and NaDC in studied concentration of aqueous glycyl dipeptide at room
temperature and experimental pressure, p = 0.1 MPa.

a m/mol·kg−1

CMC/mmol·kg−1

Fluorescence Probe Study Conductivity Study

NaC NaDC NaC NaDC

water 14.1 5.3 14 5.4
0.001 13.5 4.1 13.3 4
0.005 12.9 3.9 13.1 3.8
0.010 12.6 3.8 12.5 3.6

a m is the molality of Glycyl dipeptide in water.

4. Conclusions

The conductivity studies lead to a clear picture of the thermodynamic behavior of
dipeptides; eventually the polypeptide and hence protein interactions in aqueous environment
will also be estimated easily. As shown in the present case, the interaction strength of dipeptide
with bio-surfactants increases with concentration increments but decreases with temperature,
showing a strong dependence on these parameters. However, NaDC appears to decrease the
CMC values to larger extent compared to NaC, due to its more hydrophobic nature and hence
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promotion of micellization. Furthermore, the results obtained from fluorescence spectroscopic
studies corroborate with results obtained from conductivity studies. The aforementioned
studies on Glycylglycine and NaC/NaDC thus seem to reveal the underlying facts about the
micellar structures and the role played by them in physiological systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules27217561/s1, Table S1: Specific Conductance, κ (µ Scm−1) values for NaC and
NaDC (mmol·kg−1)in pure water and in 0.001, 0.05 and 0.010 mol·kg−1 aqueous solution of glycyl
dipeptide at different temperatures.
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