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Abstract: Lectins are a heterogeneous group of proteins that reversibly bind to simple sugars or
complex carbohydrates. The plant lectin purified from the seed of Parkia platycephala (PPL) was
studied. This study aimed to investigate the possible orofacial antinociceptive of PPL lectin in adult
zebrafish and rodents. Acute nociception was induced by cinnamaldehyde (0.66 µg/mL), 0.1%
acidified saline, glutamate (12.5 µM) or hypertonic saline (5 M NaCl) applied into the upper lip
(5.0 µL) of adult wild zebrafish. Zebrafish were pretreated by intraperitoneal injection (20 µL) with
vehicle (Control) or PPL (0.025; 0.05 or 0.1 mg/mL) 30 min before induction. The effect of PPL on
zebrafish locomotor behaviour was evaluated in the open field test. Naive groups were included in
all tests. In one experiment, animals were pre-treated with capsazepine to investigate the mechanism
of antinociception. The involvement of central afferent C-fibres was also investigated. In another
experiment, rats pre-treated with PPL or saline were submitted to the temporomandibular joint
formalin test. Other groups of rats were submitted to infraorbital nerve transection to induce chronic
pain, followed by induction of mechanical sensitivity using von Frey. PPL reduced nociceptive
behaviour in adult zebrafish, and this is related to the activation of the TRPV1 channels since
antinociception was effectively inhibited by capsazepine and by capsaicin-induced desensitization.
PPL reduced nociceptive behaviour associated with temporomandibular joint and neuropathic pain.
The results confirm the potential pharmacological relevance of PPL as an inhibitor of orofacial
nociception in acute and chronic pain.
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1. Introduction

According to the International Association for the Study of Pain (IASP, 2008), pain is
characterised as an unpleasant sensory and emotional experience, associated with actual or
potential tissue damage, or described in terms of this damage. The damage is one of the classic
signs of the inflammatory process and initially results from the sensitization of nociceptors,
besides being present as a symptom of many clinical disorders that affect a large portion of
the population, causing damage to the quality of life [1,2]. Natural molecules have a great
biotechnological potential and arouse great scientific interest; among these, the lectins are a
subject of growing pharmacological interest, highlighting the antinociceptive studies [3–5].

Lectins are proteins of non-immunological origin with the ability to recognize and
bind to carbohydrates and glycoconjugates [6]. The most studied lectins are those of plant
origin, and these proteins have some biological applications already described, such as
antitumor [7], antidepressant [8], anti-inflammatory [9] and antinociceptive activity [3–5].

In general, the biological activities described for lectins are related to the ability of
these proteins to recognize carbohydrates on the surface of cell membranes and trigger an
intracellular signalling that results in a biological response [10].
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Recently, our research group described the first work showing the effect of a lectin
in inhibiting orofacial pain in a zebrafish model [4]. Subsequently, it was shown that the
antinociceptive effect is related to the mode of interaction of lectins with cell carbohy-
drates [4]. The zebrafish has become a prominent vertebrate model for the study of diseases
and new drug discovery [11] based on its phenotypes, and has been widely used for phar-
macological studies [12]. The zebrafish has had its genome sequenced, which revealed that
this experimental model has highly conserved genes that participate in oxidation, lipid
metabolism and inflammation, and many of the proteins in this small animal appear to
function in a mammalian-like manner [13,14].

Species of the genus Parkia are used in traditional medicine as an analgesic drug,
especially against dental pain [15]. Parkia platycephala is a species found predominantly
in the North and Northeast of Brazil and is popularly known as visgueiro or faveira [16].
Parkia platycephala glucose/mannose lectin (PPL) was the first of its genus to have its amino
acid sequence elucidated. The primary structure is formed by 447 amino acid residues and
the three-dimensional structure is formed by three β-prism domains, and each one has a
non-identical mannose binding site [17,18]. PPL has some biological activities described,
of which we highlight its parasitic activity and modulation of antibiotic activity [19],
antinociceptive and anti-inflammatory activity with acetic acid and peritonitis -induced
nociception model [20].

This study aimed to investigate the possible orofacial antinociceptive of Parkia platycephala
(PPL) lectin in adult zebrafish and rodents.

2. Results
2.1. Lectin Purification

The purification of PPL was achieved by affinity chromatography on sephadex-G100
column, as previously described by Cavada et al. [17]. The chromatogram profile showed
two peaks, the first (PI) corresponding to unbound protein fraction and the second (PII)
corresponding to the retained protein fraction (Figure 1A). In gel electrophoresis under
denaturing conditions (SDS-PAGE), PII showed a single band with a relative mass of
50 kDa, which corresponds to molecular weight of the PPL (Figure 1B).

Molecules 2022, 27, x FOR PEER REVIEW  2  of  10 
 

 

origin, and these proteins have some biological applications already described, such as 

antitumor [7], antidepressant [8], anti‐inflammatory [9] and antinociceptive activity [3–5]. 

In general, the biological activities described for lectins are related to the ability of 

these proteins to recognize carbohydrates on the surface of cell membranes and trigger an 

intracellular signalling that results in a biological response [10].   

Recently, our research group described the first work showing the effect of a lectin in 

inhibiting orofacial pain  in a zebrafish model  [4]. Subsequently,  it was shown  that  the 

antinociceptive  effect  is  related  to  the  mode  of  interaction  of  lectins  with  cell 

carbohydrates [4]. The zebrafish has become a prominent vertebrate model for the study 

of diseases and new drug discovery [11] based on its phenotypes, and has been widely 

used for pharmacological studies [12]. The zebrafish has had its genome sequenced, which 

revealed  that  this  experimental model  has  highly  conserved  genes  that  participate  in 

oxidation,  lipid metabolism and  inflammation, and many of  the proteins  in  this small 

animal appear to function in a mammalian‐like manner [13,14]. 

Species of the genus Parkia are used  in  traditional medicine as an analgesic drug, 

especially against dental pain [15]. Parkia platycephala is a species found predominantly in 

the North and Northeast of Brazil and  is popularly known as visgueiro or faveira [16]. 

Parkia platycephala glucose/mannose lectin (PPL) was the first of its genus to have its amino 

acid sequence elucidated. The primary structure is formed by 447 amino acid residues and 

the three‐dimensional structure is formed by three β‐prism domains, and each one has a 

non‐identical mannose binding site [17,18]. PPL has some biological activities described, 

of which we  highlight  its parasitic  activity  and modulation  of  antibiotic  activity  [19], 

antinociceptive and anti‐inflammatory activity with acetic acid and peritonitis ‐induced 

nociception model [20]. 

This  study  aimed  to  investigate  the  possible  orofacial  antinociceptive  of  Parkia 

platycephala (PPL) lectin in adult zebrafish and rodents. 

2. Results 

2.1. Lectin Purification 

The purification of PPL was achieved by affinity chromatography on sephadex‐G100 

column, as previously described by Cavada et al. [17]. The chromatogram profile showed 

two peaks, the first (PI) corresponding to unbound protein fraction and the second (PII) 

corresponding to the retained protein fraction (Figure 1A). In gel electrophoresis under 

denaturing conditions (SDS‐PAGE), PII showed a single band with a relative mass of 50 

kDa, which corresponds to molecular weight of the PPL (Figure 1B). 

 

Figure 1. PPL purification. (A) Elution profile of PPL in Sephadex G‐100 chromatography. (B) SDS–

PAGE  profile,  (L1)  Molecular  mass  markers:  bovine  serum  albumin,  66  kDa;  glutamic 

dehydrogenase, 55 kDa; ovalbumin, 45 kDa; glyceraldehyde‐3‐phosphate dehydrogenase, 36 kDa; 

Figure 1. PPL purification. (A) Elution profile of PPL in Sephadex G-100 chromatography. (B) SDS–
PAGE profile, (L1) Molecular mass markers: bovine serum albumin, 66 kDa; glutamic dehydrogenase,
55 kDa; ovalbumin, 45 kDa; glyceraldehyde-3-phosphate dehydrogenase, 36 kDa; carbonic anhydrase,
29 kDa; trypsinogen, 24 kDa and trypsin inhibitor, 20 kDa. (L2) Crude protein extract. (L3) PPL
obtained in the PII of the Sephadex G-100.

2.2. Orofacial and Corneal Antinociceptive Activity in Adult Zebrafish

Capsaicin injection into the lips of adult zebrafish induced nociceptive behaviour
(Figure 2A). PPL (0.025 mg/mL) reduced this behaviour (* p < 0.05 vs Control) and this
effect was prevented by the pre-treatment with capsazepine (Figure 2A). PPL at all doses
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tested had a significant effect (* p < 0.05–** p < 0.01 vs Control) on the nociceptive behaviour
evoked by the local application of 5 M NaCl solution to the corneal surface (Figure 2B).
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Figure 2. Effect of PPL on capsaicin-induced orofacial nociception (A) and on hypertonic
saline-induced corneal nociception (B) in adult zebrafish. The results are expressed as mean
values ± standard error of the number of nociceptive behaviours for each group. ANOVA fol-
lowed by Tukey test. * p < 0.05, ** p < 0.01 vs Control; **** p < 0.0001 vs Control and CZP+PPL;
a p < 0.01 vs CZP+PPL and Naive; c p < 0.01 vs Naive. CZP = capsazepine; PPL = 0.05 mg/mL PPL.

According to Figure 3, the depletion of TRPV1+ C-fibres by capsaicin decreased the
glutamate-induced orofacial nociceptive activity (**** p < 0.001 vs control) and abolished
the antinociceptive effect of PPL (0.025 mg/mL).
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Figure 3. Involvement of the central afferent fibres sensitive to capsaicin (TRPV1) on the antinoci-
ceptive effect of PPL in adult zebrafish. Each column represents the mean ± S.E.M. (n = 6/group).
ANOVA followed by Tukey test. **** p < 0.001 vs Control and a p < 0.0001 vs PPL, Control and Naive.
DC = Desensitized Control; D PPL = Desensitized PPL (0.05 mg/mL); PPL = 0.05 mg/kg PPL.
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2.3. Capsaicin-Induced Orofacial Nociceptive Behaviour in Mice

Capsaicin injection into the upper lip of mice induced face rubbing (Figure 4A). Pre-
treatment with PPL was associated with a reduction in face-rubbing behaviour induced by
the application of capsaicin (**** p < 0.001 vs Control).
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2.4. Formalin-Induced Temporomandibular Nociception in Rats

The injection of formalin into the temporomandibular junction induced the nociceptive
behaviours of head flinching, face rubbing and chewing. As shown in Figure 4B, pre-
treatment with PPL (0.25 mg/kg), but not a control vehicle, reduced the formalin-induced
behaviours (*** p < 0.01 vs Control).

2.5. Neuropathic Orofacial Nociception Induced by Infraorbital Nerve Transection

Left IONX produced sustained hypersensitivity to facial mechanical stimulation that
was reflected in a reduced mechanical withdrawal threshold for 21 days. The thresholds in
sham-operated and naive rats did not significantly change. To investigate the effects of PPL
on the mechanical withdrawal threshold in IONX rats, PPL (0.25 mg/kg) or vehicle (control)
was administrated at post-operative days 1, 3, 5, 7, 10, 14 and 21. PPL reversed the reduced
mechanical threshold on post-operative days 3–21 when compared with Control (Figure 5).

Molecules 2022, 27, x FOR PEER REVIEW 5 of 10 
 

 

Figure 4. Effect of PPL on capsaicin-induced orofacial nociception in mice (A) and on formalin-in-
duced temporomandibular junction nociception in rats (B). The results are expressed as mean values 
± standard error of the number of nociceptive behaviours for each group. ANOVA followed by 
Tukey test. *** p < 0.01 and **** p < 0.0001 vs Control. PPL = 0.25 mg/kg PPL. 

2.5. Neuropathic Orofacial Nociception Induced by Infraorbital Nerve Transection 
Left IONX produced sustained hypersensitivity to facial mechanical stimulation that 

was reflected in a reduced mechanical withdrawal threshold for 21 days. The thresholds 
in sham-operated and naive rats did not significantly change. To investigate the effects of 
PPL on the mechanical withdrawal threshold in IONX rats, PPL (0.25 mg/Kg) or vehicle 
(control) was administrated at post-operative days 1, 3, 5, 7, 10, 14 and 21. PPL reversed 
the reduced mechanical threshold on post-operative days 3–21 when compared with Con-
trol (Figure 5). 

 
Figure 5. Antihyperalgesic effect of repeated PPL treatment after the infraorbital nerve transection. 
ANOVA followed by the Bonferroni test ** p < 0.01 and *** p < 0.001 vs Control. ANOVA followed 
by the Bonferroni test. PPL = 0.25 mg/kg PPL. 

3. Material and methods 
3.1. Animals 
3.1.1. Zebrafish 

Adult wild zebrafish (Danio rerio) of both sexes (short-fin phenotype), aged 60–90 
days, of a similar size (3.5 ± 0.5 cm) and weight (0.3 ± 0.2 g), were obtained from 
Agroquímica: Comércio de Produtos Veterinários LTDA (Fortaleza, Ceará, Brazil). 
Groups of 50 fish were acclimatized for 24 h in a 10-L glass tank (30 × 15 × 20 cm) contain-
ing dechlorinated tap water (ProtecPlus®) and an air pump with a submerged filter, at 25 
°C and pH 7.0, under near-normal circadian rhythm (14:10 h of light/dark). The fish re-
ceived ad libitum feed 24 h prior to the experiments. All experimental procedure was ap-
proved by the Ethics Committee on Animal Research of the Ceará State University 
(CEUA-UECE; #7210149/2016). 

3.1.2. Rodents 
Swiss mice (20–30 g) and Wistar rats (250–300 g) obtained from the Núcleo de Biolo-

gia Experimental of the University of Fortaleza were used. They were housed (IVC cages, 
Tecniplast®) in environmentally controlled conditions (22 °C, 12 h light–dark cycle), with 
free access to standard pellet diet (Purina, São Paulo, Brazil) and water. The experimental 
protocols were approved by Animal Ethics Committee of the University of Fortaleza 
(CEUA-UNIFOR; 4250250817). 

Figure 5. Antihyperalgesic effect of repeated PPL treatment after the infraorbital nerve transection.
ANOVA followed by the Bonferroni test ** p < 0.01 and *** p < 0.001 vs Control. ANOVA followed by
the Bonferroni test. PPL = 0.25 mg/kg PPL.



Molecules 2022, 27, 7506 5 of 10

3. Material and Methods
3.1. Animals
3.1.1. Zebrafish

Adult wild zebrafish (Danio rerio) of both sexes (short-fin phenotype), aged 60–90 days,
of a similar size (3.5 ± 0.5 cm) and weight (0.3 ± 0.2 g), were obtained from Agroquímica:
Comércio de Produtos Veterinários LTDA (Fortaleza, Ceará, Brazil). Groups of 50 fish
were acclimatized for 24 h in a 10-L glass tank (30 × 15 × 20 cm) containing dechlori-
nated tap water (ProtecPlus®) and an air pump with a submerged filter, at 25 ◦C and
pH 7.0, under near-normal circadian rhythm (14:10 h of light/dark). The fish received ad
libitum feed 24 h prior to the experiments. All experimental procedure was approved by
the Ethics Committee on Animal Research of the Ceará State University (CEUA-UECE;
#7210149/2016).

3.1.2. Rodents

Swiss mice (20–30 g) and Wistar rats (250–300 g) obtained from the Núcleo de Biologia
Experimental of the University of Fortaleza were used. They were housed (IVC cages,
Tecniplast®) in environmentally controlled conditions (22 ◦C, 12 h light–dark cycle), with
free access to standard pellet diet (Purina, São Paulo, Brazil) and water. The experimental
protocols were approved by Animal Ethics Committee of the University of Fortaleza
(CEUA-UNIFOR; 4250250817).

3.2. Lectin Purification

P. platycephala seeds were collected from plants located at Chapadinha, Maranhão,
Brazil. Lectin purification was carried out by the affinity chromatography protocol, as
previously described by Cavada et al. [17]. Mature seeds of P. platycephala were ground into
a fine powder using a coffee mill. The flour was stirred with 0.15 M NaCl (1:10, m/v) for 4 h
at 25 ◦C. The mixture was centrifuged at 10,000× g for 20 min at 4 ◦C. The clear supernatant
(crude extract) was applied to a Sephadex G-100 column (2 × 10 cm) equilibrated with
150 mM NaCl containing. After washing of the unbound material in the equilibrium
solution, the lectin was eluted with 100 mM mannose, pooled, exhaustively dialyzed
against distilled water, and freeze-dried. Absorbance at 280 nm was used to estimate the
protein concentration in all chromatographic fractions. The retained peak (P. platycephala
lectin—PPL) was lyophilized and tested for purity by SDS-PAGE [18].

3.3. General Protocol

On the day of the experiment, zebrafish were randomly selected, then transferred to
a wet sponge for treatment with the study lectin or controls, intraperitoneally (i.p.), after
which they were placed in individual beakers (250 mL) containing 150 mL of water from
the fish tank and allowed to recover. For oral treatments, a 20 µL variable pipette was used.
An insulin syringe (UltraFine® BD) with a 30-gauge needle was used to inject the lips or for
the intraperitoneal treatment.

PPL was administered to zebrafish (20 µL, i.p.) at 0.025; 0.05 or 0.1 mg/mL [5]. Mice
received PPL at doses of 0.25, 0.5 or 1 mg/kg (10 mL/kg, i.p.), and rats received PPL at a
dose of 0.25 mg/kg (10 mL/kg, i.p.).

3.4. Orofacial Antinociceptive Activity in Adult Zebrafish

The concentrations of the noxious and antagonistic agents, as well as the time of
nociceptive action analysis used, were based on our previous reports: 0.66 µg/mL cin-
namaldehyde [21], 0.1 % acidified saline [22] and 12.5 mM glutamate [23]. After treatment
and application of the algogenic agent, the animals were then placed in a glass Petri dish (∅
15 cm), divided into quadrants, and the nociceptive response was quantified in terms of lo-
comotor activity performed during a certain time, specific for each model described below.
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3.4.1. Capsaicin-Induced Orofacial Nociceptive Behaviour

Orofacial nociception was induced with capsaicin (TRPV1 agonist; 40.93 µM; 5.0 µL)
dissolved in ethanol, PBS, and distilled water (1:1:8), injected into the lips of the animals
(n = 8/group), 30 min after pre-treatment (20 µL) with PPL (0.025 mg/mL) or vehicle (Con-
trol, saline). Another group (n = 8) received capsazepine (TRPV1 antagonist; 0.5 mg/mL)
15 min before PPL. A naive group (n = 8) was included. The antinociceptive activity was
observed individually during 10–20 min.

3.4.2. Evaluation of the Involvement of Central Afferent Fibres to Capsaicin

Repeated treatment with interval capsaicin produces a reduction in functional re-
sponse, causing desensitization of type C afferent fibres [24]. In this study, we used the
method proposed by Soares et al. [25]. Adult zebrafish (n = 8/group) were grouped into:

(a) Control-saline (20 µL; i.p.).
(b) Desensitized Control (DC)-capsaicin (40.93 µM; 20 µL; i.p.) administered at times

15, 30, 60, 120 and 240 min before saline.
(c) PPL (0.025 mg/mL; 20 µL; i.p,).
(d) PPL (0.025 mg/mL; desensitized)-capsaicin (40.93 µM; 20 µL; i.p.) administered at

times 15, 30, 60, 120 and 240 min before PPL.
(e) Naive.
Orofacial nociception was induced with glutamate, as described in Section 2.3.

3.4.3. Corneal Nociception Model in Adult Zebrafish

Corneal nociception was induced with hypertonic saline (5 M NaCl; 5.0 µL) injected
into the right eye of the animals (n = 8/group), 30 min after pre-treatment with PPL (see
3.2) or vehicle (Control, saline; 20 µL). A naive group (n = 8) was included. The animals
were then placed in a glass Petri dish (∅ 15 cm), divided into quadrants and the nociceptive
response was quantified in terms of locomotor activity performed during 0–5 min.

3.5. Capsaicin-Induced Orofacial Nociceptive Behaviour in Mice

Orofacial nociception was induced by subcutaneous application o (n = 6/group),
30 min after pre-treatment with PPL or vehicle (Control, saline; 10 mL/kg). A naive group
(n = 6) was included. The mice were observed in related capsaicin (40.93 µM; 20 µL) into
the perinasal area (vibrissae) of the right cheek of the animals to the time(s) of facial rubbing
behaviour with the posterior and/or anterior ipsilateral paws during the period 10–20 min,
as described by Pelissier et al. [26].

3.6. Formalin-Induced Temporomandibular Nociception in Rats

Rats (n = 6/group) were acclimated individually in a glass test chamber (30 × 30 × 30 cm)
for 30 min to minimize stress. The animals were pre-treated (10 mL/kg; i.p.) with PPL
(0.25 mg/kg) or vehicle (Control, saline) and, 30 min later, the animals were anesthetized (i.p.)
with ketamine (100 mg/kg) and xylazine (10 mg/kg), and the left temporomandibular joint
was injected with 50 µL of 2 % formalin. A sham group receiving 0.9 % NaCl (50 µL; left
temporomandibular joint) and a naive group were also included (n = 6/group) [27].

After their recovery from anaesthesia (20 min), the animals were returned individually to
the test chamber to quantify nociception as asymmetrical rubbing of the orofacial region with
the ipsilateral fore- or hind-paw, and as head flinching (intermittent and reflexive shaking of
the head) [28]. The time that the rat spent rubbing the orofacial region was registered 12 times
at 3 min intervals; head flinching was registered by its absence or presence.

3.7. Neuropathic Orofacial Nociception Induced by Infraorbital Nerve Transection

Rats were anesthetized (i.p.) with ketamine (100 mg/kg) and xylazine (10 mg/kg)
to expose the left infraorbital nerve (ION) at its entry into the infraorbital foramen by
way of an intra-oral incision (2 mm) in the oral mucosa of the left fronto-lateral maxillary
vestibulum, as previously described [15]. The ION was lifted from the maxillary bone
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and cut (IONX) without damaging adjacent nerves and vessels. Subsequently, the animals
were returned to their cages and fed with mash and chow. The animals were monitored
daily in the post-operative period. Rats were divided into two groups (n = 6/group): PPL
(0.25 mg/kg; i.p.) or vehicle (10 mL/kg saline; i.p.; Control). Naive and sham-operated
animals (n = 6/group) were used as controls.

The rats were acclimated, trained and tested for facial mechanical sensitivity (head
withdrawal threshold) 1 day prior to nerve transection (baseline) and on post-operative
days 1, 3, 5, 7, 10, 14 and 21, as previously described [15]. A single dose of PPL or vehicle
(n = 6/group) was administered on each post-operative day. Mechanical sensitivity of the
left whisker pad skin was assessed using an electronic von Frey instrument at 30 min after
the PPL or vehicle treatment. The head-withdrawal threshold for mechanical stimulation of
the whisker pad skin was defined as the minimum force needed to evoke an escape more
than three times as a result of five stimuli.

3.8. Statistical Analyses

The results are presented as mean ± S.E.M. of each group of animals. Normality
of distribution was confirmed (Kolmogorov-Smirnov) and data were submitted for the
analysis of variance (one-way ANOVA), followed by the Tukey post-hoc test, or two-way
ANOVA, followed by Bonferroni’s post-hoc test. For analyses of PPL (and vehicle) effects
in IONX animals, the baseline was normalized, and all values post-PPL or post-vehicle
administration were expressed as percentage (%) change from baseline. The level of
statistical significance was set at 5% (p < 0.05).

4. Discussion

In our previous work, we verified that PPL produced an orofacial antinociceptive effect in
adult zebrafish, and this activity is related to the interaction of PPL with glycans present in the
TRPV1 receptor [5]. In the present study, we deepened knowledge about the participation of
the TRPV1 channel in the orofacial antinociceptive effect of PPL (mannose/galactose-binding
lectin), as well as evaluated if this effect would also be verified in rodents.

PPL, as expected, reduced nociceptive behaviour induced by capsaicin applied to
the lip. Besides this, PPL prevented nociceptive behaviour induced by hypertonic saline
applied into the cornea. Since the hypertonic saline stimulus in the human cornea is related
to the activation of the TRPV1 channels [29], this result support the idea that PPL acts on
the TRPV1 receptor.

To investigate the modulation of TRPV1 receptors by PPL, adult zebrafish were pre-
treated with the TRPV1 receptor antagonist capsazepine. This compound prevented the
antinociceptive effect of PPL. Besides this, depletion of TRPV1+ C fibres by capsaicin
eliminated antinociception produced by PPL. Soares et al. [25] demonstrated that the
progressive and intermittent use of capsaicin led to an antinociceptive response, and this
effect is blocked by oleanolic acid, corroborating the understanding that PPL is a potential
drug acting on this pathway. Since we found PPL exhibited orofacial antinociceptive
activity in adult zebrafish, we next examined its activity in rodents.

TRPV1 is a glycosylated receptor composed of N-glycans rich in mannose residues.
Veldhuis and collaborators [30] demonstrated that the glycosylation of TRPV1 is a determi-
nant for capsaicin-evoked desensitization and ion permeability. Plant lectins can recognize
and interact with N-glycans from different cells, eliciting cellular responses that charac-
terize some biological activities, of which we highlight inhibition of viral infection [31],
antitumor activity [32], immunomodulatory activity [33] and anti-inflammatory activity [4].
Therefore, we hypothesized that the antinociceptive effect of PPL in inhibiting capsaicin
activity may be related to the interaction of PPL with mannose residues present in the
N-glycans of the TRPV1 receptor.

Temporomandibular disorders are musculoskeletal pain conditions characterized by
pain in the temporomandibular joint and/or masticatory muscles [34]. Here, temporo-



Molecules 2022, 27, 7506 8 of 10

mandibular joint nociception induced by formalin was prevented by PPL, thus suggesting
its use for the treatment of this disorder.

Receptors are up-regulated after the injury of the infraorbital nerve and to the fact
that pharmacological blockade or selective ablation of trigeminal ganglia cells expressing
TRPV1 results impaired the development of facial hyperalgesia [35,36]. Using this rodent
model of facial neuropathic pain, we found that treatment with PPL could reduce facial
mechanically induced hypersensitivity. This effect may be due to an antagonistic action of
PPL on TRPV1 channels.

In conclusion, our results indicate that PPL might to be an effective analgesic drug in
acute and chronic orofacial pain states and that this effect may be due to the modulation of
the TRPV1 channel.
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Nomenclature and Abbreviations

ANOVA analysis of variance
Capz capsazepine
DC Desensitized Control
ION infraorbital nerve
IONX infraorbital nerve transection
NaCl sodium chloride
PBS phosphate-buffered saline
PPL Parkia platycephala
TMJ temporomandibular joint
TRPV1 transient receptor potential vanilloid type 1
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