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Abstract: We have developed a simple and convenient method for the synthesis of 3-aryl- and
3-hetaryl-1,2,4-oxadiazin-5-ones bearing an easily functionalizable (methoxycarbonyl)methyl group
at position 6 via the reaction of aryl or hetaryl amidoximes with maleates or fumarates. The con-
ditions for this reaction were optimized. Different products can be synthesized selectively in good
yields depending on the base used and the ratio of reactants: substituted (1,2,4-oxadiazin-6-yl)acetic
acids, corresponding methyl esters, or hybrid 3-(aryl)-6-((3-(aryl)-1,2,4-oxadiazol-5-yl)methyl)-4H-
1,2,4-oxadiazin-5(6H)-ones. The reaction is tolerant to substituents’ electronic and steric effects in
amidoximes. As a result, a series of 2-(5-oxo-3-(p-tolyl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic
acids, their methyl esters, and 1,2,4-oxadiazoles based on them were prepared and characterized
by HRMS, 1H, and 13C NMR spectroscopy. The structures of three of them were elucidated with
X-ray diffraction.

Keywords: amidoximes; heterocycles; esters; nucleophilic addition; cyclization; basic medium

1. Introduction

Amidoximes are polynucleophilic species that are widely used in synthetic chemistry
to assemble diverse heterocyclic [1–4] and organometallic systems [5,6]. The type of the
formed heterocyclic core depends mainly on the structure of the electrophile. In particular,
the coupling of amidoximes with carbonyl-based compounds such as aldehydes [7–9],
carboxylic acids [10–12], and their derivatives (esters [13–16], anhydrides [17–20], as well
as acyl chlorides [21–24]) usually results in 1,2,4-oxadiazoles. In this case, both nucle-
ophilic centers of amidoxime (NOH and NH2 groups) attack the same carbon atom of the
electrophile (Scheme 1A).

On the other hand, amidoximes react with α,β-unsaturated carbonyl compounds via
the Michael addition to the electron-deficient carbon atom of the double bond followed
by N-O bond cleavage and the formation of imidazole or pyrimidine core depending on
reaction conditions (Scheme 1B), which are harsh in both cases [25].

At the same time, it seems interesting to develop a convenient route for the preparation
of 1,2,4-oxadiazines based on such a reaction. These relatively little-studied heterocyclic
compounds have significant potential in medicinal chemistry [26–33]. The research in the
field of biological activity of this scaffold is hampered, first of all, by the lack of a suitable
simple and universal method for its synthesis [34].

In order for amidoximes to be a starting material for the preparation of 1,2,4-oxadiazines,
it is necessary that the electrophilic centers in the polyelectrophile occupy a vicinal position
(Scheme 1C). For example, the reaction of amidoximes with α-halocarbonyl compounds or
their derivatives with the formation of 1,2,4-oxadiazine core has been described [35–37]. Other
similar examples are reactions with perfluoroarenes [38], acetyleniodonium salts [39], and
acetylenedicarboxylates [40].
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Scheme 1. Previously known reactions of amidoximes with carboxylic acid derivatives (A),
α,β–unsaturated carbonyl compounds (B), and vicinal bis-electrophiles (C).

At first glance, the latter method is quite convenient due to the availability of acetylenedi-
carboxylates. Unfortunately, this reaction for most substrates resulted in low product yields
(not exceeding 50%). The reason for this, most likely, is the excessive reactivity of the interme-
diate, which contains the fumaric acid fragment. In the basic media, this intermediate is able
not only to cyclize to the target oxadiazinone but also to react with nucleophiles present in the
system, forming the double bond addition by-products [40].

The use of maleates and fumarates as polyelectrophiles, rather than acetylenedicar-
boxylates, looks much more attractive. However, the literature provides no examples of the
oxadiazine systems synthesis in this way. Although the addition of amidoximes to diethyl
chlorofumarate led to the formation of an oxadiazinon, the reaction yield was lower than
the one with diethyl acetylenedicarboxylate [40].
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We have recently shown [41–43] that, in the MOH-DMSO medium, both key stages of
the coupling between amidoximes and esters, namely O-acylation and 1,2,4-oxadiazole ring
closing, occur even at room temperature. We assumed that 1,2,4-oxadiazinones could also
be formed in this medium. We have studied this possibility with the example of dimethyl
maleate (DMM) and dimethyl fumarate and have shown that this reaction can indeed be a
convenient method for the synthesis of 1,2,4-oxadiazinones. Below we present the results
of this study.

2. Results and Discussion

To start, we evaluated the procedure [43] previously used for the assembly of 1,2,4-
oxadiazole core via the condensation of amidoximes with esters (Table 1, entry 1). Although
acid 3a was isolated as the main product instead of the expected ester 4a, this first exper-
iment encouraged us to conduct a more detailed study. The yield of acid 3a was only
37%, but the following optimization of DMM and NaOH amounts, as well as the reaction
time, provided a 65% yield of the product (Table 1, entries 2 and 4). Increasing the reagent
amounts and prolonging the reaction time did not improve the product yield; however,
it significantly promoted side processes, mainly the formation of 4-methylbenzonitrile
(Table 1, entries 3 and 5). Variation of the base used revealed that NaOH is the most suitable
alkali metal hydroxide for the preparation of acids 3, while the use of t-BuONa allows
one to obtain corresponding esters 4 (Table 1, entries 6–8). In the latter case, hybrid 5a
bearing two heterocyclic cores (1,2,4-oxadiazinone and 1,2,4-oxadiazole) with the same
aromatic substituent (4-methylphenyl) was detected as a minor byproduct (aside from
4-methylbenzonitrile). Probably, its formation can be explained by the reaction of ester 4a
with the second molecule of amidoxime 1a. After reducing the DMM/amidoxime ratio
from 2:1 to 0.4:1, we obtain hybrid 5a in yield of 82% (Table 1, entry 11). Finally, we carried
out the reactions with isomeric dimethyl fumarate (Table 1, entries 12 and 13) and found
no significant difference in the reactivity of the two esters (fumarate and maleate).

Next, we investigated the scope of amidoximes for the synthesis of acids 3 (Scheme 2),
esters 4, and hybrids 5 (Scheme 3). Electron-withdrawing substituents at position 4 of
amidoximes have almost no effect on the yield of the corresponding products either in
NaOH–DMSO medium or in t-BuONa–DMSO medium. The presence of electron donor
groups OMe and OPh in amidoximes leads to some decrease in the yields of acids (3c, 3i)
or esters (4c), but this effect is small. In the synthesis of hybrids 5, neither the methoxy
group nor even the amino group reduced the yields of the desired products (5c, 5h).
Substituents in the ortho-position also do not interfere with the reaction, although they
slightly reduce the yield of the corresponding products (3j, 3k, 4i, 4k, 5i) compared to their
para-substituted isomers.

The use of heterocyclic amidoximes made it possible to obtain 3-hetaryl-substituted
derivatives of 1,2,4-oxadiazin-5-ones in acceptable yields. At the same time, for 5-methyl-
thiazol-2-yl and pyridin-4-yl substituents, the corresponding hybrids 5 are formed as well
as acids 3 or esters 4. For pyridin-2-yl amidoxime, the yield of hybrid 5k is noticeably lower
than that of ester 4p. Nevertheless, we managed to isolate the corresponding hybrid, which
confirms the fundamental possibility of using the reaction we discovered for the synthesis
of 1,2,4-oxadiazinones bearing additional heterocyclic cores in this case as well.

To additionally confirm the structures of the obtained products, we used X-ray diffrac-
tion. Monocrystalline samples were grown for compounds 4d, 5b, and 5f, and their
structures were established by XRD (the structures solution and refinement details, as well
as numbering plots presented in Supplementary Materials, Table S1 and Figures S1–S3). In
cases of hybrids 5b and 5f, molecules in the crystals form dimers via N-H···O hydrogen
bonds between two oxadiazinone moieties (Figure 1B,C), whereas in the structure of ester
4d, the acidic NH proton of the oxadiazinone rings is involved in hydrogen bonds with
oxygen atoms of methoxy carbonyl groups (Figure 1A). Moreover, π···π stacking between
aromatic rings was observed in each case.
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Table 1. Optimization of the reaction conditions.
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Entry 2a (Equiv) 
Base 
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Isolated Yield, % 

3a 4a 5a 

1 1.5 NaOH (1.5) 4 37 26 – 

2 2.0 NaOH (2.0) 4 47 17 – 

3 2.5 NaOH (2.5) 4 35 14 – 

4 2.0 NaOH (2.0) 18 65 trace – 

Entry 2a (Equiv) Base (Equiv) Time, h
Isolated Yield, %

3a 4a 5a

1 1.5 NaOH (1.5) 4 37 26 –

2 2.0 NaOH (2.0) 4 47 17 –

3 2.5 NaOH (2.5) 4 35 14 –

4 2.0 NaOH (2.0) 18 65 trace –

5 2.0 NaOH (2.0) 24 61 trace –

6 2.0 LiOH (2.0) 18 60 trace –

7 2.0 KOH (2.0) 18 55 trace –

8 2.0 t-BuONa (1.0) 4 – 78 trace

9 2.0 t-BuONa (2.0) 4 – 58 18

10 0.4 t-BuONa (2.0) 4 – 29 54

11 0.4 t-BuONa (2.0) 18 – trace 82

12 a 2.0 NaOH (2.0) 18 63 trace –

13 a 2.0 t-BuONa (1.0) 4 – 76 trace
a Dimethyl fumarate 2b was used instead of 2a.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 17 
 

 

5 2.0 NaOH (2.0) 24 61 trace – 

6 2.0 LiOH (2.0) 18 60 trace – 

7 2.0 KOH (2.0) 18 55 trace – 

8 2.0 t-BuONa (1.0) 4 – 78 trace 

9 2.0 t-BuONa (2.0) 4 – 58 18 

10 0.4 t-BuONa (2.0) 4 – 29 54 

11 0.4 t-BuONa (2.0) 18 – trace 82 

12 a 2.0 NaOH (2.0) 18 63 trace – 

13 a 2.0 t-BuONa (1.0) 4 – 76 trace 
a Dimethyl fumarate 2b was used instead of 2a. 

Next, we investigated the scope of amidoximes for the synthesis of acids 3 (Scheme 

2), esters 4, and hybrids 5 (Scheme 3). Electron-withdrawing substituents at position 4 of 

amidoximes have almost no effect on the yield of the corresponding products either in 

NaOH–DMSO medium or in t-BuONa–DMSO medium. The presence of electron donor 

groups OMe and OPh in amidoximes leads to some decrease in the yields of acids (3c, 3i) 

or esters (4c), but this effect is small. In the synthesis of hybrids 5, neither the methoxy 

group nor even the amino group reduced the yields of the desired products (5c, 5h). 

Substituents in the ortho-position also do not interfere with the reaction, although they 

slightly reduce the yield of the corresponding products (3j, 3k, 4i, 4k, 5i) compared to 

their para-substituted isomers. 

 

Scheme 2. Reaction of amidoximes 1 with 2a in NaOH–DMSO medium. Reaction conditions: 1 (2 

mmol), 2 (4 mmol), NaOH (4 mmol), DMSO (3 mL), RT, 18 h. Isolated yields are presented. Scheme 2. Reaction of amidoximes 1 with 2a in NaOH–DMSO medium. Reaction conditions:
1 (2 mmol), 2 (4 mmol), NaOH (4 mmol), DMSO (3 mL), RT, 18 h. Isolated yields are presented.



Molecules 2022, 27, 7508 5 of 15Molecules 2022, 27, x FOR PEER REVIEW 5 of 17 
 

 

 

Scheme 3. Reactions of amidoximes 1 with 2a in t-BuONa–DMSO medium. Reaction conditions: 

(left) 1 (2 mmol), 2 (4 mmol), t-BuONa (2 mmol), DMSO (3 mL), RT, 4 h; (right) 1 (5 mmol), 2 (2 

mmol), t-BuONa (4 mmol), DMSO (3 mL), RT, 18 h. Isolated yields are presented. 
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Based on the literature data, we can suggest the following possible mechanism for the
formation of oxadiazines (Scheme 4). It is well known that amidoximes deprotonate in basic
media and attack (by the oxygen atoms) double bonds activated by electron-withdrawing
substituents [1,40,44]. In our case, intermediate I3 is obtained in this way. Then, in the basic
media, the amino group reacts with alkoxycarbonyl group [45], and the cyclization occurs
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to intermediate I4, which, after protonation and elimination of methanol, forms the target
product, similar to the reaction described in [37].
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3. Material and Methods
3.1. General

Amidoximes 1 were prepared from commercial nitriles according to the literature
procedures [10,17,46]. Maleic and fumaric esters, as well as all other reagents and solvents,
were purchased from Merck (Merck KGaA, Darmstadt, Germany) and used as is. Reactions
were monitored by analytical thin layer chromatography (TLC) Macherey-Nagel, TLC
plates Silufol UV-254 using UV light for detection. Column chromatography was carried
out with silica gel grade 60 (0.040–0.063 mm) 230–400. NMR spectra were recorded on
Bruker Avance DPX 400 (400 MHz, 101 MHz, and 376 MHz for 1H, 13C, and 19F, respec-
tively) or on Bruker Avance III 500 MHz (500 MHz for 1H, 126 MHz for 13C) in DMSO-d6,
CDCl3, or acetone-d6. Chemical shifts are reported as parts per million (δ, ppm). The 1H
and 13C spectra were calibrated using the residual signals of nondeuterated solvents as
internal reference (2.50 ppm for residual 1H, 39.50 ppm for 13C in DMSO-d6, 2.05 ppm
for residual 1H, 29.84 and 206.26 for residual 13C in acetone-d6; 7.26 ppm for residual
1H, 77.16 ppm for 13C in CDCl3). 19F NMR spectra were referenced through the solvent
lock (2H) signal according to IUPAC recommended secondary referencing method and
the manufacturer’s protocols, and the chemical shifts are reported relative to CFCl3 (δ
0.0 ppm). Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet,
q = quartet, m = multiplet, br = broad; coupling constants, J, are reported in Hertz (Hz).
Melting points were determined in open capillary tubes on Electrothermal IA 9300 series
Digital Melting Point Apparatus (Calibre Scientific, LA, CA, USA). High-resolution mass
spectra (HRMS) were measured on Bruker Maxis HRMS-ESI-qTOF (ESI Ionization) (Bruker,
Billerica, MA, USA).

Singe crystals for X-ray studying were obtained by slow evaporation of DMSO solu-
tions of corresponding oxadiazines 4d, 5b, and 5f at RT in air. X-ray diffraction data were
collected at an Xcalibur Eos (4d) (Agilent Technologies, Santa Clara, CA, USA), at a Rigaku
SuperNova (5f), and at a Rigaku XtaLAB Synergy-S (5b) (Rigaku Corporation, Tokyo,
Japan) diffractometers using MoKα (λ = 0.71073 nm) or CuKα (λ = 0.154184 nm) radiation.
The structures have been solved with the ShelXT [47] structure solution program using
Intrinsic Phasing and refined with the ShelXL [48] refinement package incorporated in the
OLEX2 program package [49] using Least Squares minimization. Empirical absorption
correction was applied in CrysAlisPro [50] program complex using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm. Supplementary crystallographic
data for this paper have been deposited at Cambridge Crystallographic Data Centre and
can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif (accessed on
30 October 2022). CCDC numbers 2210873 (4d), 2210875 (5b), and 2210876 (5f).

3.2. Oxadiazinones Preparation and Characterization

General procedure for preparation acids 3. To a solution of amidoxime 1 (2 mmol)
and ester 2 (4 mmol) in DMSO (3 mL), powdered NaOH (240 mg, 4 mmol) was rapidly
added. The reaction mixture was stirred at room temperature for 18 h, diluted with cold
brine (30 mL), and twice washed with toluene (5 mL). The water solution was acidified
to pH of about 1 by hydrochloric acid and cooled to 5 ◦C. The resulting precipitate was
filtered off, washed with cold water (5 mL), and dried in air at 50 ◦C.

2-(5-Oxo-3-(4-methylphenyl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3a. White
powder; 65% yield (161 mg); m.p. 198–199 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 12.55 (s, 1H),
11.33 (s, 1H), 7.64 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 4.54 (dd, J = 7.7, 4.5 Hz, 1H),
2.92 (dd, J = 16.8, 4.5 Hz, 1H), 2.66 (dd, J = 16.8, 7.7 Hz, 1H), 2.36 (s, 3H). 13C NMR (101 MHz,
DMSO-d6): δ 171.4, 167.3, 152.4, 141.8, 129.8, 127.3, 126.8, 73.1, 33.7, 21.6. HRMS (ESI), m/z:
[M + Na]+ calcd. for C12H12N2NaO4 271.0689; found 271.0703.

2-(5-Oxo-3-phenyl-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3b. Beige pow-
der; 82% yield (192 mg); m.p. 179–181 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 12.63 (s, 1H),
11.41 (s, 1H), 7.76 (d, J = 7.3 Hz, 2H), 7.58–7.43 (m, 3H), 4.58 (dd, J = 7.6, 4.5 Hz, 1H), 2.94
(dd, J = 16.8, 4.5 Hz, 1H), 2.68 (dd, J = 16.8, 7.7 Hz, 1H). 13C NMR (101 MHz, CDCl3): δ

www.ccdc.cam.ac.uk/data_request/cif
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171.2, 167.0, 152.3, 131.6, 129.5, 129.1, 127.2, 72.9, 33.5. HRMS (ESI), m/z: [M + Na]+ calcd.
for C11H10N2NaO4 257.0533; found 257.0538.

2-(3-(4-Methoxyphenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3c. Beige
powder; 54% yield (143 mg); m.p. 202–204 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 12.58 (s, 1H),
11.31 (s, 1H), 7.71 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H), 4.54 (dd, J = 7.1, 4.5 Hz, 1H), 3.82 (s,
3H), 2.93 (dd, J = 16.7, 4.1 Hz, 1H), 2.66 (dd, J = 16.7, 7.7 Hz, 1H). 13C NMR (101 MHz, CDCl3): δ
171.3, 167.2, 162.0, 152.0, 128.8, 121.5, 114.5, 72.9, 55.9, 33.5. HRMS (ESI), m/z: [M + Na]+ calcd.
for C12H12N2NaO5 287.0638; found 287.0644.

2-(3-(4-Nitrophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3d. Yel-
low powder; 66% yield (184 mg); m.p. 210–213 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 1H
NMR (400 MHz, DMSO) δ 12.13 (s, 1H), 8.33 (d, J = 8.9 Hz, 2H), 8.03 (d, J = 8.9 Hz, 2H),
4.65 (dd, J = 7.6, 4.5 Hz, 1H), 2.94 (dd, J = 16.8, 4.5 Hz, 1H), 2.68 (dd, J = 16.8, 7.6 Hz, 1H).
13C NMR (101 MHz, DMSO-d6): δ 171.3, 166.8, 151.0, 149.4, 135.5, 128.7, 124.2, 73.2, 33.7.
HRMS (ESI), m/z: [M + Na]+ calcd. for C11H9N3NaO6 316.0540; found 316.0527.

2-(5-Oxo-3-(4-(trifluoromethyl)phenyl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid
4e. White powder; 62% yield (187 mg); m.p. 218–220 ◦C. 1H NMR (400 MHz, DMSO-d6):
δ 12.60 (s, 1H), 11.59 (s, 1H), 7.97 (d, J = 8.2 Hz, 2H), 7.87 (d, J = 8.2 Hz, 2H), 4.63 (dd, J = 7.7,
4.5 Hz, 1H), 2.95 (dd, J = 16.8, 4.6 Hz, 1H), 2.70 (dd, J = 16.9, 7.7 Hz, 1H). 13C NMR (101 MHz,
DMSO-d6): δ 171.4, 167.0, 151.5, 133.6, 131.7 (q, J = 32.1 Hz), 128.4, 126.2, 124.5 (d, J = 272.7 Hz),
73.2, 33.6. 19F NMR (376 MHz, DMSO-d6): δ –61.43. HRMS (ESI), m/z: [M + Na]+ calcd. for
C12H9F3N2NaO4 325.0407; found 325.0409.

2-(3-(4-Fluorophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3f. Beige
powder; 63% yield (159 mg); m.p. 202–203 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 12.56 (s,
1H), 11.43 (s, 1H), 7.84–7.77 (m, 2H), 7.34 (t, J = 8.9 Hz, 2H), 4.57 (dd, J = 7.7, 4.5 Hz, 1H), 2.93
(dd, J = 16.8, 4.5 Hz, 1H), 2.67 (dd, J = 16.8, 7.7 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ
171.4, 167.2, 164.4 (d, J = 248.8 Hz), 151.8, 130.0 (d, J = 8.7 Hz), 126.2, 116.4 (d, J = 22.1 Hz),
73.1, 33.6. 19F NMR (376 MHz, DMSO-d6): δ –109.20. HRMS (ESI), m/z: [M + Na]+ calcd. for
C11H9FN2NaO4 275.0439; found 275.0453.

2-(3-(4-Bromophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3g. White
powder; 69% yield (216 mg); m.p. 246–248 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 12.55 (s, 1H),
11.44 (s, 1H), 7.70 (s, 4H), 4.58 (dd, J = 7.7, 4.5 Hz, 1H), 2.93 (dd, J = 16.8, 4.5 Hz, 1H), 2.67
(dd, J = 16.8, 7.7 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ 171.4, 167.1, 151.8, 132.3, 129.4,
128.9, 125.4, 73.1, 33.6. HRMS (ESI), m/z: [M + Na]+ calcd. for C11H9BrN2NaO4 334.9638;
found 334.9649.

2-(3-(4-Chlorophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3h. White
powder; 64% yield (172 mg); m.p. 191–193 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 12.38 (br s,
1H), 11.52 (s, 1H), 7.78 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H), 4.59 (dd, J = 7.5, 4.5 Hz, 1H),
2.93 (dd, J = 16.8, 4.4 Hz, 1H), 2.67 (dd, J = 16.8, 7.7 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ
171.2, 166.9, 151.5, 136.4, 129.2, 129.1, 128.3, 73.0, 33.5. HRMS (ESI), m/z: [M + H]+ calcd. for
C11H10ClN2O4 269.0324; found 269.0337.

2-(5-Oxo-3-(4-phenoxyphenyl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3i.
Beige powder; 38% yield (124 mg); m.p. 179–180 ◦C. 1H NMR (400 MHz, DMSO-d6):
δ 12.55 (s, 1H), 11.38 (s, 1H), 7.77 (d, J = 8.9 Hz, 2H), 7.46 (t, J = 8.0 Hz, 2H), 7.23 (t, J = 7.4 Hz,
1H), 7.13–7.03 (m, 4H), 4.56 (dd, J = 7.7, 4.5 Hz, 1H), 2.93 (dd, J = 16.7, 4.5 Hz, 1H), 2.67
(dd, J = 16.8, 7.7 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ 171.4, 167.2, 160.2, 156.1, 152.0,
130.9, 129.4, 125.1, 124.2, 120.3, 118.4, 73.1, 33.7. HRMS (ESI), m/z: [M + Na]+ calcd. for
C17H14N2NaO5 349.0795; found 349.0812.

2-(5-Oxo-3-(2-methylphenyl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3j. White
powder; 45% yield (112 mg); m.p. 201–202 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 12.60 (s,
1H), 11.21 (s, 1H), 7.46–7.40 (m, 2H), 7.35–7.27 (m, 2H), 4.62 (dd, J = 7.8, 4.4 Hz, 1H), 2.94
(dd, J = 16.8, 4.4 Hz, 1H), 2.68 (dd, J = 16.7, 7.8 Hz, 1H), 2.35 (s, 3H). 13C NMR (101 MHz,
DMSO-d6): δ 171.42, 166.82, 153.15, 137.37, 131.22, 131.04, 130.06, 126.50, 73.05, 33.71, 20.06.
HRMS (ESI), m/z: [M + Na]+ calcd. for C12H12N2NaO4 271.0689; found 271.0704.
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2-(3-(2-Chlorophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3k. Beige
powder; 48% yield (129); m.p. 197–199 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 12.65 (s, 1H),
11.42 (s, 1H), 7.64–7.55 (m, 3H), 7.47 (td, J = 7.4, 1.5 Hz, 1H), 4.60 (dd, J = 7.8, 4.5 Hz, 1H), 2.94
(dd, J = 16.8, 4.6 Hz, 1H), 2.72 (dd, J = 16.8, 7.7 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ
171.16, 166.35, 151.53, 132.82, 132.75, 131.94, 130.23, 129.41, 127.89, 72.98, 33.37. HRMS (ESI),
m/z: [M + H]+ calcd. for C11H10ClN2O4 269.0324; found 269.0334.

2-(3-(3,4-Dichlorophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3l.
White powder; 67% yield (203 mg); m.p. 243–245 ◦C. 1H NMR (400 MHz, DMSO-d6):
δ 12.60 (s, 1H), 11.52 (s, 1H), 8.00 (s, 1H), 7.80–7.72 (m, J = 8.5, 6.2, 1.9 Hz, 2H), 4.60 (dd,
J = 7.4, 4.6 Hz, 1H), 2.93 (dd, J = 16.8, 4.4 Hz, 1H), 2.69 (dd, J = 16.9, 7.6 Hz, 1H). 13C NMR
(101 MHz, DMSO-d6): δ 171.3, 166.9, 150.8, 134.5, 132.2, 131.6, 130.2, 129.4, 127.6, 73.2, 33.6.
HRMS (ESI), m/z: [M+Na]+ calcd. for C11H8Cl2N2NaO4 324.9753; found 324.9738.

2-(3-(3,5-Dichlorophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3m.
White powder; 76% yield (230 mg); m.p. 248–250 ◦C. 1H NMR (400 MHz, DMSO-d6): δ
12.59 (s, 1H), 11.51 (s, 1H), 7.83 (s, 1H), 7.79 (s, 2H), 4.60 (dd, J = 7.7, 4.5 Hz, 1H), 2.93 (dd,
J = 16.9, 4.5 Hz, 1H), 2.69 (dd, J = 16.9, 7.7 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ 171.3,
166.8, 150.5, 135.1, 133.0, 131.1, 126.2, 73.2, 33.6. HRMS (ESI), m/z: [M + Na]+ calcd. for
C11H8Cl2N2NaO4 324.9753; found 324.9774.

2-(3-(5-Methylthiophen-2-yl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid
3n. White powder; 52% yield (132 mg); m.p. 202–203 ◦C. 1H NMR (400 MHz, DMSO-d6): δ
12.55 (s, 1H), 11.50 (s, 1H), 7.58 (d, J = 3.7 Hz, 1H), 6.87 (dd, J = 3.6, 0.9 Hz, 1H), 4.57 (dd,
J = 7.7, 4.4 Hz, 1H), 2.92 (dd, J = 16.8, 4.4 Hz, 1H), 2.66 (dd, J = 16.8, 7.8 Hz, 1H), 2.47 (s, 3H)
13C NMR (101 MHz, DMSO-d6): δ 171.3, 167.0, 148.5, 144.6, 129.8, 128.8, 126.8, 73.5, 33.6,
15.7. HRMS (ESI), m/z: [M + Na]+ calcd. for C10H10N2NaO4S 277.0253; found 277.0244.

General procedure for preparation esters 4. To a solution of amidoxime 1 (2 mmol)
in DMSO (3 mL), t-BuONa (192 mg, 2 mmol) was rapidly added. The reaction mixture
was stirred at room temperature for 10 min, and ester 2 (4 mmol) was added. The reaction
mixture was stirred at room temperature for another 4 h and was diluted with cold brine
(30 mL). Compounds 4a, 4d, 4e, 4g, and 4l–p were filtered off, washed with cold water
(5 mL) or 2), and dried in air at 50 ◦C. Compounds 4b, 4c, 4f, 4h–k were extracted with
toluene (5 × 3 mL) and dried under reducing pressure. If necessary, the crude product
was purified by column chromatography on SiO2 using EA:Hexane:MeOH mixture as
an eluent.

Methyl 2-(3-(4-methylphenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4a.
White powder; 78% yield (205 mg); m.p. 158–160 ◦C. 1H NMR (400 MHz, CDCl3): δ 8.58 (s,
1H), 7.59 (d, J = 7.9 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 4.76–4.71 (m, 1H), 3.74 (s, 3H), 3.10
(dd, J = 16.9, 5.0 Hz, 1H), 2.89 (dd, J = 16.8, 7.2 Hz, 1H), 2.40 (s, 3H). 13C NMR (101 MHz,
CDCl3): δ 170.0, 166.6, 151.1, 142.6, 130.1, 126.1, 125.8, 73.2, 52.5, 33.4, 21.7. HRMS (ESI),
m/z: [M + Na]+ calcd. for C13H14N2NaO4 285.0846; found 285.0845.

Methyl 2-(5-oxo-3-phenyl-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4b. White pow-
der; 48% yield (119 mg); m.p. 124–126 ◦C. 1H NMR (400 MHz, CDCl3): δ 8.92 (s, 1H), 7.72
(d, J = 7.2 Hz, 2H), 7.56–7.44 (m, 3H), 4.75 (dd, J = 7.1, 5.1 Hz, 1H), 3.73 (s, 3H), 3.10 (dd,
J = 16.8, 5.1 Hz, 1H), 2.90 (dd, J = 16.8, 7.2 Hz, 1H). 13C NMR (101 MHz, CDCl3): δ 170.5,
167.0, 152.5, 131.9, 129.6, 129.3, 127.4, 72.8, 52.5, 33.4. HRMS (ESI), m/z: [M + Na]+ calcd. for
C12H12N2NaO4 271.0689; found 271.0681.

Methyl 2-(3-(4-methoxyphenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4c.
White powder; 42% yield (117 mg); m.p. 161–163 ◦C. 1H NMR (400 MHz, CDCl3): δ 10.05 (s,
1H), 8.74 (d, J = 5.1 Hz, 2H), 7.67 (d, J = 5.8 Hz, 2H), 4.79–4.73 (m, 1H), 3.74 (s, 3H), 3.11 (dd,
J = 16.9, 5.3 Hz, 1H), 2.93 (dd, J = 16.9, 6.8 Hz, 1H). 13C NMR (126 MHz, CDCl3): δ 169.9, 167.1,
162.4, 150.9, 127.7, 120.5, 114.5, 72.8, 55.5, 52.3, 33.2. HRMS (ESI), m/z: [M + Na]+ calcd. for
C13H14N2NaO5 301.0795; found 301.0794.

Methyl 2-(3-(4-nitrophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4d.
Yellow powder; 73% yield (214 mg); m.p. 112–113 ◦C. 1H NMR (400 MHz, DMSO-d6):
δ 11.71 (s, 1H), 8.34 (d, J = 8.6 Hz, 2H), 8.03 (d, J = 8.8 Hz, 2H), 4.71 (dd, J = 7.7, 4.5 Hz,
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1H), 3.67 (s, 3H), 3.07 (dd, J = 16.9, 4.6 Hz, 1H), 2.85 (dd, J = 16.8, 7.7 Hz, 1H). 13C NMR
(101 MHz, DMSO-d6): δ 170.2, 166.5, 151.1, 149.4, 135.4, 128.7, 124.2, 72.8, 52.3, 33.1. HRMS
(ESI), m/z: [M + Na]+ calcd. for C12H11N3NaO6 316.0540; found 316.0527.

Methyl 2-(5-oxo-3-(4-(trifluoromethyl)phenyl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)
acetate 4e. White powder; 52% yield (164 mg); m.p. 172–173 ◦C. 1H NMR (400 MHz,
CDCl3): δ 9.65 (s, 1H), 7.90 (d, J = 8.2 Hz, 2H), 7.73 (d, J = 8.1 Hz, 2H), 4.79–4.73 (m, 1H), 3.09
(dd, J = 16.8, 5.4 Hz, 1H), 2.92 (dd, J = 16.8, 6.8 Hz, 1H). 13C NMR (101 MHz, CDCl3): δ 169.8,
167.3, 150.0, 133.7 (d, J = 33.1 Hz), 132.0, 126.8, 126.3 (q, J = 3.5 Hz), 123.7 (d, J = 272.8 Hz),
73.0, 52.5, 33.3. 19F NMR (376 MHz, CDCl3): δ –63.13. HRMS (ESI), m/z: [M + Na]+ calcd.
for C13H11F3N2NaO4 339.0563; found 339.0558.

Methyl 2-(3-(4-fluorophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4f.
White powder; 62% yield (165 mg); m.p. 165–166 ◦C. 1H NMR (400 MHz, CDCl3): δ
9.06 (s, 1H), 7.74 (dd, J = 8.7, 5.1 Hz, 2H), 7.19–7.12 (m, 2H), 4.75–4.71 (m, 1H), 3.73 (s, 3H),
3.09 (dd, J = 16.9, 5.2 Hz, 1H), 2.89 (dd, J = 16.8, 7.0 Hz, 1H). 13C NMR (101 MHz, DMSO-d6):
δ 170.4, 166.9, 152.8, 151.9, 132.3, 129.5, 127.1 (d, J = 335.2 Hz), 72.8, 52.5, 33.3. 19F NMR
(376 MHz, CDCl3): δ –107.05. HRMS (ESI), m/z: [M + Na]+ calcd. for C12H11FN2NaO4
289.0595; found 289.0584.

Methyl 2-(3-(4-bromophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4g.
White powder; 78% yield (255 mg); m.p. 146–147 ◦C. 1H NMR (400 MHz, CDCl3): δ 9.09 (s,
1H), 7.61 (s, 4H), 4.74 (dd, J = 7.0, 5.2 Hz, 1H), 3.74 (s, 3H), 3.09 (dd, J = 16.8, 5.2 Hz, 1H),
2.90 (dd, J = 16.8, 7.0 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ 170.4, 166.9, 151.9, 132.3,
129.5, 128.8, 125.5, 72.8, 52.5, 33.3. HRMS (ESI), m/z: [M + Na]+ calcd. for C12H11BrN2NaO4
348.9794; found 348.9778.

Methyl 2-(3-(4-chlorophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4h.
White powder; 55% yield (155 mg); m.p. 168–170 ◦C. 1H NMR (400 MHz, CDCl3): δ 9.21
(s, 1H), 7.68 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H), 4.73 (dd, J = 6.9, 5.2 Hz, 1H), 3.73
(s, 3H), 3.09 (dd, J = 16.8, 5.2 Hz, 1H), 2.90 (dd, J = 16.8, 7.0 Hz, 1H). 13C NMR (101 MHz,
CDCl3): δ 170.5, 167.0, 151.9, 136.6, 129.4, 129.3, 128.5, 72.84, 52.5, 33.3. HRMS (ESI), m/z:
[M + Na]+ calcd. for C12H11ClN2NaO4 305.0300; found 305.0280.

Methyl 2-(3-(2-methylphenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4i.
White powder; 52% yield (136 mg); m.p. 115–117 ◦C. 1H NMR (400 MHz, CDCl3): δ 9.09 (s,
1H), 7.47–7.27 (m, 2H), 7.38–7.30 (m, 2H), 4.73 (dd, J = 7.2, 5.1 Hz, 1H), 3.72 (d, J = 1.3 Hz,
3H), 3.08 (dd, J = 16.9, 4.9 Hz, 1H), 2.88 (dd, J = 16.8, 7.1 Hz, 1H), 2.39 (s, 3H).13C NMR
(101 MHz, DMSO-d6): δ 170.5, 167.0, 152.6, 138.6, 132.5, 129.5, 129.2, 127.9, 124.6, 72.8, 52.5,
33.4, 21.5. HRMS (ESI), m/z: [M + Na]+ calcd. for C13H14N2NaO4 285.0846; found 285.0859.

Methyl 2-(3-(2-methoxyphenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4j.
White powder; 46% yield (128 mg); m.p. 110–112 ◦C. 1H NMR (400 MHz, CDCl3): δ 9.08
(s, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.30–7.25 (m, 2H), 7.05 (dd, J = 8.2, 2.4 Hz, 1H), 4.73 (dd,
J = 7.2, 5.0 Hz, 1H), 3.83 (s, 3H), 3.73 (s, 3H), 3.08 (dd, J = 16.8, 5.0 Hz, 1H), 2.88 (dd, J = 16.8,
7.1 Hz, 1H). 13C NMR (126 MHz, CDCl3): δ 169.8, 166.6, 160.1, 150.8, 130.2, 129.7, 118.3, 118.1,
111.0, 72.9, 55.5, 52.3, 33.1. HRMS (ESI), m/z: [M + Na]+ calcd. for C13H14N2NaO5 301.0795;
found 301.0802.

Methyl 2-(3-(2-chlorophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4k.
Light-brown powder; 41% yield (116 mg); m.p. 91–92 ◦C. 1H NMR (400 MHz, CDCl3): δ
8.76 (s, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.44 (d, J = 3.4 Hz, 2H), 7.37–7.32 (m, 1H), 4.72 (dd,
J = 7.5, 4.8 Hz, 1H), 3.71 (s, 3H), 3.03 (dd, J = 16.7, 4.8 Hz, 1H), 2.86 (dd, J = 16.8, 7.5 Hz,
1H). 13C NMR (126 MHz, CDCl3): δ 169.8, 165.7, 150.6, 132.6, 132.6, 131.5, 130.5, 128.0,
127.5, 72.9, 52.4, 33.1. HRMS (ESI), m/z: [M + Na]+ calcd. for C12H11ClN2NaO4 305.0300;
found 305.0274.

Methyl 2-(3-(3,4-dichlorophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate
4l. White powder; 60% yield (190 mg); m.p. 163–165 ◦C. 1H NMR (400 MHz, CDCl3): δ
9.21 (s, 1H), 7.87 (s, 1H), 7.60–7.53 (m, 2H), 4.74 (dd, J = 6.9, 5.0 Hz, 1H), 3.74 (s, 3H), 3.11
(dd, J = 16.9, 5.1 Hz, 1H), 2.92 (dd, J = 16.9, 6.9 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ
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170.4, 166.8, 150.9, 134.6, 132.2, 131.6, 130.2, 129.4, 127.6, 72.9, 52.5, 33.3. HRMS (ESI), m/z:
[M + Na]+ calcd. for C12H10Cl2N2NaO4 338.9910; found 338.9909.

Methyl 2-(3-(3,5-dichlorophenyl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate
4m. White powder; 53% yield (168 mg); m.p. 145–147 ◦C. 1H NMR (400 MHz, CDCl3):
δ 9.41 (s, 1H), 7.67 (s, 2H), 7.50 (s, 1H), 4.75–4.70 (m, 1H), 3.74 (s, 3H), 3.13 (dd, J = 16.9,
3.6 Hz, 1H), 2.93 (dd, J = 17.1, 6.9 Hz, 1H). 13C NMR (101 MHz, CDCl3): δ 169.9, 167.3,
149.0, 136.2, 131.8, 131.4, 124.8, 73.0, 52.6, 33.2. HRMS (ESI), m/z: [M + Na]+ calcd. for
C12H10Cl2N2NaO4 338.9910; found 338.9887.

Methyl 2-(3-(5-methylthiophen-2-yl)-5-oxo-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate
4n. White powder; 53% yield (142 mg); m.p. 168–170 ◦C. 1H NMR (400 MHz, CDCl3): δ
9.69 (s, 1H), 7.32 (d, J = 3.7 Hz, 1H), 6.75 (s, 1H), 4.77–4.71 (m, 1H), 3.73 (s, 3H), 3.07 (dd, J = 16.7,
5.2 Hz, 1H), 2.88 (dd, J = 16.6, 7.2 Hz, 1H), 2.49 (s, 3H). 13C NMR (126 MHz, CDCl3): δ 169.7,
167.2, 147.4, 145.6, 127.9, 127.8, 126.0, 73.1, 52.3, 33.2, 15.6. HRMS (ESI), m/z: [M + Na]+ calcd.
for C11H12N2NaO4S 291.0410; found 291.0390.

Methyl 2-(5-oxo-3-(pyridin-4-yl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4o. White
powder; 50% yield (125 mg); m.p. 145–147 ◦C. 1H NMR (400 MHz, CDCl3): δ 10.05 (s, 1H),
8.74 (d, J = 5.0 Hz, 2H), 7.67 (d, J = 5.7 Hz, 2H), 4.79–4.73 (m, 1H), 3.74 (s, 3H), 3.11 (dd, J = 16.9,
5.3 Hz, 1H), 2.93 (dd, J = 16.9, 6.8 Hz, 1H). 13C NMR (126 MHz, CDCl3): δ 169.7, 166.8, 150.6,
149.1, 136.4, 120.0, 72.9, 52.4, 33.1. HRMS (ESI), m/z: [M + Na]+ calcd. for C11H11N3NaO4
272.0642; found 272.0639.

Methyl 2-(5-oxo-3-(pyridin-2-yl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetate 4p. White
powder; 61% yield (152 mg); m.p. 119–120 ◦C. 1H NMR (400 MHz, CDCl3): δ 9.42 (s, 1H), 8.58
(d, J = 4.5 Hz, 1H), 8.08 (d, J = 7.9 Hz, 1H), 7.81 (td, J = 7.7, 1.6 Hz, 1H), 7.45–7.40 (m, 1H), 4.75
(dd, J = 7.6, 4.4 Hz, 1H), 3.75 (s, 3H), 3.15 (dd, J = 16.9, 4.5 Hz, 1H), 2.91 (dd, J = 16.9, 7.6 Hz, 1H).
13C NMR (101 MHz, CDCl3): δ 170.0, 165.1, 148.8, 145.3, 137.7, 126.3, 121.1, 73.4, 52.5, 40.5, 33.6.
HRMS (ESI), m/z: [M + Na]+ calcd. for C11H11N3NaO4 272.0642; found 272.0656.

General procedure for preparation of hybrids 5. To a solution of amidoxime 1
(5 mmol) and ester 2 (2 mmol) in DMSO (3 mL), t-BuONa (384 mg, 4 mmol) was rapidly
added. The reaction mixture was stirred at room temperature for 18 h and diluted with
cold brine (30 mL). The resulting precipitate was filtered off, washed with cold water
(5 mL), and dried in air at 50 ◦C. If necessary, the crude product was purified by column
chromatography on SiO2 using EA:Hexane:MeOH mixture as an eluent.

3-(4-Methylphenyl)-6-((3-(4-methylphenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxa
diazin-5(6H)-one 5a. Beige powder; 82% yield (297 mg); m.p. 189–190 ◦C. 1H NMR (400 MHz,
Acetone-d6): δ 10.26 (s, 1H), 7.97 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz,
2H), 7.32 (d, J = 7.9 Hz, 2H), 4.98 (dd, J = 8.2, 4.6 Hz, 1H), 3.80 (dd, J = 16.4, 4.5 Hz, 1H),
3.55 (dd, J = 16.4, 8.1 Hz, 1H), 2.42 (s, 3H), 2.40 (s, 3H). 13C NMR (101 MHz, Acetone-d6): δ
176.5, 168.2, 165.4, 152.0, 141.7, 141.6, 129.6, 129.3, 127.1, 126.6, 126.4, 124.1, 73.2, 26.0, 20.6, 20.5.
HRMS (ESI), m/z: [M + Na]+ calcd. for C20H18N4NaO3 385.1277; found 385.1251.

3-Phenyl-6-((3-phenyl-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadiazin-5(6H)-one 5b.
Beige powder; 61% yield (204 mg); m.p. 194–196 ◦C. 1H NMR (400 MHz, DMSO-d6): δ
11.59 (s, 1H), 8.05–7.99 (m, 2H), 7.79–7.75 (m, 2H), 7.61–7.47 (m, 6H), 4.95 (dd, J = 8.0, 4.6 Hz,
1H), 3.78 (dd, J = 16.5, 4.6 Hz, 1H), 3.59 (dd, J = 16.4, 8.0 Hz, 1H). 13C NMR (101 MHz,
DMSO-d6): δ 177.2, 168.1, 166.2, 152.5, 132.1, 131.8, 129.7, 129.2, 129.1, 127.5, 127.3, 126.5, 73.1,
26.2. HRMS (ESI), m/z: [M + Na]+ calcd. for C18H14N4NaO3 357.0958; found 357.0943.

3-(4-Methoxyphenyl)-6-((3-(4-methoxyphenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-ox
adiazin-5(6H)-one 5c. Beige powder; 51% yield (178 mg); m.p. 181–182 ◦C. 1H NMR (400 MHz,
DMSO-d6): δ 11.49 (s, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.72 (d, J = 8.9 Hz, 2H), 7.11 (d, J = 8.8 Hz,
2H), 7.04 (d, J = 8.9 Hz, 2H), 4.89 (dd, J = 8.0, 4.5 Hz, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.73 (dd,
J = 16.4, 4.6 Hz, 1H), 3.53 (dd, J = 16.4, 8.1 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ 176.9,
167.8, 166.4, 162.2, 162.1, 152.3, 129.2, 128.8, 121.3, 118.8, 115.1, 114.5, 73.1, 55.9, 26.2. HRMS (ESI),
m/z: [M + Na]+ calcd. for C20H18N4NaO5 417.1169; found 417.1165.

3-(4-Nitrophenyl)-6-((3-(4-nitrophenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadi
azin-5(6H)-one 5d. Yellow powder; 76% yield (322 mg); m.p. 216–217 ◦C. 1H NMR
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(400 MHz, DMSO-d6): δ 11.87 (s, 1H), 8.41 (d, J = 8.7 Hz, 2H), 8.33 (d, J = 8.7 Hz, 2H), 8.26
(d, J = 8.6 Hz, 2H), 8.03 (d, J = 8.9 Hz, 2H), 5.04 (dd, J = 7.9, 4.6 Hz, 1H), 3.85 (dd, J = 16.6,
4.7 Hz, 1H), 3.68 (dd, J = 16.6, 7.9 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ 178.0, 166.9,
165.8, 151.3, 149.7, 149.5, 135.2, 132.2, 128.9, 128.8, 125.0, 124.2, 73.1, 26.2. HRMS (ESI), m/z:
[M + Na]+ calcd. for C18H12N6NaO7 447.0660; found 447.0659.

3-(4-(Trifluoromethyl)phenyl)-6-((3-(4-(trifluoromethyl)phenyl)-1,2,4-oxadiazol-5-yl)me
thyl)-4H-1,2,4-oxadiazin-5(6H)-one 5e. Light-yellow powder; 53% yield (249 mg); m.p.
203–205 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 11.79 (s, 1H), 8.21 (d, J = 8.1 Hz, 2H),
7.99–7.93 (m, 4H), 7.86 (d, J = 8.3 Hz, 2H), 5.02 (dd, J = 7.8, 4.6 Hz, 1H), 3.82 (dd, J = 16.5,
4.7 Hz, 1H), 3.64 (dd, J = 16.5, 7.8 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ 177.8, 167.2, 166.1,
151.8, 133.3, 131.9 (d, J = 31.1 Hz), 131.6 (d, J = 30.9 Hz), 130.3, 128.3 (d, J = 11.7 Hz), 126.8 (q,
J = 3.6 Hz), 126.0 (q, J = 3.6 Hz), 125.7, 122.9, 120.2, 73.1, 26.3.19F NMR (376 MHz, DMSO-d6):
δ –61.47, –61.56. HRMS (ESI), m/z: [M + H]+ calcd. for C20H13F6N4O3 471.0886; found 471.0901.

3-(4-Fluorophenyl)-6-((3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadiaz
in-5(6H)-one 5f. Beige powder; 68% yield (252 mg); m.p. 175–177 ◦C. 1H NMR (400 MHz,
DMSO-d6): δ 11.62 (s, 1H), 8.06 (dd, J = 8.7, 5.6 Hz, 2H), 7.82 (dd, J = 8.8, 5.5 Hz, 2H), 7.38
(dt, J = 28.2, 8.9 Hz, 4H), 4.94 (dd, J = 7.9, 4.6 Hz, 1H), 3.77 (dd, J = 16.5, 4.6 Hz, 1H), 3.58 (dd,
J = 16.5, 8.0 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ 177.3, 167.3, 166.1, 165.6 (d, J = 12.3 Hz),
163.1 (d, J = 12.2 Hz), 151.8, 130.0 (d, J = 9.1 Hz), 129.9 (d, J = 8.9 Hz), 125.7 (d, J = 3.1 Hz),
123.1 (d, J = 3.1 Hz), 116.9 (d, J = 22.2 Hz), 116.2 (d, J = 22.2 Hz), 73.0, 26.2. 19F NMR (376 MHz,
DMSO-d6): δ –108.41, –108.95. HRMS (ESI), m/z: [M + H]+ calcd. for C18H13F2N4O3 371.0950;
found 371.0951.

3-(4-Chlorophenyl)-6-((3-(4-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadia
zin-5(6H)-one 5g. Beige powder; 70% yield (282 mg); m.p. 200–201 ◦C. 1H NMR (400 MHz,
DMSO-d6): δ 11.65 (s, 1H), 8.01 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.3 Hz, 2H), 7.65 (d, J = 8.5 Hz,
2H), 7.57 (d, J = 8.3 Hz, 2H), 4.95 (dd, J = 7.9, 4.6 Hz, 1H), 3.77 (dd, J = 16.5, 4.6 Hz, 1H), 3.59
(dd, J = 16.5, 7.9 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ 177.5, 167.3, 166.1, 151.8, 136.8,
136.6, 129.9, 129.3, 129.2, 129.1, 128.1, 125.3, 73.0, 26.2. HRMS (ESI), m/z: [M + H]+ calcd. for
C18H13Cl2N4O3 403.0359; found 403.0378.

3-(4-Aminophenyl)-6-((3-(4-aminophenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadia
zin-5(6H)-one 5h. Beige powder; 57% yield (208 mg); m.p. 180–181 ◦C. 1H NMR (400 MHz,
DMSO-d6): δ 11.21 (s, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 8.5 Hz,
2H), 6.59 (d, J = 8.4 Hz, 2H), 5.75 (s, 2H), 5.70 (s, 2H), 4.78 (dd, J = 8.2, 4.5 Hz, 1H), 3.64 (dd,
J = 16.4, 4.6 Hz, 1H), 3.43 (dd, J = 16.3, 8.2 Hz, 1H). 13C NMR (101 MHz, DMSO-d6): δ 176.1,
168.3, 166.6, 152.8, 152.3, 152.2, 128.8, 128.4, 115.3, 114.0, 113.5, 113.1, 73.2, 26.1. HRMS (ESI), m/z:
[M + Na]+ calcd. for C18H16N6NaO3 387.1176; found 387.1177.

3-(2-Chlorophenyl)-6-((3-(2-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadia
zin-5(6H)-one 5i. Beige powder; 49% yield (198 mg); m.p. 156–158 ◦C. 1H NMR (400 MHz,
CDCl3): δ 8.08 (s, 1H), 7.96 (dd, J = 7.6, 1.9 Hz, 1H), 7.65 (d, J = 7.5 Hz, 1H), 7.56 (d, J = 7.7 Hz,
1H), 7.53–7.36 (m, 5H), 5.04 (dd, J = 8.2, 4.5 Hz, 1H), 3.83 (dd, J = 16.5, 4.5 Hz, 1H), 3.61 (dd,
J = 16.5, 8.2 Hz, 1H). 13C NMR (101 MHz, Acetone-d6): δ 176.0, 167.1, 164.7, 151.3, 132.9, 132.9,
132.3, 132.1, 131.8, 131.5, 130.9, 129.9, 129.1, 127.4, 127.3, 126.1, 73.3, 25.8.. HRMS (ESI), m/z:
[M + Na]+ calcd. for C18H12Cl2N4NaO3 425.0179; found 425.0185.

3-(5-Methylthiophen-2-yl)-6-((3-(5-methylthiophen-2-yl)-1,2,4-oxadiazol-5-yl)methyl)-
4H-1,2,4-oxadiazin-5(6H)-one 5j. Beige powder; 47% yield (176 mg); m.p. 190–191 ◦C. 1H
NMR (400 MHz, DMSO-d6): δ 11.68 (s, 1H), 7.60 (d, J = 3.8 Hz, 2H), 6.97 (d, J = 3.6 Hz, 1H),
6.88 (d, J = 3.7 Hz, 1H), 4.91 (dd, J = 8.2, 4.5 Hz, 1H), 3.71 (dd, J = 16.5, 4.5 Hz, 1H), 3.52 (dd,
J = 16.5, 8.1 Hz, 1H), 2.53 (s, 3H), 2.46 (s, 3H). 13C NMR (101 MHz, DMSO-d6): δ 176.9, 166.0,
164.2, 148.6, 145.1, 144.7, 130.7, 129.9, 128.3, 127.5, 126.6, 125.2, 73.3, 26.1, 15.5, 15.5. HRMS
(ESI), m/z: [M + Na]+ calcd. for C16H14N4NaO3S2 397.0400; found 397.0398.

3-(Pyridin-4-yl)-6-((3-(pyridin-4-yl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadiazin-5
(6H)-one 5k. Beige powder; 35% yield (118 mg); m.p. 208–210 ◦C. 1H NMR (400 MHz,
DMSO-d6): δ 11.81 (s, 1H), 8.84–8.79 (m, 2H), 8.75–8.70 (m, 2H), 7.96–7.90 (m, 2H), 7.76–7.72
(m, 2H), 5.03 (dd, J = 7.9, 4.6 Hz, 1H), 3.84 (dd, J = 16.5, 4.6 Hz, 1H), 3.67 (dd, J = 16.5, 7.9 Hz,
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1H). 13C NMR (101 MHz, DMSO-d6): δ 178.0, 166.9, 165.8, 151.4, 150.9, 150.7, 136.7, 133.7, 121.4,
121.1, 73.1, 26.2. HRMS (ESI), m/z: [M + H]+ calcd. for C16H13N6O3 337.1044; found 337.1039.

3-(Pyridin-2-yl)-6-((3-(pyridin-2-yl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadiazin-5
(6H)-one 5l. Beige powder; 32% yield (108 mg); m.p. 180–184 ◦C. 1H NMR (400 MHz,
CDCl3): δ 9.48 (s, 1H), 8.78 (d, J = 4.8 Hz, 1H), 8.59 (d, J = 4.8 Hz, 1H), 8.09 (dd, J = 17.7, 7.9 Hz,
2H), 7.82 (q, J = 6.9 Hz, 2H), 7.47–7.36 (m, 2H), 5.02 (dd, J = 8.5, 4.3 Hz, 1H), 3.84 (dd, J = 16.4,
4.3 Hz, 1H), 3.56 (dd, J = 16.4, 8.5 Hz, 1H). 13C NMR (101 MHz, CDCl3): δ 176.4, 168.5, 164.0,
150.6, 148.9, 148.7, 146.4, 145.2, 137.7, 137.1, 126.4, 125.7, 123.5, 121.1, 73.9, 26.8. HRMS (ESI),
m/z: [M + H]+ calcd. for C16H13N6O3 337.1044; found 337.1065.

4. Concluding Remarks

In this work, we found a previously unknown formation of the 1,2,4-oxadiazine
core. We have shown that the reaction of aryl or hetaryl amidoximes with maleates or
fumarates affords substituted 1,2,4-oxadiazin-5-ones. Using the example of N’-hydroxy-
4-methylbenzimidamide 1a, the conditions for this reaction were optimized. We have
found that, depending on the base used and the ratio of reactants, different products can be
synthesized selectively in good yields. The use of NaOH as the base afforded 2-(5-oxo-3-(p-
tolyl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acid 3a, and t-BuONa–the corresponding
methyl ester 4a. In case of an excess of 1a, hybrid 3-(p-tolyl)-6-((3-(p-tolyl)-1,2,4-oxadiazol-
5-yl)methyl)-4H-1,2,4-oxadiazin-5(6H)-one was the main reaction product. The reaction
is tolerant to the electronic effect of substituents in amidoximes. The introduction of the
substituent in the ortho position of arylamidoxime slightly reduces the yield but does not
prevent the reaction in general. As a result, we have developed a simple and convenient
method for the synthesis of 3-aryl- and 3-hetaryl-1,2,4-oxadiazin-5-ones bearing an easily
functionalizable (methoxycarbonyl)methyl group at position 6.

Supplementary Materials: The following supporting information can be downloaded at: https:
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