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Abstract: Identification of pesticide impact on the soil microbiome is of the utmost significance today.
Diagnosing the response of bacteria to tebuconazole, used for plant protection, may help isolate the
most active bacteria applicable in the bioaugmentation of soils contaminated with this preparation.
Bearing in mind the above, a study was undertaken to test the effect of tebuconazole on the diversity
of bacteria at all taxonomic levels and on the activity of soil enzymes. It was conducted by means of
standard and metagenomic methods. Its results showed that tebuconazole applied in doses falling
within the ranges of good agricultural practice did not significantly disturb the biological homeostasis
of soil and did not diminish its fertility. Tebuconazole was found to stimulate the proliferation of
organotrophic bacteria and fungi, and also the activities of soil enzymes responsible for phosphorus,
sulfur, and carbon metabolism. It did not impair the activity of urease responsible for urea hydrol-
ysis, or cause any significant changes in the structure of bacterial communities. All analyzed soil
samples were mainly populated by bacteria from the phylum Proteobacteria, Actinobacteria, Firmicutes,
Gemmatimonadetes, Acidobacteria, Planctomycetes, and Chloroflexi. Bacteria from the genera Kaistobacter,
Arthrobacter, and Streptomyces predominated in the soils contaminated with tebuconazole, whereas
these from the Gemmata genus were inactivated by this preparation.

Keywords: tebuconazole; soil microbiome; genetic diversity; biochemical activity of soil

1. Introduction

The impact of anthropogenic activity on the natural environment bears the risk of
hindering the proper functioning of various ecosystems, including (in particular) the soil
ecosystem, being a fundament of the agriculture. Soil dysfunction triggered by, inter alia,
drought, shortage of nutrients, pollution with various compounds, and salination, may
significantly affect food safety [1]. The intensification of agriculture, entailing pesticide
use, may adversely influence both the biodiversity and functioning of soil ecosystems [2,3].
These unbeneficial changes proceeding in soil may also contribute to the impaired de-
velopment of crops, which most often leads to deterioration of the quality and quantity
of their yield [4,5]. Therefore, continuous monitoring and assessment of the effects of
chemicals used in agricultural production are essential, as their inconsiderate application
may trigger severe changes in the soil environment [6–8]. Soil is deemed a non-renewable
natural resource; hence, its appropriate quality and fertility underlie natural environment
functioning [9]. One of the key factors ensuring the maintenance of soil quality and health
is microorganisms. Being involved in the transformation of chemical compounds, they not
only contribute to providing available nutrients to plants but also serve as promoters of their
growth and development [6]. In addition, they secrete enzymes which either occur freely
or are stabilized by organic matter in the soil environment. The soil enzymes are actively
involved in biochemical processes in the soil; they are essential for the proper functioning
of microorganisms by increasing the rate of reactions leading to organic matter degradation
and release of nutrients to the soil [8,10,11]. A reliable marker of the functioning of soil
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exposed to pesticide effects is also the structure of communities of microorganisms involved
in the interactions with other organisms and biological processes [12–15]. Even though
fungicides positively affect the stabilization and improvement of agricultural productivity,
their excessive and irrational use may lead to environmental contamination and eradication
of non-target organisms. This, in turn, raises serious concerns over human and animal
health [16]. Tebuconazole is an active substance of fungicides from the largest and the most
commonly applied in agriculture group of triazoles. They have been introduced into plant
protection by the Bayer company since 1973 [17]. Ever since, triazoles have become the most
commonly applied group of fungicides, with tebuconazole introduced onto the market
in 1986 being one of their major representatives [18]. Tebuconazole served not only for
crop protection against fungal pathogens, but also for the protection of green areas [19]. By
inhibiting the activity of lanosterol 14α-demethylase, tebuconazole diminishes the biosyn-
thesis of ergosterol being the major constituent of cellular membranes of fungi [20]. The
half-life of tebuconazole varies from 49 to 610 days. It is characterized by no, or very limited,
mineralization of the triazole or chlorophenyl ring [21]. Its degradation in soil is influenced
by various factors, including: soil pH, organic carbon content, soil biological properties
(mainly activity, diversity and distribution of microorganisms), and the availability of an
organic substrate for tebuconazole-degrading microorganisms. Apart from these factors,
tebuconazole degradation is significantly affected by the environment temperature, soil
moisture content, and the properties of the chemical itself [22]. Its accumulation in soil may
pose a threat to soil ecosystems, surface and groundwater, as well as to soil and aquatic
organisms. In addition, it is classified as strongly carcinogenic to man [20,23], toxic to the
liver, inducing disorders of the endocrine system as well as triggering developmental and
reproductive dysfunctions [24]. Given its toxicity and stability, development of the method
for its elimination from the natural environment seems to be a priority. Lović et al. [20]
reported Enterobacter sakazakii and Serratia sp. strains to exhibit tebuconazole-degrading
capability, most likely due to their high tolerance to tebuconazole and to the fact that they
possess appropriate genes, i.e.,: opd and mpd. Other authors [16] observed that a bacterial
consortium composed of the following strains: Pseudomonas putida sp. B1, Acinetobacter sp.
B2, and Arthrobacter sp. B3, degraded 93% of a tebuconazole + fenhexamid mixture within
30 days of incubation.

In order to gather exhaustive information about the effects of tebuconazole on changes
in the structure and activity of communities of microorganisms, a study was undertaken to
evaluate its effect on soil microorganisms and enzymes. Determination of the diversity and
structure of bacteria enabled identifying and characterizing active bacterial taxa, thereby
allowed achieving a complete picture of the structure of bacterial communities in the soil at
all taxonomic levels.

2. Results
2.1. Response of Soil Microorganisms to Tebuconazole

The present study demonstrated a stimulating effect of tebuconazole on the population
numbers of organotrophic bacteria and fungi. Its highest dose (T4) applied to the soil caused
a 1.6-fold increase in the count of organotrophic bacteria and a 3.6-fold increase in the count
of fungi. The population number of actinobacteria was positively affected by T1 dose and
negatively affected by T2–T4 doses of the studied fungicide (Table S1).

Values of the colony development (CD) index of microorganisms were also diversified
by tebuconazole doses (Table 1). The CD value of organotrophic bacteria was the highest in
T2 soil (CD = 55.236), that of actinobacteria in T1 soil (CD = 47.087), and that of fungi in T4
soil (CD = 42.059). The highest mean CD value was determined for organotrophic bacteria
(CD = 48.453), followed by fungi (CD = 36.315) and actinobacteria (CD = 28.543).
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Table 1. Effect of tebuconazole on the colony development index (CD) of microorganisms.

Object Organotrophic Bacteria Actinobacteria Fungi

C 43.086 ± 0.908 c 20.290 ± 0.331 d 30.119 ± 0.919 d

T1 43.357 ± 0.256 c 47.087 ± 1.213 a 33.989 ± 0.433 c

T2 55.236 ± 1.115 a 24.177 ± 1.804 c 37.711 ± 0.358 b

T3 53.462 ± 0.525 a 28.071 ± 0.701 b 37.697 ± 0.500 b

T4 47.123 ± 0.518 b 23.091 ± 0.295 cd 42.059 ± 0.498 a

x 48.453 28.543 36.315
r 0.185 −0.321 0.847 *

Tebuconazole doses in mg kg−1: C—control soil, T1—0.01 mg, T2—0.1 mg, T3—0.5 mg, T4—1.0 mg; r—simple Pear-
son’s correlation coefficient significant at * p < 0.05, n = 20; x—arithmetic mean;±—standard deviation. Homogeneous
groups designated with the same letters (a–d) were calculated separately for each group of microorganisms.

Unlike actinobacteria, organotrophic bacteria and fungi proliferated the fastest in
all soil types in the first days of incubation (Figure S1). In the first two days, the great-
est increase in the population number of organotrophic bacteria was noted in T4 soil
(Ks = 63.02%). The number of colonies of organotrophic bacteria and fungi increased until
day 8 of incubation since soil suspension sowing on plates, whereas that of actinobacteria
increased till day 10.

The ecophysiological diversity of the tested microorganisms in soil was in part dis-
turbed by tebuconazole (Table 2). In the case of organotrophic bacteria, the highest value of
the EP index was noted in T4 soil, with the lowest one in T1 soil. These results are, however,
inexplicit as tebuconazole diminished the ecophysiological diversity of organotrophic bac-
teria in T1 and T3 soils and did not modify it in T2 soil. The weakest effect of tebuconazole
was observed in the case of actinobacteria because it decreased their EP only in T1 soil,
while their EP values noted in T2–T4 soils were similar to those determined in C soil. In the
case of fungi, it decreased their ecophysiological diversity only in T3 and T4 soils.

Table 2. Effect of tebuconazole on the ecophysiological diversity of soil microorganisms measured
using the EP index.

Object Organotrophic Bacteria Actinobacteria Fungi

C 0.698 ± 0.015 b 0.861 ± 0.003 a 0.708 ± 0.026 a

T1 0.401 ± 0.019 d 0.658 ± 0.057 b 0.697 ± 0.019 a

T2 0.661 ± 0.011 b 0.861 ± 0.006 a 0.700 ± 0.011 a

T3 0.596 ± 0.015 c 0.834 ± 0.023 a 0.565 ± 0.026 b

T4 0.782 ± 0.005 a 0.853 ± 0.043 a 0.486 ± 0.014 c

x 0.628 0.813 0.631
r 0.565 0.352 −0.986 *

Tebuconazole doses in mg kg−1: C—control soil, T1—0.01 mg, T2—0.1 mg, T3—0.5 mg, T4—1.0 mg; r—simple
Pearson’s correlation coefficient significant at * p < 0.05, n = 20; x —arithmetic mean;±—standard deviation. Homo-
geneous groups designated with the same letters (a–d) were calculated separately for each group of microorganisms.

The metagenomic analysis (Figure 1) demonstrated bacteria belonging to Proteobacteria to
predominate in all soil samples (from 42.81% to 49.05%). Abundant also were Actinobacteria
(from 17.12% to 22.32%), Firmicutes (from 11.78% to 17.52%), Gemmatimonadetes (from 4.74%
to 9.49%), Acidobacteria (from 4.47% to 8.58%), Planctomycetes (from 2.99% to 4.18%), and
Chloroflexi (from 3.06% to 4.01%). Tebuconazole doses of 0.01 and 1.0 mg kg−1 caused the
relative abundance of Actinobacteria to increase by 3.45% and 3.01%, respectively. Moreover,
Proteobacteria abundance was observed to increase by 2.91% in T1 soil. The relative abundance
of Acidobacteria and Gemmatimonadetes increased in soil samples contaminated with tebucona-
zole doses of 0.1 and 0.5 mg kg−1. The T2 dose increased the abundance of these bacteria by
3.33% and 3.12%, whereas the T3 dose increased by 2.11% and 4.38%, respectively. In turn, a
significant reduction was observed in the relative abundance of the Firmicutes phylum bacteria
in the soil contaminated with tebuconazole doses of T1 (by 5.74%), T2 (by 4.40%), and T3 (by
1.71%). Diminished relative abundance was also observed for Proteobacteria in T2 and T3 soil
samples (by 3.33% and 1.88%, respectively).
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Figure 1. Differences between ratios of bacterial phyla, OTU ≥ 1%. Tebuconazole doses in mg kg−1:
C—control soil, T1—0.01 mg, T2—0.1 mg, T3—0.5 mg, T4—1.0 mg.

At the class taxonomic level, the soils were most densely populated by Alphaproteobacteria
(Figure 2), with T1 soil found to be the most beneficial for this bacterial class. Another class
in terms of abundance turned out to be Bacilli, which was definitely the most abundant in
C soil, while the least numerous in T1, T3, and T4 soil samples. The Thermoleophilia bacteria
represented the third class in terms of abundance. They prevailed in T1 soil, which indicated
that tebuconazole applied in the T1 dose caused a significant increase in their abundance,
and that its remaining doses (T2, T3, and T4) inhibited their development. Tebuconazole
administered to the soil in T1–T4 doses had a positive effect on bacteria from the following
classes: Actinobacteria, Gemmatimonadetes, Acidobacteria-6, Phycisphaerae, and Gemm-1; when
applied in T1, T3, and T4 doses on Betaproteobacteria and Gammaproteobacteria; when applied in
T2, T3, and T4 doses on Solibacteres, Deltaproteobacteria, and Acidobacteriia. At the same time, a
tendency was observed for diminishing abundance of Planctomycetia and Thermomicrobia in
response to soil contamination with the tested fungicide.
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Figure 2. Relative abundance of the predominating bacterial classes in the soils tested with the
difference between ratios at ≥1%. Tebuconazole doses in mg kg−1: C—control soil, T1—0.01 mg,
T2—0.1 mg, T3—0.5 mg, T4—1.0 mg.

In all soil samples, the most promoted development was observed in the case of the
Sphingomonadaceae family bacteria, as their abundance exceeded 10,000 OTUs (Figure 3).
Tebuconazole had no significant adverse effect on the bacteria from this family. The abun-
dance ranging from 5000 to 10,000 OTUs was noted for the bacteria from the following
families: Gaiellaceae, Bacillaceae, and Rhodospirillaceae. The abundance of the Bacillaceae
family bacteria was adversely affected by tebuconazole, regardless of its dose, whereas
that of Gaiellaceae, Bacillaceae, and Rhodospirillaceae was positively influenced by T1 dose
and negatively influenced by T2–T4 doses. Among the families with abundance below
5000 OTUs, tebuconazole was observed to stimulate the development of Oxalobacteraceae,
Micrococcaceae, Intrasporangiaceae, and Streptomycetaceae bacteria. The effects of the tested
preparation on the bacteria from the remaining analyzed families were inexplicit. To sum-
marize considerations over tebuconazole effects on bacterial families, it may be concluded
that it had no adverse impact on this taxon. The above finding is corroborated by the
arrangement of links presented on the dendrogram attached to the heat map, which situate
the C and T4 samples in the same group.
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Figure 3. Relative abundance of the predominating bacterial families in the soils tested with the
difference between ratios at ≥1%. Tebuconazole doses in mg kg−1: C—control soil, T1—0.01 mg,
T2—0.1 mg, T3—0.5 mg, T4—1.0 mg.

Tebuconazole caused no explicit changes in the bacterial structure also at the genus
level, as it increased the abundance of the bacteria from Kaistobacter, Arthrobacter, and Strepto-
myces genera and diminished the abundance of the bacteria from Bacillus, Sphingomonas, and
Gemmata genera (Figure 4). Its effects varied in the case of the remaining bacterial genera.
Worthy of notice is the genus Kaistobacter (phylum Proteobacteria), whose abundance exceeded
10,000 OTUs in all soil samples. Considering the mean OTU number counted from all soil
samples, the additional abundant representative (>1000 OTUs) of the phylum Proteobacteria
turned out to be the genus Rhodoplanes, whereas the additional abundant genera of the phylum
Firmicutes included Bacillus, Alicyclobacillus, and Peanibacillus, regardless of tebuconazole dose.

The Venne’s diagram presents unique and common bacterial genera found in particular
soil samples (Figure 5). The common genera included: Kaistobacter, Bacillus, Rhodoplanes,
Paenibacillus, Arthrobacter, Alicyclobacillus, Phenylobacterium, Thermomonas, Streptomyces,
Candidatus, and Sphingomaonas. In contrast, Gemmata turned out to be a unique genus,
populating only the control soil (C). The lack of unique bacterial genera in T1–T4 soil
samples proves that tebuconazole is safe for the soil environment.
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Figure 5. Venne’s diagram depicting unique and common bacterial genera, OTU ≥ 1%. Tebuconazole
doses in mg kg−1: C—control soil, T1—0.01 mg, T2—0.1 mg, T3—0.5 mg, T4—1.0 mg.

The values of the Shannon–Wiener (H′) and Simpson (D) indices prove that the
bacterial diversity determined at all taxonomic levels was not high in all soil samples
(Table S2). In addition, tebuconazole caused no negative changes in the genetic diversity of
bacteria, and even increased their diversity at the phylum, class, order, and family levels
when administered to the soil in T2–T3 doses. The greatest diversity was noted in the order
taxon, whereas the smallest one in the genus taxon.

2.2. Response of Soil Enzymes to Tebuconazole

The study results demonstrate the positive effects of tebuconazole on the biochem-
ical properties of the soil (Table 3). It stimulated activities of dehydrogenases, alkaline
phosphatase, acid phosphatase, arylsulfatase, and β-glucosidase, and did not cause any
significant changes in the activities of catalase and urease. In addition, the study showed an
increase in the value of the biochemical index of soil quality (BA) upon soil treatment with
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tebuconazole doses of T1–T4, which points to its positive effect on biochemical processes in
the soil environment.

Table 3. Effect of tebuconazole on the activity of soil enzymes in 1 kg soil d.m.

Object Deh
µmol TFF

Cat
mol O2

Ure
mmol N-NH4

Pal Pac Aryl Glu
BA

mmol PNP

C 1.541 ± 0.075 b 0.071 ± 0.004 ab 0.391 ± 0.029 ab 0.191 ± 0.010 b 1.270 ± 0.082 c 0.039 ± 0.003 b 0.213 ± 0.005 b 3.716 ± 0.221 b

T1 1.967 ± 0.025 a 0.078 ± 0.004 a 0.426 ± 0.030 a 0.202 ± 0.012 ab 1.294 ± 0.024 bc 0.039 ± 0.007 b 0.217 ± 0.004 ab 4.224 ± 0.052 a

T2 1.845 ± 0.034 a 0.066 ± 0.004 ab 0.399 ± 0.030 ab 0.214 ± 0.023 ab 1.425 ± 0.019 ab 0.044 ± 0.004 a 0.230 ± 0.006 ab 4.224 ± 0.026 a

T3 1.849 ± 0.047 a 0.065 ± 0.004 ab 0.390 ± 0.031 ab 0.238 ± 0.013 a 1.474 ± 0.013 a 0.046 ± 0.002 a 0.247 ± 0.019 a 4.309 ± 0.076 a

T4 1.791 ± 0.022 ab 0.058 ± 0.004 b 0.298 ± 0.030 b 0.241 ± 0.005 a 1.455 ± 0.026 a 0.047 ± 0.002 a 0.248 ± 0.003 a 4.138 ± 0.057 a

x 1.799 0.068 0.381 0.217 1.384 0.043 0.231 4.122
r 0.088 −0.855 * −0.908 * 0.892 * 0.734 0.848 * 0.881 * 0.297

Deh—dehydrogenases, Cat—catalase, Ure—urease, Pal—alkaline phosphatase, Pac—acid phosphatase, Aryl—
arylsulfatase, Glu—β-glucosidase, BA—biochemical index of soil quality. Tebuconazole doses in mg kg−1:
C—control soil, T1—0.01 mg, T2—0.1 mg, T3—0.5 mg, T4—1.0 mg; r—simple Pearson’s correlation coefficient
significant at * p < 0.05, n = 15; x —arithmetic mean; ±—standard deviation. Homogeneous groups designated
with the same letters (a–c) were calculated separately for each group of enzymes.

3. Discussion

The penetration of fungicides to the soil environment poses a severe threat to non-
target organisms, including microorganisms that colonize soil ecosystems. In most cases,
soil environment contamination with these chemical substances is due their incorrect appli-
cation [25]. In the present study, tebuconazole administered to the soil created favorable
conditions for the proliferation of organotrophic bacteria and fungi, which could use it as a
substrate for their growth and development [26]. In turn, actinobacteria were found to be
less tolerant to tebuconazole. Its adverse effect on this bacterial consortium might result
from damage caused to their cellular membranes [27], which in turn could lead to disor-
ders in the structure and functioning of their communities. Disorders in the cells of these
microorganisms could be triggered by tebuconazole effect on the biosynthesis of amino
acids and proteins [27,28]. A study conducted by Muñoz-Leoz et al. [28] demonstrated the
potential adverse effect of tebuconazole on soil microorganisms. Its dose of 500 mg kg−1

applied to the soil caused microorganism biomass to decrease by as much as 94.6% com-
pared to the control soil. Other research carried out by Wang et al. [29] on samples of
river-water soil treated with tebuconazole (doses of 1.0, 10.0, and 100 mg kg−1) proved that
when applied in the highest dose tested, tebuconazole exerted a negative impact on fungi
population. In turn Cycoń et al. [30], who treated soil with tebuconazole doses of 2.7, 13.5,
and 270 mg kg−1 soil, noted a negligible adverse effect of only the highest tested dose on
the biomass of microorganisms. This finding was not corroborated by Dealtry et al. [31],
who demonstrated intensive proliferation of microorganisms, including i.a. actinobacteria,
in the soil containing tebuconazole. A study conducted by Strickland et al. [32] on sandy-
loamy soil proved that tebuconazole used in the field doses had no significant effect on
the biomass of soil microorganisms. The present study demonstrated that tebuconazole
contributed to increased values of the CD index of the analyzed microorganisms, and that
it had various effects on the values of the EP index. Among other things, it increased the
EP value of organo-trophic bacteria and actinobacteria and decreased the EP value of fungi.
The study also showed that organotrophic bacteria and fungi belonged to r-strategists,
therefore their sensitivity to tebuconazole could be greater than that of K-strategists, char-
acterized by greater resistance to changes in environmental conditions [33,34]. Fungicides
not only cause changes in the number and activity of microorganisms, but also affect their
structure. Therefore, changes taking place in the soil under the influence of fungicides are
very well depicted by the structure of microbial communities [12]. Metagenomic analysis
enabled observing modifications in the structure of microorganisms as affected by soil
contamination with tebuconazole. Storck et al. [35], who evaluated tebuconazole effect
on the diversity of structure of bacterial communities, demonstrated that both the control
soil and the soil treated with tebuconazole were the most densely colonized by bacteria
belonging to Proteobacteria, Acidobacteria, Bacteroidetes, and Actinobacteria. In the present
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study, soil treatment with tebuconazole dose T1 promoted the proliferation of Proteobacteria.
Moreover, study results reported by Wu et al. [36] confirmed the increased relative abun-
dance of Proteobacteria in the soil exposed to tebuconazole. The above finding proves the
adaptive capabilities of these bacteria to changes triggered by this chemical compound in
the environmental conditions [37]. The physicochemical properties of the soil, which may
change under the influence of various factors such as how the soil is used, play a significant
role in shaping the diversity and structure of bacterial communities. Arunrat et al. [38],
while assessing the influence of various farming systems (rice-fish, co-culture and rice
monoculture farming system) on the structure of bacterial communities, noted that in both
systems the dominant taxa were Actinobacteria, Chloroflexi, Proteobacteria, Acidobacteria and
Planctomycetes. However, the bacterial composition of a rice-fish co-culture system was
determined by the soil pH, the content of the clay fraction and the content of the total
nitrogen, while in the rice monoculture system by the content of magnesium and sand
fraction. In turn, Viruel et al. [39] in Argentina’s semi-arid Chaco ecoregion (which has
been converted from pasture to cropland), identified the effects of land uses and manage-
ment practices (i.e., ungrazed pasture, grazed pasture and cropping systems under zero
and conventional tillage) on soil bacterial communities’ structure. The authors noted that
the soils were dominated by bacteria belonging to the types Firmicutes, Proteobacteria and
Actinobacteria.

Han et al. [40] reported that bacteria from the following genera: Methylobacterium,
Burkholderia, Hyphomicrobium, and Dermacoccus, exhibited a vast potential for tebuconazole
degradation, and that Methylobacterium bacteria were highly sensitive to its effects. In the
present study, tebuconazole increased the relative OTU number of bacteria from Kaistobacter,
Arthrobacter, and Streptomyces genera, and reduced the abundance of these from Bacillus,
Sphingomonas, and Gemmata genera, which may point to their sensitivity to this chemical. In
addition, soil contaminated with fungicides has been reported to offer favorable conditions
for the development of Rhodococcus [41].

The effect of fungicides on the soil ecosystem entails the response of not only microorgan-
isms but also enzymes being important biological indicators of soil [8,26,42,43]. The present
study demonstrated that tebuconazole stimulated activities of dehydrogenases, alkaline phos-
phatase, acid phosphatase, arylsulfatase, and β-glucosidase, and caused no significant changes
in the activities of catalase and urease. The enhanced enzymatic activity may be due to the
increased population of organotrophic bacteria that use tebuconazole as a source of carbon and
energy [42]. Anuradha et al. [44] observed enhanced activities of urease and phosphatases upon
soil treatment with tebuconazole doses ranging from 1.0 kg ha−1 to 5.0 kg ha−1. However, its
higher doses (7.5 kg ha−1 and 10.0 kg ha−1) were found to inhibit activities of these enzymes.

Nevertheless, it is believed that—when applied incorrectly—most fungicides may lead
to disorders in the metabolism of microorganisms, which is in turn reflected in the activities
of soil enzymes [45,46]. In addition, the suppressed activity of certain soil enzymes may
be due to their immobilization by soil colloids or to a small amount of organic matter
in the soil [38,47]. The adverse effect of tebuconazole applied in doses of 5.0, 50.0, and
500 mg kg−1 on the activities of urease, alkaline phosphatase, β-glucosidase, and arylsulfa-
tase was reported by Muñoz-Leoz et al. [28]. The present study showed that tebuconazole
administered to the soil in doses ranging from 0.01 mg kg−1 to 1.0 mg kg−1 not only had
no adverse effects on the activities of soil enzymes, but even activated them.

4. Materials and Methods
4.1. Tebuconazole

The study was conducted with tebuconazole with 99.80% purity purchased at Sigma-
Aldrich (Taukirchen, Germany). Table 4 presents its selected physicochemical properties.
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Table 4. Selected physicochemical properties of tebuconazole [47].

Parameter
(Temperature 20–25 ◦C, pH—7) Formula/Value

Chemical formula C16H22CIN3O
Solubility in water (mg dm−3) 36

Solubility in organic solvents at 20 ◦C (mg dm−3) 200,000
log Kow 3.70

pKa 5.0
Vapor pressure (mPa) 1.3 × 10−3

Aqueous hydrolysis stable
Kf (cm3 g−1) 12.69

Kfoc (cm3 g−1) 769
DT50 (days) 63

EC50 (mg dm−3) 2.79

4.2. Soil

The soil material used in the study derived from the Teaching and Experimental Sta-
tion in Tomaszkowo village, located in north-eastern Poland, Central Europe (53,7161◦ N,
20,4167◦ E). The soil material for the research was collected from the topsoil layer of an
arable at a depth of 0–20 cm after spring barley harvested. The soil was classified as
Eutric Cambisols [48]. Considering its fraction size composition, it was sandy loam (sand
fraction—69.41%, silt fraction—27.71%, and clay fraction—2.88%). It had the following
properties: pHKCl—7.0, hydrolytic acidity—6.40 mmol+ kg−1, sum of exchangeable base
cations—165.90 mmol+ kg−1, total exchangeable capacity—172.30 mmol+ kg−1, degree
of saturation of the sorptive complex with base cations—96.28%, total organic carbon
content—14.30 g kg−1, and total nitrogen content—0.98 g kg−1.

4.3. Experimental Design

The experiment was carried out under strictly controlled conditions in 3 replications.
The soil material (100 g) was placed in glass beakers (150 cm3) and treated with the
following various doses of tebuconazole (administered in single doses in the form an
aquatic emulsion, in mg kg−1 soil d.m.: 0.00 (C), 0.01 (T1), 0.10 (T2), 0.50 (T3), and 1.00 (T4).
Because studies reported in literature [28–30,49,50] regarding the tebuconazole effect on
the biological activity of soil have usually focused on its large doses, unseen in agricultural
production, the present study aimed to analyze the effect of this chemical added to soil in
doses most commonly applied in agricultural practice. After tebuconazole addition, the soil
was thoroughly homogenized and moistened to 50% of its capillary water capacity using
sterile deionized water, and this moisture content of the soil was maintained throughout
the study period. The soil samples were incubated at a temperature of 25 ◦C for 30 days
because the greatest changes caused in soil microbiome by pesticides are usually observed
within a month [44,47,51]. Within 30 days of the experiment, the fresh soil (sieved through a
screen with 2 mm mesh diameter) was subjected to microbiological and enzymatic analyses.

4.4. Microbiological Analyses of Soil

Microbiological analyses of soil were performed with a standard method and with the
Next-Generation Sequencing (NGS) method. The population numbers of organotrophic
bacteria (Org), actinobacteria (Act), and fungi (Fun) were determined with the serial dilution
method in 4 replications. Microorganisms were cultured in an incubator at a temperature
of 28 ◦C for 10 days. During 10-day incubation, grown colonies of microorganisms were
counted every day and then the number of their colony forming units (cfu) was determined.
The detailed methodology of microbiological analyses and the composition of the media
are described in the work by Borowik et al. [52].

Genomic DNA of the bacteria was isolated from the soil by means of a Genomic Mini
AX Bacteria + kit (A&A Biotechnology, Gdansk, Poland), using lyticase. The mechanical
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lysis of the samples was performed with a FastPrep-24 type (MP Biomedicals, Santa Ana,
CA, USA) device using zirconia beads. The isolated bacterial DNA was additionally
purified by means of an Anti-Inhibitor Kit (A&A Biotechnology, Gdansk, Poland). The
presence of bacterial DNA in the tested samples was confirmed in the Real-Time PCR
performed in a CFX Connect thermocycler (Bio-rad, Twinsburg, OH, USA), using a SYBR
Green dye as fluorochrome. The reaction was performed using universal primers: 1055F
(5′-ATGGCTGTCGTCAGCT-3′) and 139R (5′-ACGGGCGGTGTGTAC-3′), amplifying the
fragment of a bacterial 16S rRNA gene [53].

The sequencing of bacterial amplicons was conducted with an Illumina MiSeq PE300
(Illumina Inc., San Diego, CA, USA) device in a 2 × 300 bp paired-end mode by Genomed S.A.
company (Warsaw, Poland) based on the V3-V4 region of the 16S rRNA gene. The hypervari-
able region was amplified using specific primers: 341F (5′-CCTACGGGNGGCWGCAG-3′)
and 785R (5′-GACTACHVGGGTATCTAATCC-3′). The manuscript presents OTU ≥ 1% data
of the obtained bacterial sequences.

4.5. Biochemical Analyses of Soil

The soil samples were analyzed for the activities of dehydrogenases (Deh), catalase (Cat)
as well as urease (Ure), alkaline phosphatase (Pal), acid phosphatase (Pac), arylsulfatase (Aryl),
and β-glucosidase (Glu). Enzymatic activity was determined using the following reagents:
dehydrogenases—3% aqueous solution of 2,3,5-triphenyl tetrazolium chloride; catalase—0.3%
hydrogen peroxide; urease—10% aqueous solution of urea; alkaline phosphatase and acid
phosphatase—0.115 M disodium 4-nitrophenyl phosphate; arylsulfatase—0.02 M potassium-
4-nitrophenylsulfate; and β-glucosidase—0.025 M 4-nitrophenyl-β-D-glucopyranoside. Activ-
ities of the analyzed enzymes were expressed in the following units: dehydrogenases in µmol
TFF kg−1 d.m. h−1; catalase—mol O2 kg−1 d.m. h−1; urease—mmol N-NH4 kg−1 d.m. h−1;
as well as alkaline phosphatase, acid phosphatase, arylsulfatase, and β-glucosidase—mmol
PNP kg−1 d.m. h−1. The procedure for the determination of soil enzymatic activity was
presented in the study by Borowik et al. [52].

4.6. Physicochemical Analyses of Soil

Before the physicochemical analyses, the soil was air-dried and sieved through a screen
with 2 mm mesh diameter. The fraction size composition of the soil was determined using a
Mastersizer 2000 laser diffraction particle size analyzer (Malvern, Worcestershire, UK), soil
pH—potentiometrically in 1 mol dm−3 KCl, hydrolytic acidity and sum of exchangeable
base cations—with the Kappen method, organic carbon content—with the Tiurin method,
and total nitrogen content—with the Kjeldahl method [54].

4.7. Bioinformatic and Statistical Computations and Analyses of Study Results

The determined population numbers of organotrophic bacteria, actinobacteria, and fungi
were used to compute the colony development index (CD) [55], the ecophysiological diversity
index (EP) [33], and the index of microbial abundance growth in specified time intervals (Ks) [56].
In turn, the number of operational taxonomic units (OTU) of bacteria was used to compute
values of the Shannon-Wiener index (H’) and the Simpson index (D) [57]. The determined
activities of soil enzymes (Deh, Cat, Ure, Pal, Pac, Aryl, Glu) allowed computing the biochemical
index of soil quality (BA) developed by Wyszkowska et al. [58]. The results of the metagenomic
analysis were subjected to bioinformatic analysis using the QIIME (Quantitative Insights Into
Microbial Ecology) software based on a reference data base GreenGenes v13_8. Bacterial
phyla were compared by means of the G test G (w/Yates’) + Fisher test using the STAMP
2.1.3 software [59]. Bacterial classes were presented in the form of a circle using the Circos
0.68 package [60]. Bacterial families and genera were presented in the form of a heat map
prepared using the RStudio v1.2.5033 software [61], gplots library [62], and v3.6.2 system [63].
The results of the abundance of microorganisms and activities of soil enzymes were developed
statistically using Statistica 13.3 package [64]. Homogenous groups were determined deploying
one-way analysis of variance (ANOVA) at p = 0.01, by means of the Tukey test. Simple Pearson’s



Molecules 2022, 27, 7501 12 of 15

correlation coefficients and standard deviations were computed as well. Unique and common
bacterial genera were presented in the form of a Venne’s diagram using the InteractiVenn
software [65].

5. Conclusions

The conducted study provided valuable information about the response of soil mi-
croorganisms and enzymes to tebuconazole administered to the soil, which when used in
field doses did not diminish its fertility. It stimulated the proliferation of organotrophic
bacteria and fungi as well as activities of most of the analyzed soil enzymes, causing no
significant changes in the structure of bacterial communities. All analyzed soil samples
were most densely populated by Proteobacteria bacteria, but relatively high abundance was
also noted for Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, Planctomycetes,
and Chloroflexi. The most abundant bacteria in the soil samples treated with tebuconazole
were these belonging to the following genera: Kaistobacter, Arthrobacter, and Streptomyces,
which proves that these bacteria should be perceived as potential candidates for an effective
vaccine for the bioaugmentation of soil contaminated with the fungicide.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217501/s1, Figure S1: Increase in the abundance of
microorganisms in various time intervals, in % (Ks); Table S1: Effect of tebuconazole on population
numbers of microorganisms, 10n cfu kg−1 soil d.m.; Table S2: Values of Shannon–Wiener index and
Simpson index computed based on all OTU data.
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