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Abstract: An efficient one-pot synthesis of carborane-containing high-energy compounds was de-
veloped via the exploration of carbon–halogen bond functionalization strategies in commercially
available 2,4,6-trichloro-1,3,5-triazine. The synthetic pathway first included the substitution of
two chlorine atoms in s-triazine with 5-R-tetrazoles (R = H, Me, Et) units to form disubstituted
tetrazolyl 1,3,5-triazines followed by the sequential substitution of the remaining chlorine atom in
1,3,5-triazine with carborane N- or S-nucleophiles. All new compounds were characterized by IR-
and NMR spectroscopy. The structure of four new compounds was confirmed by single crystal X-ray
diffraction analysis. The density functional theory method (DFT B3LYP/6-311 + G*) was used to
study the geometrical structures, enthalpies of formation (EOFs), energetic properties and highest
occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energies and the detonation
properties of synthesized compounds. The DFT calculation revealed compounds processing the max-
imum value of the detonation velocity or the maximum value of the detonation pressure. Theoretical
terahertz frequencies for potential high-energy density materials (HEDMs) were computed, which
allow the opportunity for the remote detection of these compounds.

Keywords: carborane; tetrazole; HEMDs; DFT; single crystal X-ray diffraction

1. Introduction

In recent years, extensive efforts have been devoted to the development of high-
energy density materials (HEDMs) such as propellants, explosives and pyrotechnics for
commercial and military applications. There are many compounds that can be attributed to
this category, and the analysis of their energetic characteristics provides information on the
relationship between the structure and properties [1–3]. Among them, promising types of
high-energy compounds are acyclic compounds, strained, fused and caged compounds,
nitrogen heterocyclic compounds [4–6]. Nitrogen-containing heterocycles have traditionally
been in the center of focus in the preparation of high-energy compounds due to their large
positive heat of formation, high density, insensitivity and the presence of energetic N=N
and C=N bonds. Upon decomposition, nitrogen-rich molecules would produce a large
quantity of nitrogen gas and large amounts of energy [7–11].

Moreover, energetic materials based on heterocyclic compounds are considered as attractive
candidates for a replacement of conventional high-energy materials, such as 2,4,6-trinitrotoluene
(TNT), 1,3,5-trimethylene-2,4,6-trinitramine (RDX), and 1,3,5,7-tetranitrotetraaza-cyclooctane
(HMX) [12,13]. Earlier works showed that 1,3,5-triazine is an important framework for the
construction of numerous energetic compounds, owing to its positive heat of formation, high
nitrogen content (53.8%), and thermal stability. Moreover, their nitrogen content can be increased
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by substitution with suitable functional groups. Chemically modified 1,3,5-triazine with a variety
of nitrogen-containing substituents have been demonstrated to be promising HEDMs [14–16].
The key compound for their preparation is cyanuric chloride, which can be readily functionalized
through the conventional SNAr reactions with various nucleophiles including a variety of
energetic moieties [17]. Indeed, the replacement of chlorine atoms in cyanuric chloride by
tetrazole moieties offers the possibility of tuning the energetic properties in order to produce
nitrogen-rich HEDMs with improved energetic properties [18]. Tetrazole is an important
functionality of the most of energetic materials due to 80% nitrogen content, stability, and high
enthalpy of formation. The enthalpies of formation of tetrazole in the crystalline and gaseous
states are ∆Hf(cr) = 236.1 kJ/mol (56.4 kcal/mol) and ∆Hf(g) = 327.2 kJ/mol (78 kcal/mol),
respectively [19,20]. Tetrazoles are also characterized by high potential energy and low sensitivity
to friction and shock and are thus used as green energetic materials in propellants, gas generators,
explosives and pyrotechnics. Tetrazoles have some advantages compared to classical high-
energy materials such as lower toxicity, easier synthesis, being cleaner and environmentally
friendly decomposition [21].

Among the variety of HEDMs, boron-containing materials have also drawn particular
attention because of boron’s high heat of combustion on both a gravimetric (58 kJ/g) and
volumetric (136 kJ/cm3) basis [22–24]. Amorphous boron of more than 99% purity is added
to propellant compositions as a fuel additive and burn rate modifier [22]. However, the
application of pure boron powder in the solid propellant composition has some disad-
vantages such as the difficulty in ignition and incomplete combustion in the presence of
atmospheric oxygen [25,26]. New types of boron materials for energetic composition were
prepared to resolve this problem. It is believed [27] that the use of boron in a composition
with aluminum can increase the combustion efficiency of boron due to a synergistic effect
of composite systems including Al and B as well as the capping of boron nanoparticles with
a polymer can provide a solution to the aforementioned problem. The use of an energetic
polymer for that purpose can bring additional heat close to the surface of the nanoparticles
and facilitate their ignition [27].

However, nowadays studies in the field of boron HEDMs have been directed towards
the preparation of the monomolecular systems featuring high heats of formation and high
nitrogen content based on tetraazido-, azole and azolium borate salts [28–30]. Potential
candidates for the development of new boron energetic materials with both high energy
and low sensitivity are nitrogen-rich carborane systems [31,32], the functionalization strate-
gies of which have been recently described. The closo-carboranes (C2B10H12) are boron-rich
icosahedral compounds with unique structural and electronic properties, remarkable ther-
mal and chemical stability, spherical geometry, and exceptional hydrophobic character [33].
They are characterized by the existence of three-center two-electron bonds, and can be
considered as three-dimensional delocalized aromatic systems [34,35], demonstrating many
features with that of benzene. The remarkable thermal and chemical stabilities make them
unique candidates for use in several special applications in the fields of materials sci-
ence [36,37] including HEDMs since they demonstrate a high enthalpy (∆Hf = 42 kcal/mol)
of formation [38]. Previously, it was shown by us that carboranyl-substituted tetrazoles
are prospective for their potential applications as HEDMs [31,32]. In this work, aiming to
achieve promising energy-rich materials with carborane exploration, the synthetic route for
three-component high energy systems containing s-triazine, carborane and tetrazoles within
one molecule was been developed. Spectroscopic, structural data and DFT calculations for
new compounds are reported.

2. Result and Discussion
2.1. Synthesis

Our initial goal was to develop an efficient strategy for the preparation of nitrogen-rich
carborane-containing HEDMs. 2,4,6-Trichloro-1,3,5-triazine, i.e., cyanuric chloride (1), was
suggested as the trifunctional rigid linker for the synthesis of desired compounds since it is a
relatively stable nitrogen heteroaromatic system, promising for derivatization with various



Molecules 2022, 27, 7484 3 of 22

nucleophiles during SNAr reaction capable of forming a variety of highly structured poly-
functionalized intermediates [39]. The synthetic pathway to obtain new s-triazine derivatives
modified with tetrazoles and carborane cluster is shown in Scheme 1.

1 
 

 
Scheme 1 

 

Scheme 2 

Scheme 1. Reactions of intermediates 5–7 with amino- and mercaptocarboranes.

Tetrazoles 2–4 were reacted with cyanuric chloride 1 (molar ratio 2:1) at −40 ◦C to
ambient temperature for 2–24 h in THF in the presence of DIPEA as an HCl scavenger
demonstrating, by TLC (CHCl3-acetone 10:1), the formation of 2-chloro-4,6-ditetrazolyl-
1,3,5-triazines intermediates 5–7. It should be noted that the formation of disubstituted
compounds 5–7 depends on the structure of tetrazoles 2–4 and under similar reaction
conditions, a decrease in the reactivity and a significant increase in the reaction time in
series 2 (2–3 h) ≥ 3 (6–7 h) ≥ 4 (24 h) were observed. The sequential substitution of the
remaining electrophilic site in 5–7 with the carborane cluster was carried out by treating
the reaction mixture with 3-amino-o-carborane 8 [40] and heating at 20–25 ◦C for 20–24 h to
afford the desired compounds 9–11 in 59–84% isolated yields as white solids.

At the same time, the reactivity of intermediate 5 towards isomeric mercapto carbo-
ranes 12–14 in which mercapto group is bound to electron-deficient 12 [41] or electron-
donating 13, 14 carborane groups [42] was studied in order to clarify the effect of the
carborane structure on the energetic characteristics of the synthesized compounds. The
reaction of 5 with carboranes 12–14 readily proceeded in THF in the presence of DIPEA for
3 h at ambient temperature to afford compounds 15–17 in 50–79% yields. It was found that
the reaction of carborane 12 with 5 is accompanied by the deboronation of a closo-carborane
cluster to afford anionic nido-derivative 15, obtained as cesium salt.

A similar reaction of phenyltetrazole 18 with cyanuric chloride 1 and aminocarborane
8 led to the formation of a complex mixture of products from which three substances
were isolated and characterized by X-ray diffraction analysis (Scheme 2), namely 5-(o-
carborane-3-yl)amino-2,9-diphenylbis [1,2,4]tri-azolo[1,5-a:1′,5′-c][1,3,5]triazine 19, 2-(2-
benzoylhydrazinyl)-4-(o-carborane-3-yl)amino- 6-(5-phenyl-2H-tetrazol-2-yl)-1,3,5-triazine
20 and 3,7,11-triphenyltris([1,2,4]triazolo) [4,3-a:4′,3′-c:4′’,3′’-e] [1,3,5]triazine 21.
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Scheme 1 

 

Scheme 2 Scheme 2. Reaction of phenyltetrazole 18 with aminocarborane 8.

A very concise discussion of the key players in this area and their contribution may also
be placed here. The reaction of the tetrazole 18 and cyanuric chloride 1 led to the formation
of tetrazole N1- and N2-substituted [43–46] s-triazine regioisomers 22, 23 and their reaction
with carborane 8 resulted in the formation of unstable intermediates 24, 25. The evolution
of nitrogen in compound 25 afforded fused carborane triazolotriazine 19 according to the
known rearrangement [47] while 24 was received via the interaction of the intermediate 1,3-
dipole 26 with H2O [48] used for the reaction treatment. Trimer 21 could be formed via a
self-cyclization of the symmetrical tris(tetrazolyl)triazine 28 [47,49,50]. The low thermal stability
of intermediates 22–25 is in good agreement with the DFT calculations. DFT calculations
(Figure 1) for compound 25 showed that this compound can be easily transformed into a stable
compound 19 via a successive evolution of nitrogen molecules from two tetrazole rings in 25.
This process can be characterized by a negative value of the enthalpy of the process and a
change in the Gibbs free energy (in parentheses) in the form of the following the equation:
 

2 

 
Figure 1 Figure 1. Values of enthalpy and a change in the Gibbs free energy in the process of transformation
of 25 into 19.
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Apparently, the ease of the decomposition of complex 25 with the release of two
nitrogen molecules is due to the relatively small activation energy of this process. Simple
energy estimation confirms this conclusion. The comparison of similar reactions for com-
pounds 9 and 10, where R = H and Me, showed that the activation energies for R = Ph are
approximately 20 kcal lower than for compounds 9 and 10.

2.2. NMR Spectral Data of Prepared Compounds

All the prepared compounds are stable in air and could be stored for extended periods
of time.

In the 1H NMR spectra, tetrazole CH protons in compound 9 (Figure S1) appeared
downfield at δ = 10.1 ppm, protons of the tetrazole methyl groups in compound 10
(Figure S9) were observed at δ = 3.0 ppm and protons of the tetrazole ethyl groups in
compound 11 (Figure S11) were observed at δ = 3.5 ppm (CH2) and δ = 1.4 ppm (CH3),
respectively. The protons of B3-NH amino groups in all synthesized compounds were
observed as broad singlets at δ = 9.0–9.1 ppm. The signals of the carborane CH protons
in compounds 9–11 shifted downfield relatively to the corresponding signals in amine 8
due to the electron-withdrawal effect of the s-triazine ring and manifested as broad singlets
at δ = 5.3 ppm. The 11B NMR spectra for compounds 9–11 are also in good agreement
with the structures of the synthesized compounds and are in the range from δ = −4.5 to
−14.5 ppm, supporting the closo-structure of carborane polyhedron. The signals of the
substituted B3-NH atoms appeared as singlets in the region of δ = −6.0–−6.5 ppm. In
1H NMR spectra, the signals of tetrazole CH protons in s-triazines 15–17 were observed
as singlets at δ = 8.95–10.17 ppm, as in the case of compounds 9–11, which indicates the
absence of a significant influence of the carborane electronic properties on the tetrazole ring.
The signal of the carborane CH protons for compound 17 (Figure S21) was observed as a
broadened singlet at δ = 3.98 ppm, whereas in the case of compounds 15 and 16, carborane
CH protons appeared as two broadened singlets at δ = 3.16, 3.69 ppm for 15 (Figure S17)
and at δ = 4.84, 4.90 ppm for 16 (Figure S19). The 11B NMR signals of compounds 16 and 17
are in a range from δ = 1.8 to −14.4 ppm for 16 and from −4.4 to −17.5 ppm for 17 and the
signals of substituted boron atoms in position 9 were observed as singlets at δ = 1.8 ppm
and −4.4 ppm for compounds 16 (Figure S20) and 17 (Figure S22), respectively. For nido-
derivative 15 (Figure S17), a characteristic extra hydrogen atom signal was observed in
the 1H NMR spectrum at δ = −1.9 ppm in the form of a broadened doublet, and in the 11B
NMR spectrum, a characteristic doublet of doublet signal was observed at δ = −34.4 ppm
(Figure S18), attributed to the boron atom in position 10 of nido-carborane polyhedron.

Nevertheless, it should be noted that special features for compounds 9–11 were ob-
served in their NMR spectra. In the NMR spectra of 5-alkyl (10, 11) and 5-H (9) carborane-
substituted bis(tetrazolyl)-s-triazines prepared using 3-amino-o-carborane 8, a splitting of
signals related to protons of alkyl groups of substituted tetrazoles 10, 11 and protons of
the CH-group of the unsubstituted tetrazole ring of the compound 9 is observed. Initially,
the splitting of the proton signal of tetrazole ring substituents in the 1H NMR spectra
was attributed to the formation of a mixture of 4- and 5-isomeric tetrazoles, which was
observed for the most spatially hindered phenyl-tetrazole 18 and described in detail in the
literature [43–46]; however, in this case, the ratio of the tetrazole ring proton signals should
have shifted towards 1,4-tetrazoles in accordance with the increase in the steric effect of
the substituent in the starting compounds. However, this was not found in real spectra.
In all cases, the signal was divided into two equal multiplets, in which the spin–spin
interaction constants correspond to the proton interaction usual for such groups. The most
likely explanation of this phenomenon is the hindrance rotation of the 3-amino-o-carborane
fragment and tetrazoles relative to the central s-triazine ring. To confirm this idea, the NMR
spectra of compound 9 were recorded in both acetone-D6 (Figure S1) and acetonitrile-D3
(Figure S2), since their ability to coordinate with the amino group at the carborane fragment
and heterocycles is significantly different. In the less coordinating acetonitrile, an increase
in the difference between the signals was found to be almost twice without changing the
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ratio of their integrals, which indicates in favor of the hypothesis of a hindrance rotation.
This conclusion was also supported by the 1H NMR spectra of compound 9 recorded in
acetone at different temperatures (Figure S4). A gradual broadening and fusion of the
proton signals of the tetrazole CH groups with an increase in temperature was observed,
which is characteristic of the splitting of the proton signal caused by hindrance rotation
(Figure 2).

Figure 2. 1H NMR spectra of compound 9 recorded in acetone-D6 at different temperatures.

The structure of compound 9 was also studied with NOESY(EXSY) NMR spectra
(Figure S7). The broad signal of the NH proton reveals a lower intensity (0.4) due to
the exchange with H2O protons. The presence of such an exchange follows from the
NOESY(EXSY) NMR spectra (Figure S7). In this spectrum, in addition to antiphase signals
related to spatially close CH protons of carborane and tetrazole, in-phase cross peaks of
the NH proton (δ = 9.09 ppm) with signals at δ = 3.78 ppm and δ = 2.88 ppm were found.
These signals, apparently, correspond to water protons, which has been confirmed by the
absence of correlation peaks in the HMQC NMR spectrum (Figure S8). The doubling of the
signals in these NMR spectra is due to the different shielding of the indicator signals of
compound 9 in the two conformations (see above in the discussion of the results). No such
effect was observed in compounds 15–17 prepared using mercaptocarboranes.

The structure of compound 9 was also supported by the X-ray diffraction study
(Figure 3). This substance crystallizes with one acetone molecule and has a certain degree
of disorder in the superposition of the tetrazole CH group and nitrogen atom. Despite
the fact that the X-ray data of compound 9 are not completely unambiguous, according
to the totality of information based on the NMR spectra and X-ray study and taking into
account the data obtained by the X-ray study for 10, it can be unequivocally stated that the
observed splitting of the signal of protons of alkyl groups of substituted tetrazoles 10, 11
and protons of the CH-group of the unsubstituted tetrazole ring of compound 9 is due to
the hindrance rotation of the 3-amino-o-carborane fragment and tetrazoles relative to the
central s-triazine ring.
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Figure 3. (a) Molecular structure of compound 9 (thermal ellipsoids are drawn at the 50% probability
level). (b) Hydrogen-bonded associate of two conformers of compound 9 (only those hydrogen atoms
that are involved in hydrogen bonds are shown).

2.3. X-ray Crystallography

The crystals of compounds 9 and 10 suitable for X-ray diffraction were obtained by the
slow evaporation of acetone at room temperature from the solution of the corresponding
compound, whereas crystals of 19 and 20 were obtained by the slow evaporation of the
solution system chloroform–methanol (10:1) for 19 and dichloromethane-ethyl acetate (8:1)
for 20 at room temperature, respectively. The molecular structures of 9, 10, 19 and 20 were
determined by means of the single crystal X-ray diffraction study (Figures 3–8). Selected data
and parameters of X-ray structures for 9, 10, 19 and 20 are given in the ESI (Tables S1–S9).

Figure 4. The general view of compound 10 in the crystal (thermal ellipsoids are drawn at the 50%
probability level.
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Figure 5. Molecular structure of compound 19 (thermal ellipsoids are drawn at the 50% probability level).

Figure 6. A fragment of an H-bonded stack in the crystal structure of 19 in two projections: (a) along
the a axis of the crystal; and (b) along the c axis of the crystal.

Figure 7. One of two crystallographically independent molecules (A) of compound 20 (thermal
ellipsoids are drawn at the 50% probability level).



Molecules 2022, 27, 7484 9 of 22

Figure 8. (a) H-Bonded dimer formed by two crystallographically independent molecules (A and B)
of compound 20; and (b) centrosymmetric H-bonded tetramers.

According to the X-ray data, both tetrazole rings in 9 are in the plane of the central s-
triazine cycle (the dihedral angles between planes of the tetrazole and s-triazine units are 3.6
and 7.3◦). However, the degree of delocalization in the heterocyclic π-system is low, as evi-
denced by the noticeable alternation of the lengths of C-N and N-N bonds, especially in five-
membered tetrazole rings (Table S1). In the crystal, numerous stacking contacts between
the planar heterocyclic systems of adjacent molecules are formed (the interplanar distances
are 3.27 and 3.29 Å, the shortest interatomic contacts are C(13)· · ·N(7)−1+x,y,z 3.016(2) Å,
C(15)· · ·N(8)−1+x,y,z 3.186(2) Å, C(15)· · ·C(15)−x,1−y,1−z 3.293(2) Å, C(13)· · ·N(10)−x,1−y,1−z

3.209(2) Å). The structure of the carborane polyhedron in 9 (bond lengths are C(1)-C(2)
1.650(2), C-B 1.692(2)-1.718(2), B-B 1.767(2)-1.795(2) Å), as in other studied compounds, cor-
responds to the standard geometry of the icosahedral o-C2B10H12 carborane. The positions
of N(10) and C(17) atoms (Figure 3a) are occupied by carbon and nitrogen atoms with equal
contribution; this observation implies the presence of two conformers of compound 9 in the
crystal. One of the possible hydrogen-bonded associates of two conformers of compound 9
united by two N-H· · ·N hydrogen bonds and C-H· · ·N contacts is presented in Figure 3b.

A solvate acetone molecule is present in the independent part of the unit cell. These
solvate molecules are bound to the molecules of compound 9 by either one or two C-
H· · ·O hydrogen bonds (Table S6). The H-bonded dimers of 9 form stacks along the [1 1 0]
crystallographic direction, which, due to π–π interactions between terminal tetrazole rings
(the shortest interatomic contact is N(6)· · ·N(7)1−x,2−y,1−z 3.042(2) Å), are combined into
double layers parallel to ab plane (Figure S23). The layers are additionally stabilized due to
weak C-H· · ·N hydrogen bonds between the carborane fragments and the nitrogen atoms
of the tetrazole rings of neighboring molecules (Table S6). Each layer is framed on the outer
side by a hydrophobic surface of carborane fragments, and there are no shortened contacts
between the layers.

Methyl substituents at the carbon atoms of the five-membered heterocycles in 10
(Figure 4) create steric hindrance to the formation of hydrogen-bonded dimers in the
crystal, as observed in structure 9. In the independent part of the unit cell, there is a solvate
acetone molecule, the oxygen atom of which serves as an acceptor of the H-bond with
molecule 10 (Table S7).

The methyl substituents lead to a slight violation of the planarity of the heterocyclic
system (the dihedral angles between the planes of the tetrazole and s-triazine units are 10.3 and
14.6◦). Nevertheless, in structure 10, as in structure 9, stacking contacts between neighboring
molecules are also observed, although with looser stacking (interplanar distances are increased
to 3.59 Å). The s-triazine rings in 9 and 10 are flat with an accuracy of 0.02 Å.
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In crystal 10, the supramolecular assembling is close to that observed in 9. The layered
packing with shortened stacking contacts between heterocyclic systems and no specific
interactions between layers is observed (Figure S24).

In compound 19 (Figure 5), six and five fused membered rings in the tricyclic fragment
have a planar structure (the maximum deviation from the plane of the triazine ring is 0.19 Å
for the N8 atom) with phenyl substituents twisted from this plane by 17.3◦ (at C(6) atom)
and 38.6◦ (at C(13) atom).

Fused heterocycles form compact stacks (Figure 6) extended along the c axis of
the crystal with interplanar separations of 3.3 Å and shortest interatomic contacts of
C(6)· · ·N(8)0.5−x,y, −0.5+z 3.122(4) Å and N(6)· · ·C(13)0.5−x,y, −0.5+z 3.107(4) Å.

In the independent part of the unit cell of 19, there are two solvate methanol molecules
that additionally stabilize the stack by linking neighboring molecules with a network of
H-bonds (Table S8). These stacks are joined in the crystal exclusively due to weak van der
Waals interactions, i.e., C-H· · ·C, C-H· · ·O, and H· · ·H. However, in this structure, as in 9
and 10, layers containing either heterocyclic or carborane fragments of molecules can be
distinguished (Figure S25).

In the independent part of the unit cell of 20, there are two crystallographically
independent molecules (A and B) that have the same spatial structure (Figure 7).

In both independent molecules of compound 20, the tetrazole ring and the phenyl
substituent are in the plane of the central s-triazine ring (the dihedral angles between planes
of these rings range from 2.4 to 11.0◦). The benzoylhydrazinyl group is almost orthogonal
to the plane of the triazine ring (the C(4)-N(5)-N(6)-C(6) torsion angle is 87.7(4) and 81.8(4)◦

in A and B, respectively). Similarly to what was observed in structures 9, 10, and 19, in
the crystal of 20, the set of specific intermolecular interactions namely, hydrogen bonds
and π–π stacking interactions, were realized. Two independent molecules of compound
20 form centrosymmetric H-bonded tetramers (Figure 8 and Table S9), which are joined in
the crystal due to π–π stacking interactions (the interplanar distance is 3.2 Å, the shortest
interatomic contacts are C(5A)· · ·C(5A)1−x,1−y,1−z 3.223(7) Å, C(3A)· · ·N(9A)1−x,1−y,1−z

3.235(7) Å, C(5A)· · ·N(9B) 3.222(7) Å). The crystal packing of 20 has a layered structure
with alternating heterocyclic and carborane fragments (Figure S26).

Hirshfeld Surface Analysis

Hirshfeld surface (HS) analysis is documented as an authoritative tool to qualitatively
assess the nature of intermolecular interactions within crystal structures and thoroughly
identify the interactions throughout the surface around the molecules [51–54].

Hirshfeld surface, overall interactions and individual interatomic contacts were com-
puted using the CrystalExplorer17 software [55] for all the compounds studied by X-ray.
The obtained data agree well with the X-ray data presented above for molecules 9, 10, 19,
and 20 and add a quantification of intermolecular interactions.

Contacts H· · ·H contribute the most to the crystal packing of compound 9, 10, 19,
20, with a percentage contribution from 45.5% to 60.5%. These are the most crucial and
significant interatomic contacts. In addition to the H· · ·H contacts, the N· · ·H and C· · ·H
contacts are also crucial in defining the crystal packing. Hirshfeld surface analysis showed
that important contributions to the crystal packing of compounds 9 (Figures S27 and S28)
and 10 (Figures S29 and S30) are from N· · ·H interactions (29.2% and 28.5%, respectively),
while C· · ·H interactions are less essential (less 4%). On the contrary, we found for com-
pounds 19 (Figures S31 and S32) and 20 (Figures S33–S35) that intermolecular C· · ·H
contacts (14.4% and ~16%, respectively) make the largest contributions to crystal packing,
while N· · ·H contacts (10.5% and ~12%, respectively) are slightly inferior. Additionally,
the notable contribution of N· · ·N and C· · ·N contacts (7–10%) which corresponds to π–π
interactions between flat heterocycle fragments of the molecules should also be noted in all
the structures.

In spite of a notable difference in the values of individual interatomic contacts in
pairs 9, 10 and 19, 20, the supramolecular packing of all the compounds studied was
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characterized by common features, namely the alternation of hydrophobic fragments
formed by the interaction of boron clusters where H· · ·H contacts dominate and fragments
with a domination of N· · ·H contacts (H-bonds) where heterocycle fragments are grouped.
(Figures S36 and S37).

2.4. Theoretical Studies of Carborane-Substituted Bis(Tetrazolyl)-s-triazines (9–11, 15–17)
2.4.1. Computational Details

The calculations of compounds 9–11, 15–17 were performed according to density
functional theory (DFT) [56]. The Becke–Lee–Yang–Parr hybrid functional (B3LYP) [57,58]
was applied in basis 6-311 + G*. All calculations with a full optimization of the geometry
of molecules and calculation of normal oscillation frequencies at 298 K and 1 atm were
performed using the GAUSSIAN-09 program [59] under the LINUX operating system. If
the imaginary frequencies of normal vibrations appeared, the optimization was repeated.
The accuracy of the results of the calculated geometry optimization was supported by the
comparison of the computed data with the experimental ones obtained for compounds 9
and 10 by X-ray single crystal analysis.

2.4.2. Geometry and Electronic Structure

The results of the geometry optimization for all prepared compounds are given in
Table S10 (Supplementary Materials), while the geometry of molecule 10 is presented below
(Figure 9).

Figure 9. Calculated geometry of compound 10.

A comparison of the experimental and theoretical interatomic distances of molecule
10 (Table 1) demonstrates that the calculations at the DFT B3LYP/6-311 + G* level can be
considered as an adequate one for the geometry optimization of the carborane-substituted
bis(tetrazolyl)-s-triazines.

Table 1. Comparison of the experimental and theoretical interatomic distances for molecule 10.

Interatomic Distances Experiment, Å Calculations, Å

N=N (tetrazole) 1.281(2)–1.284(2) 1.272
N-N (tetrazole) 1.372(1)–1.380(2) 1.369, 1.376
C=N (tetrazole) 1.312(2) 1.312
C-N (tetrazole) 1.364(2)–1.366(2) 1.375

C-C (tetrazole-alkyl) 1.483(2) 1.486
N-C (triazine) 1.313(2)–1.362(2) 1.346

B-B (carborane) 1.761(2)–1.790(2) 1.761
C-B (carborane) 1.691(2)–1.726(2) 1.718
C-C (carborane) 1.645(2) 1.641
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The calculated values of the total energy and entropy of compounds 9–11, 15–17 (6-
311 + G* basis set) in the gas phase based on computed geometries are listed in Table S11.

The thermal stability and impact sensitivity of HEDM are of great importance during
their manufacturing, storage and handling. The energy gaps (∆ε) between HOMO and
LUMO help characterize the chemical reactivity and kinetic stability of molecules [60–63].
It is quite expected that the variation of the nature of substituents, their position and
number can change the value of the HOMO–LUMO gap which thus affects the reactivity
and stability of the compounds.

In recent works [64,65], the B3LYP functional was successfully used for carborane
systems and the accuracy of the applied DFT/B3LYP method was confirmed by calculations
in the MRCC3 software package [64].

The calculated values of HOMO and LUMO energies based on the DFT B3LYP/6-
311 + G* level for the compounds 9–11 and 15–17 in a gas phase are presented in Table 2
while the plots of HOMO and LUMO iso-surfaces are provided in Figure 10.

Table 2. Computed HOMO and LUMO energies and the frontier molecular orbital energy gap values
for compounds 9–11 and 15–17 in gas phase.

Compound HOMO, eV LUMO, eV ∆ε, eV

9 −8.35 −3.40 4.95
10 −8.20 −3.16 5.15
11 −8.17 −3.12 5.05
15 −8.33 −3.75 4.57
16 −7.46 −2.97 4.49
17 −7.54 −3.05 4.49

Figure 10. Plots of HOMO (left) and LUMO (right) iso-surfaces for compounds 9–11 and 15–17.

The results of the visualization of HOMO and LUMO iso-surfaces demonstrate that
for all molecules studied, the HOMO iso-surface is mainly localized on carborane and
s-triazine moieties and either on the -NH- or -S- linker. The LUMO iso-surface can be found
on tetrazole and s-triazine fragments. The substitution of the boron atom of carborane
cages elevates both HOMO and LUMO levels, while on carbon atom reduces them. Methyl
and ethyl substituents in tetrazole rings attached to s-triazine elevate the HOMO energy
and reduce LUMO energy. The presence of sulfur linker elevates both HOMO and LUMO
energy levels. Due to this complicated influence of the structural units, compounds 9, 10
and 11 are characterized by the largest computed values of ∆ε. These are 116, 121 and 119
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kcal/mol, respectively. However, magnitudes of ∆ε found for compounds 15, 16 and 17
are less (107, 105 and 105 kcal/mol) compared to 9, 10 and 11, as these types of energetic
materials are still less impact-sensitive than classical diaminotrinitrobenzene (DATB) and
trinitroaniline (TNA), whose ∆ε values are 91 kcal/mol and 90 kcal/mol, respectively [60].

2.4.3. The Evaluation of the Enthalpy of Formation (EOF) of the Carborane-Substituted
Bis(Tetrazolyl)-s-triazines in a Gas Phase

EOF is an important parameter for the description of the energetic materials. As there
are few experimental data on the EOFs of the high-energy carborane compounds studied
in the literature, the application of quantum-chemical calculations becomes essential. The
EOF estimation of the compounds requires the knowledge of their total energies and the
total energies of the combining elements at the standard conditions.

For the estimation of the EOFs of HEMDs, the method of isodesmic reactions is
used [66] and good results can be achieved in the reactions where atomic groups are kept
invariable. However, only the precise experimental values for all the model compounds
allow you to attain the high accuracy. To overcome the errors caused by the difference in
the experimental magnitudes of the EOF of the model compound, it is needed to consider
at least several isodesmic reactions with the various components. However, for some
compounds under investigation, no experimental data on EOFs even for the possible model
compounds were found.

As a result, the EOF values based on DFT B3LYP/6-311 + G* calculations for the
molecules in a gas phase were used in the present work. As in the case of graphite
and crystalline boron, such computations are inapplicable, and the assumption about
the equality of the calculated and experimental EOF values for the gas molecules of 2H-
tetrazole and o-carborane was applied [38,67,68]. The total energies with the correction on
zero vibrations Ezpc were used. These computed parameters are E′(C) = −38.12527664 a.u.,
E′(B) = −24.867864 a.u., E′(S) = −398.2066 a.e. To confirm the reliability of the data found
for carbon, boron and sulfur, the calculations for similar molecules were carried out. The
theoretical results compared with the experimental ones are presented in Table S7. The
data presented in Table S7 demonstrate that this method of the estimation of EOF gives
a deviation of the calculated values from the experimental ones on 4–5%. The plot of the
interdependence of our calculated EOF magnitudes and the experimental ones for the test
compounds is shown on Figure 11.

Figure 11. The interdependence of the calculated and experimental EOF values of tested compounds.

Using the values of parameters [32] for the crystalline carbon and boron, the EOF
magnitudes of compounds 9–11 and 15–17 were calculated (see Table 3).
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Table 3. Calculated values of EOFs (∆H298) of compounds 9–11 and 15–17 (B3LYP 6-311 + G*).

Compound ∆H298,
kcal/mol Compound ∆H298,

kcal/mol

9 181.90 2 a 198.09
10 165.70 3 a 181.78
11 165.11 4 a 131.44
15 217.07
16 191.93
17 176.69

a Magnitudes for 2–4 were taken from Yu. A. Borisov et al. [32].

According to the data of Table 3, the lowest EOF values can be found in the case of
molecules with an NH-linker which indicates their greater stability among the studied
compounds. As for energetic properties, all of them are characterized by rather high
EOF magnitudes and can be considered to be promising HEDMs as their EOF values are
notably higher than those of trinitrotoluene (TNT) and hexogen (RDX, Research Department
Explosive) (79.45 and 59.20 kcal/mol), respectively, calculated in [69].

2.4.4. Predicted Detonation Performances

The detonation velocity and the pressure of detonation are important parameters in
the field of explosives engineering. For the computation of the detonation properties of
carborane-substituted bis(tetrazolyl)-s-triazines, the method given in [70,71] was applied.
The detonation velocity (D) and the pressure of detonation (P) are described with Kamlet–
Jacobs semi-empirical equations:

D = 1.01·(N·M1/2·Q1/2)1/2·(1 + 1.30 p0); P = 1.558·p0
2·N·M1/2·Q1/2

where D is the velocity of detonation (km/s); P—pressure of detonation (kbar); N—a mole
number of detonated gas per mole of the explosive material (EM); M—mole mass (g/mol)
of the detonated gas; Q—heat of explosion EM (J/g); and p0—density of EM (g/cm3).

The computed values of the heat of explosion Q (J/g), the velocity of detonation D
(km/s), and the pressure of detonation P (GPa) of molecules 9–11 and 15–17 in a gaseous
phase are given in Table 4.

Table 4. The calculated values of the detonation properties of compounds 9–11 and 15–17.

Compound Ng
Mg,

g/mol
Q,
J/g

p0,
g/cm3

D,
km/s

P,
GPa

9 13 376.24 2022.22 1.25 7.21 50.233
10 15 404.27 1716.54 1.53 7.61 76.286
11 17 432.30 1599.36 1.34 7.43 60.147
15 12 393.20 2311.36 1.36 12.14 54.32
16 12 393.20 2043.67 1.34 11.77 51.08
17 12 393.20 1881.40 1.36 11.53 49.01

Based on the dataset of Tables 3 and 4, all the studied carborane-substituted bis(tetrazolyl)-
s-triazines can be considered to be promising candidates for HEDMs as the EOFs of all these
compounds exceeds the EOF of the known explosive RDX (189.5 kJ/mol or 45.3 kcal/mol) [72,73].
The EOF values for the most energetic compounds 9, 15 and 16 are 4.0, 4.7 and 3.9 times larger
than the same parameters in the case of RDX. Moreover, the computed pressure of the detonation
of the compounds 9, 10, 11 and 15 exceeds the pressure at the front of the RDX shock wave
(approximately 30 GPa [74–76]) by 1.7-fold, 2.5-fold, 2.0-fold and 1.8-fold, respectively.
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2.4.5. Calculation of Terahertz Spectra of Compounds 9–11 and 15–17

The development of technologies to perform the remote detection of dangerous sub-
stances is in very high demand in different fields. Recently, these methods have been
complemented by impulse terahertz spectroscopy. Many compounds are characterized
by the spectral fingerprints in the terahertz range (usually in the ~0.1–3.0 THz region [77])
which makes terahertz radiation suitable for their identification. Moreover, the transparency
of many materials to THz radiation discovers the great possibility for the application of
this technique in the security maintenance.

In this section of the paper, the computed frequencies (v; THz) and the corresponding
intensities (H; A4/AMU, AMU—reduced masses) of the terahertz spectra (DFT B3LYP/6-
311 + G*) of compounds 9–11 and 15–17 in the 0.1–3.0 THz range are presented in Table 5.

Table 5. The calculated terahertz spectra of compounds 9–11 and 15–17.

№ ν; THz H; A4/AMU

9 0.6318, 0.8716, 1.2169, 1.4147, 1.4726, 2.1909, 2.5481, 3.0131 0.0013, 7.7105, 0.3268, 2.1826, 0.0605, 0.9840, 4.8842, 0.1518
10 0.4804, 0.5809, 0.7574, 0.8082, 1.371, 2.2101, 2.3605, 3.2013 0.0488, 3.4348, 7.2903, 1.1846, 2.0584, 1.2134, 4.6308, 0.2778
11 0.3168, 0.4199, 0.5698, 0.8613, 1.3083, 1.8885, 2.1009, 2.4997, 2.7895 0.8664, 0.5331, 2.6898, 4.5956, 1.7012, 2.2347, 2.0728, 1.4025, 0.3292
15 0.5478, 0.6870, 1.0455, 1.4581, 1.4918, 2.0758, 2.5671, 2.9889 0.4160, 0.2409, 4.6181, 0.5253, 0.7730, 0.6649, 5.1412, 0.1173
16 0.4267, 0.7548, 0.9538, 1.1091, 1.2381, 2.1343, 2.5848, 2.9406 0.4525, 0.2305, 0.8381, 10.9865, 1.6792, 4.3092, 4.8631, 0.0469
17 0.8451, 0.8923, 0.9935, 1.1842, 1.4842, 2.1501, 2.5904, 3.0237 0.3138, 0.0540, 0.4024, 11.5329, 1.3079, 3.5439, 4.9537, 0.0586

3. Experimental
3.1. Materials and Methods

1H and 11B NMR spectra were recorded on a Bruker Avance-400 spectrometer oper-
ating at 400.13 MHz for 1H NMR and 128.28 MHz for 11B NMR and Bruker AvanceTM
500 spectrometer (Bruker BioSpin AG, Zurich, Switzerland) (at 500.13, 125.47 MHz for 1H
and 13C, respectively). Chemical shifts (δ) were referenced to the residual solvent peak
acetone-D6, 2.05 ppm, acetonitrile-D3 1.93 ppm, for 1H, external BF3 OEt2 for 11B. IR spectra
were recorded on a Bruker FTIR spectrometer Tensor 37 in KBr pellets. Merck silica gel
L0.040–0.080 mesh was used for column chromatography. The identities of new compounds
were verified by TLC on Silufol plates.

Bruker AvanceTM 500 spectrometer (Germany) (at 500.13, 160.46, and 125.47 MHz for
1H, 11B and 13C, respectively). The 1H chemical shifts were measured relative to the signal
of the solvents, acetonitrile-D3 and acetone-D6.

3.2. X-ray Crystallography

Single-crystal X-ray diffraction experiments were carried out with a Bruker SMART
APEX II diffractometer (graphite monochromated Mo-Ka radiation, λ = 0.71073 Å, ω-
scan technique). All structures were solved by the direct methods and refined by the
full-matrix least squares technique against F2 with anisotropic thermal parameters for
all non-hydrogen atoms using the SHELXL software, version 2018/3, Bruker AXS Inc.,
Madison, WI, USA [78]. Figure 3a,b, Figures 4, 5, 7 and 8a were made with an XP program
included in SHELXL program package [78]. Figure 6a,b and Figure 8b were made with
Mercury (version 4.3.1) [79]. Hirshfeld surfaces and the associated 2D fingerprint plots
were calculated using the CrystalExplorer17 software [55]. In structures 9, 10 and 19, the
hydrogen atoms of the carborane ligands, as well NH and OH groups were located from the
Fourier syntheses and isotropically refined without restrictions. The remaining hydrogen
atoms in these structures and all hydrogen atoms in structure 20 were placed geometrically
and included in the structure factors calculation in the riding motion approximation. In
structure 20, the highly disordered solvate molecules (presumably, methylene chloride)
were detected in the residual density. Unfortunately, these solvate molecules could not
be successfully modeled even with restraints. The contribution of undefined electron
density peaks was treated as diffusion scattering, and it was excluded using the SQUEEZE
routine implemented in the PLATON program [80]. Crystal data and the parameters of
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the refinements for 9, 10, 19 and 20 are listed in Table S5. The crystallographic data for
the structures for compounds 9, 10, 19 and 20 have been deposited at the Cambridge
Crystallographic Data Centre (CCDC) as supplementary publications No. CCDC 2177931,
2177932, 2177933 and 2177934, respectively.

3.3. Method of Calculation

The evaluation of geometry optimization, enthalpies of formation (EOF), energetic
properties, stability, the detonation properties and terahertz spectra of selected compounds
were estimated based on DFT B3LYP/6-311 + G* [56–58] calculations using GAUSSIAN-09 [59]
under LINUX (see Section 2.4.1).

3.4. General Procedure for the Preparation of
4,6-bis(5-Alkyltetrazol-1-yl)-2-[(o-Carborane-3-yl)Amino]-1,3,5-Triazines (9–11)

To a solution of 2,4,6-trichloro-1,3,5-triazine 1 (0.5 g, 2.7 mmol) in dry THF (8 mL),
a mixture of DIPEA (1 mL, 0.74 g, 5.7 mmol) and the corresponding tetrazole 2, 3 or 4
(5.43 mmol) in dry THF (5 mL) was added dropwise at−30 ◦C–−40 ◦C within 20 min under
an argon atmosphere. Then, the resulting mixture was slowly (2–4 h) warmed to room
temperature and stirred until the starting compounds disappeared (TLC control, CHCl3-
Acetone 10:1) to form ditetrazolyl-1,3,5-triazines 5–7. After that, a mixture of DIPEA (0.38 g,
2.86 mmol) and 3-amino-o-carborane 8 (0.44 g, 2.8 mmol) in THF (5 mL) was slowly added
at −10 ◦C to the corresponding reaction mixture of compounds 5, 6 or 7 and then stirred at
ambient temperature until the carborane 8 disappeared (4 h for 9, 8h for 10, and 10 h for 11,
TLC control, toluene). Upon reaction completion, the solvents were evaporated in vacuo,
the residue was dissolved in EtOAc (100 mL) and washed with water (3 × 100 mL) and the
organic layer was dried over Na2SO4. EtOAc was evaporated to dryness and the residue of
the prepared compound 9, 10 or 11 was treated as indicated below.

3.4.1. 2-[(o-Carborane-3-yl)amino]-4,6-di(1H-Tetrazol-1-yl)-1,3,5-triazine (9)

The residue was treated with Et2O (20 mL), the precipitate that formed was filtered
off and washed with Et2O–CHCl3 (1: 2, 50 mL) mixture, and dried to yield compound 9
0.85 g (84%); 1H NMR (acetone-D6, 400.13 MHz) δ: 10.15 (s, the rotamer 1, 1H, N4CH),
10.11 (s, the rotamer 2, 1H, N4CH), 10.13 (s, J = 14 Hz, 2H, N4CH),] 9.08 (br s, 1H, carborane
NH), 5.33 (br s, 2H, carborane CH); 13C NMR (acetone-D6, 125.77 MHz) δ: 169.73 (s, 1C,
C-2 1,3,5-triazine), 160.64 and 160.79 (s, 2C, C 4,6-position of 1,3,5-triazine *), 143.11 and
143.19 (s, 2C, CH-tetrazole *); 57.26 (s, 2C, CH-carborane, 29.72 (s, (CH3)2CO **); 11B NMR
(acetone-D6, 128.28 MHz) δ: −4.4 (d, J = 144 Hz, 2B), −6.2 (s, 1B, B3), −10.1 (d, J = 149 Hz,
1B), −12.8 (d, J = 170 Hz, 2B), −14.3 (d, J = 172 Hz, 4B);. IR (KBr) ν: 3067 (carborane CH),
2598 (BH), 1614, 1585, 1472, 1451(N=N) cm−1.

* The doubling of the signals in these NMR spectra is due to the different shielding of
the indicator signals of compound 9 in the two conformations

** Complex of acetone with compound 9.

3.4.2. 2-[(o-Carborane-3-yl)amino]-4,6-di(5-Methyl-1H-tetrazol-1-yl)-1,3,5-triazine (10)

The residue was treated with Et2O (20 mL), the precipitate that formed was filtered
off and washed with Et2O–CHCl3 (2:1, 50 mL) mixture, and dried to yield compound 10
0.77 g (70%); 1H NMR (acetone-D6, 400.13 MHz) δ: 8.99 (br s, 1H, NH), 5.32 (br s, 2H,
carborane CH), 3.01 (s, the rotamer 1, 3H, CH3), 2.96 (s, the rotamer 2, 3H, CH3); 11B NMR
(acetone-D6, 128.28 MHz), δ: −4.5 (d, J = 147 Hz, 2B), –6.1 (s, 1B, B3), –10.2 (d, J = 154 Hz,
1B), −12.8 (d, J = 177 Hz, 2B), −14.4 (d, J = 182 Hz, 4B). IR (KBr) ν: 3038 (carborane CH),
2587 (BH), 1609, 1574, 1549 (N=N) cm−1.

3.4.3. 2-[(o-Carborane-3-yl)amino]-4,6-di(5-Ethyl-1H-tetrazol-1-yl)-1,3,5-triazine (11)

The residue was treated with hexane (20 mL), the precipitate that formed was filtered
off and washed with Et2O (60 mL) and dried to yield compound 11 0.70 g (59%); 1H NMR
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(acetone-D6, 400.13 MHz) δ: 9.01 (br s, 1H, NH), 5.33 (br s, 2H, carborane CH), 3.48 (q,
the rotamer 1, J = 7.3 Hz, 2H, CH2), 3.43 (q, the rotamer 2, J = 7.3 Hz, 2H, CH2), 1.45 (t,
the rotamer 1, J = 7.3 Hz, 3H, CH3), 1.42 (t, the rotamer 2, J = 7.3 Hz, 3H, CH3); 11B NMR
(acetone-D6, 128.28 MHz) δ: −4.5 (d, J = 147 Hz, 2B), −6.0 (s, 1B, B3), −10.2 (d, J = 147 Hz,
1B), −12.8 (d, J = 170 Hz, 2B), −14.3 (d, J = 172 Hz, 4B). IR (KBr) ν: 3032 (carborane CH),
2588 (BH), 1607, 1577, 1551 (N=N) cm−1.

3.5. General Procedure for the Preparation of
2-[(Carborane-9-yl)tio]-4,6-di(1H-Tetrazol-1-yl)-1,3,5-triazines (15, 16, 17)

To a solution of ditetrazolyl-1,3,5-triazine 5 prepared from triazine 1 (0.5 g, 2.7 mmol)
and tetrazole 2 (0.38 g, 5.43 mmol) in dry THF (8 mL) and DIPEA (1 mL, 0.74 g, 5.7 mmol)
with stirring for 3 h, a mixture of DIPEA (0.38 g, 2.86 mmol) and 1-mercapto-o-carborane
13 (0.49 g, 2.8 mmol) in THF (5 mL) was slowly added at –10 ◦C. The reaction mixture was
then stirred at ambient temperature for 3 h. THF was evaporated in vacuo, the residue was
treated with hexane (20 mL) and the formed precipitate was filtered off and washed with
Et2O (20 mL).

3.5.1. 2-[(Nido-7,8-dicarbaundecaboran-7-yl)tio]-4,6-di(1H-tetrazol-1-yl)-1,3,5-triazinyl]
Esium (15)

After the general procedure, the solid was washed with CHCl3 (20 mL). After that, the
solid was dissolved in H2O–acetone mixture (10:1) and CsCl (0.67 g, 4 mmol) was added
to the obtained solution. The acetone was removed in vacuo, the formed precipitate was
filtered off, washed with water and crystallized (CHCl3– acetone 20:1) to yield compound
15 0.89 g (50%); 1H NMR (acetone-D6, 400.13 MHz) δ: 8.95 (s, 2H, N4CH), 3.69 (br s, 1H,
carborane CH), 3.16 (br s, 1H, carborane CH); 11B NMR (acetone-D6, 128.28 MHz) δ: −3.0
(d, J = 145 Hz, 1B), −9.2 (d, J = 144 Hz, 3B), −12.4 (d, J = 175 Hz, 2B), −18.8 (d, J = 149 Hz,
1B) −22.8 (d, J = 123 Hz, 1B), –34.4 (dd, J = 50.0, 123 Hz, 1B); IR (KBr) ν: 3070 (carborane
CH), 2578 (BH), 1579, 1467(N=N) cm−1.

3.5.2. 2-[(o-Carborane-9-yl)tio]-4,6-di(1H-tetrazol-1-yl)-1,3,5-triazine (16)

Yield: 0.77 g (70%); 1H NMR (acetone-D6, 400.13 MHz) δ: 10.15 (s, 2H, N4CH), 4.90 (br s,
1H, carborane CH), 4.84 (br s, 1H, carborane CH); 11B NMR (acetone-D6, 128.28 MHz) δ: 1.8
(s, 1B, B9), −2.6 (d, J = 149 Hz, 1B), −8.9 (d, J = 153 Hz, 2B), −13.3 (d, J = 156 Hz, 2B), −14.4 (d,
J = 154 Hz, 4B); IR (KBr) ν: 3063 (carborane CH), 2613 (BH), 1580, 1465 (N=N) cm−1.

3.5.3. 2-[(m-Carborane-9-yl)tio]-4,6-di(1H-tetrazol-1-yl)-1,3,5-triazine (17)

Yield: 0.88 g (79%). 1H NMR (acetone-D6, 400.13 MHz) δ: 10.17 (s, 2H, N4CH), 3.98
(br s, 2H, carborane CH); 11B NMR (acetone-D6, 128.28 MHz) δ: −4.4 (s, 1B, B9), −5.8 (d,
J = 170 Hz, 2B), −10.2 (d, J = 151 Hz, 1B), −12.5 (d, J = 139 Hz, 2B), −13.5 (d, J = 153 Hz,
2B), −16.6 (d, J = 177 Hz, 1B), –17.5 (d, J = 150 Hz, 1B). IR (KBr) ν: 3053 (carborane CH),
2624 (BH), 1580, 1466 (N=N) cm−1.

3.6. General Procedure for the Preparation of Compounds 19–21

To a solution of 2,4,6-trichloro-1,3,5-triazine 1 (0.5 g, 2.7 mmol) in dry THF (8 mL), a
mixture of DIPEA (1 mL, 0.74 g, 5.7 mmol) and 5-phenyltetrazole (0.78 g, 5.43 mmol) in
dry THF (5 mL) was added dropwise at −50 ◦C within 20 min under an argon atmosphere.
Then, the resulting mixture was slowly (18 h) warmed to room temperature and stirred
until the starting compounds disappeared (TLC control, CHCl3–acetone 10:1). After that, a
mixture of DIPEA (0.38 g, 2.86 mmol) and 3-amino-o-carborane 8 (0.44 g, 2.8 mmol) in THF
(5 mL) was slowly added at −20 ◦C to the reaction and then stirred at ambient temperature
until carborane 8 disappeared (15 h, TLC control, toluene). Upon the reaction completion,
the solvents were evaporated in vacuo, the residue was dissolved in EtOAc (100 mL),
washed with water (3 × 100 mL), the organic layer was dried over Na2SO4, evaporated to
dryness and the residue was treated with hexane (15 mL) and Et2O (15 mL), the formed
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solid was purified by column chromatography on SiO2 using hexane-EtOAc 5:1 and 1:2
systems as an eluent.

3.6.1. 5-(o-Carborane-3-yl)amino-2,9-diphenyl-bis[1,2,4]triazolo[1,5-a:1′,5′-c][1,3,5]triazine (19)

Yield: 0.23 g (18%); 1H NMR (acetone-D6, 400.13 MHz) δ: 9.09 (br s, 1H, NH), 8.25 (m,
4H, Ph), 7.61 (m, 6H, Ph), 5.48 (br s, 2H, carborane CH); 11B NMR (acetone-D6, 128.28 MHz)
δ: −4.5 (d, J = 141 Hz, 2B), −6.0 (s, 1B, B3), −10.2 (d, J = 161 Hz, 1B), −12.7 (d, J = 161 Hz,
2B), −14.5 (d, J = 158 Hz, 4B); IR (KBr) ν: 3072 (carborane CH), 2560 (BH) cm−1.

3.6.2. 2-(2-Benzoylhydrazinyl)-4-(o-carborane-3-yl)amino-6-(5-phenyl-2H-tetrazol-2-yl)-
1,3,5-triazine (20)

Yield: 0.14 g (10%); 1H NMR (acetone-D6, 400.13 MHz) δ: 9.39 (m, 1H, NH), 8.28 (m,
2H, Ph), 8.14 (m, 2H, Ph), 8.14 (m, 1H, Ph), 8.02 (m, 1H, Ph), 7.60 (m, 6H, Ph), 5.39 (m, 2H,
carborane CH); 11B NMR (Acetone-D6, 128.28 MHz), δ: −4.9 (d, J = 141 Hz, 3B), −10.3
(d, J = 141 Hz, 1B), −12.9 (d, J = 163 Hz, 2B), −14.9 (d, J = 170 Hz, 4B); IR (KBr) ν: 3072
(carborane CH), 2565 (BH) cm−1.

3.6.3. 3,7,11-Triphenyl[tris([1,2,4]triazolo)[4,3-a:4′,3′-c:4”,3”-e][1,3,5]triazine (21) [47,49,50]

Yield: 70 mg (6%); 1H NMR (acetone-D6, 400.13 MHz) δ: 8.05 (dd, J =1.9, 8.1 Hz, 2H,),
7.65 (m, 3H).

4. Conclusions

Recently, more attention has been focused on the design and synthesis of modern high-
energy compounds based on nitrogen heterocycles and other energetic entities having energy
characteristics suitable for the potential replacement of the traditional energetic materials.

In this article, a series of new high-energy compounds was successfully synthesized
and fully characterized based on the one-stage functionalization of cyanuric chloride with
nitrogen-rich 5-R-tetrazoles (R = H, Me, Et) and aminocarborane or mercaptocarboranes,
reducing the number of reaction steps and therefore the amount of by-products in the
preparation of these compounds. All the components of prepared compounds have been
widely used while designing energetic materials. Synthesized compounds have high en-
thalpies of formation and excellent energetic properties such as heat of combustion and the
heat of the explosion which makes these compounds promising alternatives for commonly
used energetic compounds. Based on the DFT calculations, it was shown that compound 15
possessed the maximum value of the detonation velocity of all the considered compounds,
and compound 10 demonstrated the maximum value of the detonation pressure. Theoreti-
cal terahertz frequencies have been calculated for potential high-energy density materials
(HEDMs), enabling the remote detection of these compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217484/s1, Figure S1. 1H NMR spectra of compound
9 in CD3CN; Figure S2. 1H NMR spectra of compound 9 in acetone-D6; Figure S3. 1H NMR
spectra (500.13 MHz) of 9 in acetone-D6; Figure S4. 1H NMR spectra of 9 in acetone-D6 at various
temperatures; Figure S5. 13C NMR spectra (125.76 MHz) of compound 9 in acetone-D6; Figure S6.
11B{1H} and 11B NMR spectra of compound 9 in acetone-D6; Figure S7. NOESY spectra of compound
9; Figure S8. HMBC spectra of compound 9; Figure S9. 1H NMR spectra of compound 10 in acetone-
D6. Signals at δ = 1.02 ppm and δ = 3.39 ppm attributed to the protons of EtOAc; Figure S10. 11B{1H}
and 11B NMR spectra of compound 10 in acetone-D6; Figure S11. 1H NMR of compound 11 in
acetone-D6; Figure S12. 11B{1H} and 11B NMR spectra of compound 11 in acetone-D6; FigureS13. 1H
NMR spectra of compound 19 in acetone-D6; Figure S14. 11B{1H} and 11B NMR spectra of compound
19 in acetone-D6; Figure S15. 1H NMR spectra of 20 in acetone-D6; Figure S16. 11B{1H} and 11B NMR
spectra of compound 20 in acetone-D6; Figure S17. 1H NMR spectra of compound 15 in acetone-D6;
Figure S18. 11B{1H} and 11B NMR spectra of compound 15 in acetone-D6; Figure S19. 1H NMR
spectra of compound 16 in acetone-D6; Figure S20. 11B{1H} and 11B NMR spectra of compound 16 in
acetone-D6; Figure S21. 1H NMR spectra of compound 17 in acetone-D6; Figure S22. 11B{1H} and 11B
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NMR spectra of compound 17 in acetone-D6; Table S1. X-ray data for compound 9; Table S2. X-ray
data for compound 10; Table S3. X-ray data for compound 19, Table S4. X-ray data for compound
20; Table S5. Crystal data, data collection and structure refinement parameters for 9, 10, 19 and 20;
Figure S23. The fragment of double layer in the crystal of 9 (projection along the b axis); the shortened
intermolecular contacts are shown with dotted lines. Table S6. Hydrogen bonds observed in the
crystal of compound 9; Table S7. Hydrogen bonds observed in the crystal of compound 10; Figure S24.
Fragment of crystal packing in 10 (projection along the b axis); Table S8. Hydrogen bonds observed in
the crystal of compound 19; Figure S25. Fragment of crystal packing in 19 (projection along the c axis);
Table S9. Hydrogen bonds observed in the crystal of compound 20; Figure S26. Fragment of crystal
packing of 20 (projection along the b axis); Figure S27. Hirshfeld surfaces (a) and full fingerprint
plots (b) of compound 9; Figure S28. Individual interatomic contacts of compound 9 with percentage
contribution in the crystal packing greater than 4.5%; Figure S29. Hirshfeld surfaces (a) and full
fingerprint plots (b) of compound 10; Figure S30. Individual interatomic contacts of compound 10
with a percentage contribution in the crystal packing greater than 4.5%; FigureS31. Hirshfeld surfaces
(a) and full fingerprint plots (b) of compound 19; Figure S32. Individual interatomic contacts of
compound 19 with a percentage contribution in the crystal packing greater than 4.5%; Figure S33.
Hirshfeld surfaces of compound 20; Figure S34. Full fingerprint plots of compound 20; Figure S35.
Individual interatomic contacts of compound 20 (for two crystallographically independent molecules
A and B) with a percentage contribution in the crystal packing greater than 4.5%; Figure S36. The
supramolecular assembling of compound 9. Hirshfeld surfaces mapped over dnorm, generated from
intermolecular H· · ·H contacts. Figure S37. Supramolecular assembling of compound 9. Hirshfeld
surfaces mapped over dnorm, generated from intermolecular N· · ·H contacts or interactions; Table S10.
Geometry structure of studied compounds; Table S11. The calculated values of total energy and
entropy of compounds 9–11, 15–17, 19 and 25 (6-311 + G* basis set) in the gas phase; Table S12.
Comparison of calculated and experimental EOF values of test molecules (kcal/mol).
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