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Abstract: In an attempt to isolate boron-containing tri-niobium polychalcogenide species, we have
carried out prolonged thermolysis reactions of [Cp*NbCl4] (Cp* = ï5-C5Me5) with four equivalents
of Li[BH2E3] (E = Se or S). In the case of the heavier chalcogen (Se), the reaction led to the isolation
of the tri-niobium cubane-like cluster [(NbCp*)3(µ3-Se)3(BH)(µ-Se)3] (1) and the homocubane-like
cluster [(NbCp*)3(µ3-Se)3(µ-Se)3(BH)(µ-Se)] (2). Interestingly, the tri-niobium framework of 1 sta-
bilizes a selenaborate {Se3BH}− ligand. A selenium atom is further introduced between boron and
one of the selenium atoms of 1 to yield cluster 2. On the other hand, the reaction with the sulfur-
containing borate adduct [LiBH2S3] afforded the trimetallic clusters [(NbCp*)3(µ-S)4{µ-S2(BH)}]
(3) and [(NbCp*)3(µ-S)4{µ-S2(S)}] (4). Both clusters 3 and 4 have an Nb3S6 core, which further stabi-
lizes {BH} and mono-sulfur units, respectively, through bi-chalcogen coordination. All of these species
were characterized by 11B{1H}, 1H, and 13C{1H} NMR spectroscopy, mass spectrometry, infrared (IR)
spectroscopy, and single-crystal X-ray crystallography. Moreover, theoretical investigations revealed
that the triangular Nb3 framework is aromatic in nature and plays a vital role in the stabilization of
the borate, borane, and chalcogen units.

Keywords: aromaticity; boron; cubane; selenium; sulfur

1. Introduction

Metal-metal bonding is a constantly growing and widely studied area of chemistry [1–4].
The presence of d-orbitals in transition metals endows a much more diverse structure,
chemistry, and chemical bonding than non-metal elements [5]. Paired metals can be linked
by single [1,6–8], double [1,9], triple [9,10], quadruple [11], and in a few cases, quintuple
bonds [12,13]. These types of metal–metal bonds are formed through σ, π, and δ-bonding
interactions. With the exception of multiple bonding, metal atoms can form different types
of frameworks, such as triangular, square, and three-dimensional clusters [14–20]. These
metal frameworks (Chart 1) can show various types of aromaticity, such as σ-, π-, and
δ-type. Recent findings of aromaticity in metal clusters have advanced the description of
the electronic structures, chemical bonding, and stability of transition-metal clusters [21–27].
However, aromatic metal clusters are often observed in the gas phase, with the exception
of a few cases [28,29]. For example, Robinson et al. structurally characterized the first
ever main-group metal 6-electron aromatic cluster (see A in Chart 1) with π-aromatic
properties, in 1995 [30]. Later, Maestri et al. isolated the transition-metal containing 2-
electron π-aromatic cluster, namely [{Pd(PPh3)(SPh)}3]+ (C, Chart 1) [31]. On the other hand,
Sadighi et al. isolated a 2-electron tri-gold monocation (B, Chart 1) showing σ-aromaticity [32].
Freitag et al. enriched a series of 2-electron σ-aromatic metal clusters with the isola-
tion of the triangular clusters [Zn3Cp*3]+ (D, Chart 1) and [Zn2CuCp*3] [33]. Recently,
Liddle et al. synthesized a 2-electron tri-thorium cluster [{Th(η8-C8H8)(µ-Cl)2}3{K(THF)2}2]∞
(E, Chart 1) with σ-aromatic metal-metal bonding [34]. These types of unique bonding
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and aromaticity of metal frameworks may lead to the stabilization of many main group
unstable species.
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Chart 1. Different types of σ- and π-aromatic trimetallic clusters ((A): [Ga(Mes2C6H3)]3
2−,

(B): [{(IDipp)Au}3]+, (C): [{Pd(PPh3)(SPh)}3]+, (D): [Zn3Cp*3]+, (E): [{Th(η8-C8H8)(µ-Cl)2}3{K
(THF)2}2]∞; Ar = 2,6-iPr2C6H3, IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-yliden,
K* = K(THF)2).

Many main group species that are quite unstable and not experimentally achieved as
free species are isolated utilizing different types of metal frameworks [7,35–38]. For exam-
ple, borylenes (B-R) can only be trapped by mono, bi, or tri- metallic frameworks [7,35].
In addition, many boranes and their analogues, from small boranes to higher nuclearity
clusters, are stabilized in the coordination sphere of metals with structural and bonding
diversity [7,14,36,39–43]. For example, we have recently isolated diborene(2) and dibo-
rane(4) utilizing group six trimetallic and bimetallic skeletons, respectively [44]. The first
ever classical diborane(5) was also isolated utilizing a bimetallic coordination sphere of Ta
atoms [45]. Further, a di-titanium framework allowed us to isolate the unique structural mo-
tif of hexa-borane [B6H6], i.e., a hexagonal flat borane ring [8]. With the exception of borane,
many other main group species are isolated utilizing metal’s coordination sphere [46–49].
Further, we and others have isolated a series of group five trimetallic systems, which
enabled us to isolate the thioborate ligand {BS3H}− and its analogues [50–54]. In order to
isolate small borane/borate and chalcogen species, we have extended our studies with
niobium metal and heavier chalcogens. Herein, we present and discuss the isolation and
structural explication of various trimetallic polychalcogenide frameworks, which stabilized
tri/tetra-coordinated boron species and monochalcogen species. Theoretical calculations
revealed the stability, bonding, and aromaticity of these trimetallic species.

2. Results and Discussion
2.1. Reactivity of [Cp*NbCl4] with Li[BH2Se3]

As shown in Scheme 1, the prolonged thermolysis reaction of [Cp*NbCl4] with four
equivalents of Li[BH2Se3] led to the formation of brown solid 1 and green solid 2. The 1H
NMR spectrum of 1 showed a single peak at δ = 2.21 ppm, which suggests the existence of
a single Cp* environment. On the other hand, the 1H NMR spectrum of 2 showed two very
close resonances that appeared at δ = 2.18 ppm in a 2:1 ratio, which suggests the existence of
two different Cp* environments. The presence of one and two Cp* environments in 1 and 2,
respectively, was further confirmed by 13C{1H} NMR spectra. In addition, broad chemical
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shifts at δ = 3.87 and 3.65 ppm in 1H NMR of 1 and 2, respectively, suggested the presence
of terminal B-H protons in 1 and 2. Moreover, the IR spectroscopy of 1 and 2 confirmed the
existence of this terminal B–H proton. The 11B{1H} NMR spectrum of 1 showed a single
resonance that appeared at δ = −8.3 ppm, whereas a chemical shift at δ = −6.4 ppm has
been observed in the 11B{1H} NMR of 2. The mass spectra of 1 and 2 showed peaks at m/z
1234.5158 and m/z 1312.4354, respectively. Further, single crystal X-ray diffraction analyses
were carried out on suitable crystals, 1 and 2, to confirm the spectroscopic assignments and
to conclude their structures without any ambiguity.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 13 
 

 

existence of two different Cp* environments. The presence of one and two Cp* environ-
ments in 1 and 2, respectively, was further confirmed by 13C{1H} NMR spectra. In addition, 
broad chemical shifts at δ = 3.87 and 3.65 ppm in 1H NMR of 1 and 2, respectively, sug-
gested the presence of terminal B-H protons in 1 and 2. Moreover, the IR spectroscopy of 
1 and 2 confirmed the existence of this terminal B–H proton. The 11B{1H} NMR spectrum 
of 1 showed a single resonance that appeared at δ = −8.3 ppm, whereas a chemical shift at 
δ = −6.4 ppm has been observed in the 11B{1H} NMR of 2. The mass spectra of 1 and 2 
showed peaks at m/z 1234.5158 and m/z 1312.4354, respectively. Further, single crystal X-
ray diffraction analyses were carried out on suitable crystals, 1 and 2, to confirm the spec-
troscopic assignments and to conclude their structures without any ambiguity. 

 
Scheme 1. Synthesis of the trimetallic chalcogen-rich niobaboranes 1 and 2 (the μ-Se in cluster 1 and 
2 are omitted for clarity). 

The single crystal X-ray analyses revealed compounds 1 and 2 as the trimetallic spe-
cies [(NbCp*)3(μ3-Se)3(BH)(μ-Se)3] (Figure 1a) and [(NbCp*)3(μ3-Se)3(μ-Se)3(BH)(μ-Se)] (2) 
(Figure 1b), respectively. Both the trimetallic species consist of an equilateral Nb3 triangu-
lar core. The Nb-Nb bond distances in 1 (3.270(2), 3.271(2) and 3.272(3) Å), and in 2 
(3.254(5), and 3.307(4) Å) are comparable. They are slightly longer than those reported in 
other niobaboranes and niobaheteroboranes [50,53,55]. The internal angles (∠Nb-Nb-Nb) 
of the triangular framework in 1 (59.96(5)°, 59.99(5)° and 60.05(5)°), and 2 (58.94(10)°, and 
60.53(5)°) are close to 60°. Six monoselenide atoms bridge all the edges of the Nb3-triangle 
in compounds 1 and 2. In the case of 1, the three selenide units are capped by a {BH} unit. 
Therefore, a selenaborate {Se3BH}− ligand coordinates the triangular tri-niobium frame-
work from the top in 1. The B-Se bond distances of 2.095(18), 2.101(18), and 2.107(18) Å in 
1 are comparable with those measured in the reported metallaheteroboranes [52,54]. Al-
ternatively, the core geometry of 1 can also be viewed as a cubane-like cluster with one 
missing vertex, a niobium-selenium analogue of the trimetallic species [(TaCp*)3(μ3-
S)3(BH)(μ-S)3] [51]. As three Nb-Nb bonds are present and one metal vertex is missing in 
1, the cluster valence electron count for trimetallic 1 must be {80 − 18 − (3 × 2)} = 56; how-
ever, the actual electron count of 1 is {3(NbCp*) + 3(μ3-Se) + 3(μ-Se) + (BH)} = {30 + 12 + 6 + 
2} = 50. Therefore, cluster 1 is a hypo-electronic cluster. On the other hand, two of the 
bridging Se atoms of 2 are directly bonded to the boron atom, while the other selenium 
atom (Se5) is bridged between B1 and Se4 atoms in 2. The B-Se and Se-Se bond distances 
of 2 are comparable with other reported B-Se and Se-Se single bonds. As the core geometry 
of tri-niobium species 2 can be generated by incorporating a selenium atom in between 
one of the B-Se bonds of cubane-type cluster 1, trimetallic species 2 can be viewed as a 
homocubane-like cluster with one missing vertex, a selenium analogue of the trimetallic 
species [(NbCp*)3(μ3-S)3(μ-S)3(BH)(μ-S)] (I) [53]. On the other hand, a C3 axis passes 
through the BH unit and the midpoint of the Nb3 triangle of 1, which makes compound 1 
a symmetric cluster, and its spectroscopic data positively corroborates with the X-ray 
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Scheme 1. Synthesis of the trimetallic chalcogen-rich niobaboranes 1 and 2 (the µ-Se in cluster 1 and
2 are omitted for clarity).

The single crystal X-ray analyses revealed compounds 1 and 2 as the trimetallic
species [(NbCp*)3(µ3-Se)3(BH)(µ-Se)3] (Figure 1a) and [(NbCp*)3(µ3-Se)3(µ-Se)3(BH)(µ-Se)]
(2) (Figure 1b), respectively. Both the trimetallic species consist of an equilateral Nb3
triangular core. The Nb-Nb bond distances in 1 (3.270(2), 3.271(2) and 3.272(3) Å), and in 2
(3.254(5), and 3.307(4) Å) are comparable. They are slightly longer than those reported in
other niobaboranes and niobaheteroboranes [50,53,55]. The internal angles (∠Nb-Nb-Nb)
of the triangular framework in 1 (59.96(5)◦, 59.99(5)◦ and 60.05(5)◦), and 2 (58.94(10)◦, and
60.53(5)◦) are close to 60◦. Six monoselenide atoms bridge all the edges of the Nb3-triangle
in compounds 1 and 2. In the case of 1, the three selenide units are capped by a {BH}
unit. Therefore, a selenaborate {Se3BH}− ligand coordinates the triangular tri-niobium
framework from the top in 1. The B-Se bond distances of 2.095(18), 2.101(18), and 2.107(18)
Å in 1 are comparable with those measured in the reported metallaheteroboranes [52,54].
Alternatively, the core geometry of 1 can also be viewed as a cubane-like cluster with
one missing vertex, a niobium-selenium analogue of the trimetallic species [(TaCp*)3(µ3-
S)3(BH)(µ-S)3] [51]. As three Nb-Nb bonds are present and one metal vertex is missing
in 1, the cluster valence electron count for trimetallic 1 must be {80 − 18 − (3 × 2)} = 56;
however, the actual electron count of 1 is {3(NbCp*) + 3(µ3-Se) + 3(µ-Se) + (BH)} = {30
+ 12 + 6 + 2} = 50. Therefore, cluster 1 is a hypo-electronic cluster. On the other hand,
two of the bridging Se atoms of 2 are directly bonded to the boron atom, while the other
selenium atom (Se5) is bridged between B1 and Se4 atoms in 2. The B-Se and Se-Se bond
distances of 2 are comparable with other reported B-Se and Se-Se single bonds. As the
core geometry of tri-niobium species 2 can be generated by incorporating a selenium atom
in between one of the B-Se bonds of cubane-type cluster 1, trimetallic species 2 can be
viewed as a homocubane-like cluster with one missing vertex, a selenium analogue of
the trimetallic species [(NbCp*)3(µ3-S)3(µ-S)3(BH)(µ-S)] (I) [53]. On the other hand, a C3
axis passes through the BH unit and the midpoint of the Nb3 triangle of 1, which makes
compound 1 a symmetric cluster, and its spectroscopic data positively corroborates with
the X-ray structure. In addition, in line with the spectroscopic data, the solid-state structure
of 2 exhibits a symmetry plane that passes through the Nb1′, B1, Se5, Se4 and the centre of
the Nb1-Nb2 bond.
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Scheme 2. Synthesis of the chalcogen-rich niobaborane (3) and trimetallic polychalcogenide (4) spe-
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crystal of two inseparable solids (3 and 4). As shown in Figure 2, compounds 3 and 4 are 
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Figure 1. Molecular structures and labelling diagrams of 1 (a) and 2 (b). Selected bond lengths (Å)
and angles (deg) in 1: Nb1-Nb2 3.270(2), Nb1-Nb3 3.271(2), Nb2-Nb3 3.272(3), B1-Se3 2.07(3), B1-Se4
2.11(3), Nb1-Se1 2.672(3), Nb2-Se3 2.670(3); Nb1-Nb3-Nb2 59.96(5), Se1-B1-Se4 97.8(13), Nb1-Se1-Nb2
75.47(8); in 2: Nb1-Nb1′ 3.254(5), Nb1-Nb2 3.307(4), Nb1-Se4 2.669(4), Nb2-Se4 2.639(4), Se4-Se5
2.210(7), B1-Se5 2.07(3), B1-Se3 2.08(3); Nb1-Nb2-Nb1′ 58.94(10), Nb1-Nb1′-Nb2 60.53(5), B1-Se5-Se4
86.4(17), Se3-B1-Se5 107.7(18), Nb2-Se4-Nb1 77.07(12).

2.2. Reactivity of [Cp*NbCl4] with Li[BH2S3]

In order to isolate the sulfur analogue of 1, we performed a thermolysis reaction of
[Cp*NbCl4] with four equivalents of [LiBH2S3], for a prolonged time, which led to the
formation of a yellow solid, as well as the known trimetallic homocubane-like cluster
[(NbCp*)3(µ3-S)3(µ-S)3(BH)(µ-S)] (I) (Scheme 2) [53]. The 1H NMR spectrum of the yel-
low compound showed two 1H resonances in a 2:1 ratio at δ = 2.10 and 2.03 ppm, which
suggests the presence of two different Cp* environments. The presence of two different
Cp* environments was further confirmed by the 13C{1H} spectrum. Moreover, the 1H
NMR spectrum showed a peak at δ = 3.54 ppm that suggested the presence of a terminal
B-H proton. Further, the presence of the terminal B-H proton was confirmed by IR spec-
troscopy. In addition, the 11B{1H} NMR spectrum of the yellow compound showed a peak at
δ = 3.8 ppm. The mass spectrum showed molecular ion peaks at m/z 876.9071 and m/z
908.8798. However, these spectroscopic data were puzzling for forming a conclusion about
the molecular structure. Thus, we have carried out single crystal X-ray diffraction analyses
on a suitable yellow crystal to elucidate the solid-state structure.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. Molecular structures and labelling diagrams of 1 (a) and 2 (b). Selected bond lengths (Å) 
and angles (deg) in 1: Nb1-Nb2 3.270(2), Nb1-Nb3 3.271(2), Nb2-Nb3 3.272(3), B1-Se3 2.07(3), B1-Se4 
2.11(3), Nb1-Se1 2.672(3), Nb2-Se3 2.670(3); Nb1-Nb3-Nb2 59.96(5), Se1-B1-Se4 97.8(13), Nb1-Se1-
Nb2 75.47(8); in 2: Nb1-Nb1′ 3.254(5), Nb1-Nb2 3.307(4), Nb1-Se4 2.669(4), Nb2-Se4 2.639(4), Se4-Se5 
2.210(7), B1-Se5 2.07(3), B1-Se3 2.08(3); Nb1-Nb2-Nb1′ 58.94(10), Nb1-Nb1′-Nb2 60.53(5), B1-Se5-Se4 
86.4(17), Se3-B1-Se5 107.7(18), Nb2-Se4-Nb1 77.07(12). 

2.2. Reactivity of [Cp*NbCl4] with Li[BH2S3] 
In order to isolate the sulfur analogue of 1, we performed a thermolysis reaction of 

[Cp*NbCl4] with four equivalents of [LiBH2S3], for a prolonged time, which led to the for-
mation of a yellow solid, as well as the known trimetallic homocubane-like cluster 
[(NbCp*)3(μ3-S)3(μ-S)3(BH)(μ-S)] (I) (Scheme 2) [53]. The 1H NMR spectrum of the yellow 
compound showed two 1H resonances in a 2:1 ratio at δ = 2.10 and 2.03 ppm, which sug-
gests the presence of two different Cp* environments. The presence of two different Cp* 
environments was further confirmed by the 13C{1H} spectrum. Moreover, the 1H NMR 
spectrum showed a peak at δ = 3.54 ppm that suggested the presence of a terminal B-H 
proton. Further, the presence of the terminal B-H proton was confirmed by IR spectros-
copy. In addition, the 11B{1H} NMR spectrum of the yellow compound showed a peak at 
δ = 3.8 ppm. The mass spectrum showed molecular ion peaks at m/z 876.9071 and m/z 
908.8798. However, these spectroscopic data were puzzling for forming a conclusion 
about the molecular structure. Thus, we have carried out single crystal X-ray diffraction 
analyses on a suitable yellow crystal to elucidate the solid-state structure. 

Nb

ClCl
Cl Cl

Li[BH2S3], toluene

−78 °C to RT,
80 °C, 48 h

= missing vertex

Nb Nb

SS

Nb
S

S
S

S

S +
Nb Nb

SS

Nb
S

S
S

S

B +H

3 4 I
Nb = NbCp*

H

Nb

Nb

B

S

S

S

Nb

S

 
Scheme 2. Synthesis of the chalcogen-rich niobaborane (3) and trimetallic polychalcogenide (4) spe-
cies (the μ-S in cluster I is omitted for clarity). 

Surprisingly, the single crystal X-ray analyses revealed the yellow crystal as a co-
crystal of two inseparable solids (3 and 4). As shown in Figure 2, compounds 3 and 4 are 
the trimetallic species [(NbCp*)3(μ-S)4{μ-S2(BH)}] and [(Cp*Nb)3(μ-S)4{μ-S2(S)}], respec-
tively. Both species 3 and 4 have an equilateral Nb3 triangular core geometry. The Nb-Nb 
bond distances of 3.242 and 3.006 Å in 3 and 4, respectively, are slightly shorter, especially 

Scheme 2. Synthesis of the chalcogen-rich niobaborane (3) and trimetallic polychalcogenide (4)
species (the µ-S in cluster I is omitted for clarity).

Surprisingly, the single crystal X-ray analyses revealed the yellow crystal as a co-crystal
of two inseparable solids (3 and 4). As shown in Figure 2, compounds 3 and 4 are the
trimetallic species [(NbCp*)3(µ-S)4{µ-S2(BH)}] and [(Cp*Nb)3(µ-S)4{µ-S2(S)}], respectively.
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Both species 3 and 4 have an equilateral Nb3 triangular core geometry. The Nb-Nb bond
distances of 3.242 and 3.006 Å in 3 and 4, respectively, are slightly shorter, especially the
latter, than those in 1 and 2. The internal angles (∠Nb-Nb-Nb) of the triangular framework
in 3 and 4 (62.38◦ and 55.25◦) are also close to 60◦. All the edges of the Nb3-triangle in 3 and
4 are bridged by six mono-sulfide atoms. Further, two of these mono-sulfide atoms in 3 and
4 are bridged by {BH} and another by mono-sulfide units, respectively. Compound 4 is the
Cp* analogue of [(NbCp+)3(µ-S)4{µ-S2(S)}] (Cp+ = ï 5-C5Me4Et) reported earlier [56]. On the
other hand, the thioborane unit {BS2H} that coordinates two of the edges of the triangular tri-
niobium framework from the top in 3 is quite unique. The B-S bond distances of 2.18(3) and
2.23(3) Å in 3 are slightly longer than those reported in the other metallaheteroboranes [38].
Interestingly, the thioborane unit also forms a tetratomic nonplanar metallathioboron cycle
(Nb2-S1-B1-S4′) with one of the Nb atoms. The X-ray structures of 3 and 4 corroborate well
with their combined spectroscopic data. For example, 11B{1H} chemical shifts at δ = 3.8 ppm
and 1H chemical shift at δ = 3.54 ppm correspond to the {BH} unit of 3. On the other hand,
the 1H chemical shifts correspond to the Cp* ligands of 3 and 4; these should each appear as
a 2:1 ratio for three Cp* ligands, as the symmetry plane passes through an Nb2 vector and
the centre of the Nb1-Nb2′ bond in 3, and an Nb1 vector and the centre of the Nb2-Nb2′

bond in 4. However, in the combined 1H NMR spectrum of 3 and 4, these peaks for Cp*
ligands accidentally overlapped and appeared in a 4:2; i.e., 2:1 ratio.
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gular skeleton. As shown in Chart 1, these types of trimetallic molecules show σ or π-
aromaticity. This prompted us to probe the delocalized bonding in the Nb3 core of 1–4. 
Thus, we employed the nucleus independent chemical shift (NICS) approach [21,22] for 
assessing the aromaticity of clusters 1–4. The NICS(0) (the negative of the isotropic mag-
netic shielding at the centre of the Nb3 ring) for 1–4 were found to be −16.8, −20.3, −17.7, 

Figure 2. Molecular structures and labelling diagrams of 3 (a) and 4 (b). Selected bond lengths (Å)
and angles (deg) in 3: Nb1-Nb2 3.242, Nb2-Nb2′ 3.006, Nb1-S4′ 2.532(2), Nb2-S1 2.412(2), S1-B1
2.23(3), S4′-B1 2.18(3); Nb2′-Nb2-Nb1 62.38, Nb2-Nb1-Nb2′ 55.25, Nb1-S4′-Nb2 77.51(6), S4′-B1-S1
94.0(11); in 4: Nb1-Nb2 3.242, Nb2-Nb2′ 3.006, Nb2-S4′ 2.644(2), Nb1-S4 2.532(2), S4-S5 2.093(3);
Nb2-Nb1-Nb2′ 55.25, Nb2-S1-Nb2′ 77.08(10), S4-S5-S4′ 93.46(18).

2.3. Electronic Structural and Bonding Analysis of 1–4

To gain some insight into the bonding and electronic structures of 1–4, we performed
density functional theory (DFT) calculations at the BP86/def2-svp level of the theory [57,58].
Interestingly, the molecular orbital (MO) analyses showed that the HOMOs of 1–4 are
mainly made of d-orbitals of the three Nb atoms, which overlap with each other and
fully delocalize over the whole of the triangular trimetallic framework (Figure 3), illus-
trating 2-electron-3-centre bonding. Further, NBO [59–61] analyses were carried out to
investigate more precisely the bonding in the Nb3 triangle. The WBIs [62] of 0.362, and
0.365 in 1; 0.324, and 0.381 in 2; 0.355, and 0.467 in 3; and 0.331, and 0.532 in 4 further
support bonding interactions between Nb atoms within these species to form a Nb3 tri-
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angular skeleton. As shown in Chart 1, these types of trimetallic molecules show σ or
π-aromaticity. This prompted us to probe the delocalized bonding in the Nb3 core of 1–4.
Thus, we employed the nucleus independent chemical shift (NICS) approach [21,22] for as-
sessing the aromaticity of clusters 1–4. The NICS(0) (the negative of the isotropic magnetic
shielding at the centre of the Nb3 ring) for 1–4 were found to be −16.8, −20.3, −17.7, and
−21.0 ppm, respectively, with negative numbers indicating aromaticity. In addition, the
NICS(0)zz values of 1–4,−48.1,−46.8,−45.7, and−47.5, respectively, quantify the out of the
plane aromaticity. The NICS(0.5), NICS(−0.5), NICS(1), and NICS (−1) values computed
for 1–4 are also negative, which show a ring current, indicating the presence of induced
diatropic ring currents, which typically suggests three-dimensional aromaticity (Table S1,
see Supplementary Materials). Therefore, the existence of an aromatic system plays a key
role in the stabilization of 1–4.
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Figure 3. (a) HOMO of 1, (b) HOMO of 2, (c) HOMO of 3, and (d) HOMO of 4 depicting bonding
within triangular Nb3 frameworks. (Contour values for isosurface = ±0.04 [e/bohr3]1/2).

The triangular trimetallic skeleton of 1–4 further captured borate, borane, and chalco-
gen units. Therefore, we further analyzed the way they bind together. An MO analysis of 1
showed significant orbital overlap interaction between the triangular Nb3 framework and
the selenaborate {Se3BH}− ligand, which is depicted in HOMO-3, HOMO-6, HOMO-7, and
HOMO-8 (Figures 4a and S13). Further, an NBO analysis depicted the strong B-Se bonding
interaction within the selenaborate {Se3BH}− ligand in 1, which is further supported by WBI
(0.887, 0.887, and 0.883) for B-Se interactions. With the exception of the bonding scenario
along B1-Se7 and Se7-Se5, similar types of bonding interactions were observed in the MO
(Figures 4d and S14) and NBO (Figure 4e) analyses of 2. WBIs of 1.064 and 0.909 support
the strong bonding interaction between B1-Se and Se7-Se5, respectively. Further, a natural
charge analysis of 1 and 2 showed that the three Nb atoms and the B atom act as acceptors,
whereas the Se atoms act as donors (Table S2). On the other hand, the MO analyses of 3 and
4 showed significant orbital overlap interaction in the triangular Nb3 framework and the
directly connected six S atoms (Figures S15 and S16). In addition, substantial orbital overlap
interactions among the p-orbitals of two of these directly metal-connected chalcogens and
{BH} unit of 3, and mono-sulfur unit of 4, are depicted in HOMO-23 (3), and HOMO-8
(4), respectively (4(g) and Figure S16). In addition, an NBO analysis also illustrates the
S-B bonding interaction in 3 (Figure 4h), which is also supported by higher WBIs (Table
S3). Additionally, the Laplacian plot of electron density [63–65] showed areas of charge
concentration, BCPs, and bond paths between B-Se in 1 (Figure 4c), B-Se and Se-Se in 3
(Figure 4f), S-B in 3 (Figure 4i), and S and S in 4 (Figure S17). Finally, the HOMO-LUMO
energy gap in 2 (1.224 eV) is relatively smaller than those in 1 (1.296 eV), 3 (1.467 eV), and 4
(1.402 eV).
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Figure 4. Investigation of the B-Se, Se-Se, and B-S bonding of 1, 2, and 3, respectively. (a) HOMO-6 of
1, (b) NBO depicting the B-Se bonding interaction in 1, (c) contour-line diagrams of the Laplacian of
electron density in the Se3-B1-Se4 plane of 1, (d) HOMO-26 of 2, (e) NBO depicting the B-Se bonding
interaction in 2, (f) contour-line diagrams of the Laplacian of electron density in the B1-Se7-Se5 plane
of 2, (g) HOMO-23 of 3, (h) NBO depicting the B-S bonding interaction in 3, (i) contour-line diagrams
of the Laplacian of electron density in the S1-B1-S4′ plane of 3. In the contour-line diagrams of the
Laplacian of electron density, solid red lines indicate areas of charge concentration [∇2ρ(r) < 0], while
dashed black lines show areas of charge depletion [∇2ρ(r) > 0]. Blue dots indicate bond critical
points (BCPs), and the brown line depicts the bond paths. (Contour values for isosurface = ±0.04
[e/bohr3]1/2).

3. Materials and Methods

All manipulations were carried out under an inert atmosphere of argon, either inside
a glove box or by making use of standard Schlenk line techniques. All of the solvents were
dried and distilled before use, employing standard literature procedures. [Cp*NbCl4] [66],
Li[BH2E3] (E = S and Se) [67,68], and the external reference used for analyzing 11B{1H} NMR,
[Bu4N(B3H8)], were all prepared in accordance with reported procedures [69]. [LiBH4·THF],
S powder, and Se powder (Merck KGaA, Darmstadt, Germany) were employed as re-
ceived. The reaction mixtures were separated by performing thin layer chromatography
using aluminum-supported silica gel TLC plates (Merck KGaA, Darmstadt, Germany) of
250 µm diameter. A 500 MHz Bruker FT-NMR spectrometer (Bruker, Billerica, MA, USA)
was used to record 1H, 11B{1H}, and 13C NMR spectra. The residual solvent protons
were taken as a reference (CDCl3, δ = 7.26 ppm), whereas a [D6] benzene solution of
[Bu4N(B3H8)], taken in a sealed tube, was used as an external reference (δB = −30.07 ppm)
for analyzing 11B{1H} NMR spectra. A Bruker MicroTOF-II mass spectrometer (Bruker Dal-
tonics, Bremen, Germany) was used to record ESI mass spectra. IR spectra were recorded
with a JASCO FT/IR-1400 spectrometer (JASCO, Easton, PA, USA). It is important to note
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that elemental analysis of these compounds could not be performed due to low yields and
higher sensitivity.

3.1. Synthesis of 1 and 2

A suspension of Cp*NbCl4 (0.20 g, 0.54 mmol) in 20 mL of toluene was made in a
flame-dried Schlenk tube. A freshly prepared solution of Li[BH2Se3] (2.16 mmol) in THF
was added to the toluene suspension. The reaction mixture was stirred and heated at 80 °C
for 48 h. The solvent was dried by applying a vacuum, and the residue was extracted into
an n-hexane/CH2Cl2 mixture (80:20 v/v) and passed through Celite. After removing the
volatiles by applying a vacuum, chromatographic separation of the residue was carried
out using TLC plates. Elution with a n-hexane/CH2Cl2 mixture (70:30 v/v) formed brown
solid 1 (0.023 g, 11% yield) and green solid 2 (0.027 g, 12% yield).

Spectroscopic data of 1: MS (ESI+): m/z calculated for C32NH48Nb3Se6BNa+ [(M −
H) + Na + CH3CN]+: 1234.6009, found: 1234.5158. 11B{1H} NMR (160 MHz, CDCl3, 22 ◦C):
δ = −8.3 ppm; 1H NMR (500 MHz, CDCl3, 22 ◦C): δ = 2.21 (s, 45 H; 3 × Cp*), 3.87 ppm (b,
B-Ht); 13C{1H} NMR (125 MHz, CDCl3, 22 ◦C): δ = 14.7 (C5Me5), 117.9 ppm (C5Me5); IR
(CH2Cl2, cm−1): 2515 (B-Ht).

Spectroscopic data of 2: MS (ESI+): m/z calculated for C30H47Nb3Se7NaKH+ [M +
Na + K + H]+ 1312.4714, found: 1312.4354. 11B{1H} NMR (160 MHz, CDCl3, 22 ◦C):
δ =−6.4 ppm 1H NMR (500 MHz, CDCl3, 22 ◦C): δ = 2.18 (s, 15H; 1× Cp*), 2.18 ppm (s, 30H;
2 × Cp*), 3.65 ppm (b, B-Ht); 13C{1H} NMR (125 MHz, CDCl3, 22 ◦C): δ = 14.3 (C5Me5), 14.8
(C5Me5), 116.9 (C5Me5), 117.8 ppm (C5Me5); IR (CH2Cl2, cm−1): 2489 (B-Ht).

3.2. Synthesis of 3 and 4

Under similar experimental conditions, a reaction of Li[BH2S3] (2.16 mmol) with
Cp*NbCl4 (0.20 g, 0.54 mmol) was carried out. The solvent was dried by applying a vacuum,
and the residue was extracted into an n-hexane/CH2Cl2 mixture (80:20 v/v) and passed
through Celite. After removing the volatiles by applying a vacuum, chromatographic
separation of the residue was carried out using TLC plates. Elution with n-hexane/CH2Cl2
mixture (70:30 v/v) formed a mixture of 3 and 4 as a yellow solid (0.026 g, 16% yield) along
with a known orange solid [(NbCp*)3(µ3-S)3(µ-S)3(BH)(µ-S)] [53] (0.015 g, 9% yield).

Combined spectroscopic data of 3 and 4: MS (ESI+): m/z calculated for C30H46Nb3S6
+

[M − BH + H]+: 876.9115, found: 876.9071; m/z calculated for C30H46Nb3S7
+ [M + H]+:

908.8836, found: 908.8798. 11B{1H} NMR (160 MHz, CDCl3, 22 ◦C): δ = 3.8 ppm; 1H NMR
(500 MHz, CDCl3, 22 ◦C): δ = 2.03 (s, 30 H; 2 × Cp*), 2.10 (s, 60 H; 4 × Cp*), 3.54 ppm
(b, B-Ht); 13C{1H} NMR (125 MHz, CDCl3, 22 ◦C): δ = 12.9 (C5Me5), 13.1 (C5Me5), 116.9
(C5Me5), 119.0 (C5Me5); IR (CH2Cl2, cm−1): 2472 (B-Ht).

3.3. X-ray Structure Determination

A Bruker AXS Kappa APEX-II CCD diffractometer (Bruker AXS Inc., Madison, WI,
USA) bearing a graphite monochromated MoKα (λ = 0.71073 Å), radiated at 296 K, was
used to collect and integrate the crystal data of compounds 1–5. Heavy atom methods were
employed to solve the structures by making use of SHELXS-97 or SIR92, and structure
refinement was achieved using SHELXL-2018/3 [70–72]. Structures of the molecules were
drawn with Olex2 [73]. Note that all atoms of the disordered component of 1 were found
to have shifted by the same vector (0.3958, −0.2374, 0.0078) as the corresponding atoms
of the main molecule. This showed the disorder component to be a translation of the
main molecule through a distance of 6.631 Å in the direction of the vector (0.3958, −0.2374,
0.0078). The Cp* and the boron atoms of the main molecule were moved through this
vector in a separate job. These atoms’ cards were then copied and put in the main res file,
relabeled and assigned the occupancies −21.0 The Cp* and boron atoms became correctly
attached to the disorder component. The molecules were refined with suitable restraints.
As the scattering strength of the carbon atoms of the minor disordered component is only
6/20 = 0.3 e, the restraints were needed for refinement. Note that multiple recrystallizations
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of 2 from various solvents provided extremely thin crystals, which diffracted poorly. Thus,
Rint is high for 2. However, proper analysis of the X-ray data provided conclusive proof
of the structure, which also positively corroborated with the other spectroscopic evidence.
In addition, the atoms Se5 and B1 had 50% occupancy only and of the bonds Se5-B1 and
Se5′-B1′, any one of them only existed in a given molecule. Compound 2 crystallized
along with the CHCl3 solvent molecule. Compounds 3 and 4 are a 50:50 mixture of a
yellow co-crystal and crystallized along with two CH2Cl2 solvent molecules, whereas The
Cambridge Crystallographic Data Centre has been provided with the crystallographic data
of the compounds with supplementary publication no. CCDC-2203605 (1), 2203607 (2), and
2203609 (3 and 4).

Crystal data of 1: [C30H46BNb3Se6], Mr = 1169.97, triclinic, P1, a = 11.984(2) Å,
b = 11.986(2) Å, c = 15.488(3) Å, α = 98.184(8)◦, β = 98.597(9)◦, γ = 119.817(7)◦, V = 1846.7(6)
Å3, Z = 2, ρcalc = 2.104 g/cm3, µ = 6.848 mm−1, F(000) = 1116.0, R1 = 0.0884, wR2 = 0.2140,
5681 independent reflections, [2θ ≤ 48.792] and 727 parameters.

Crystal data of 2: 2[C30H46B1Nb3Se7] + [CHCl3], Mr = 2617.22, orthorhombic, Cmc21,
a = 15.792(3) Å, b = 16.816(3) Å, c = 16.237(2) Å, α = 90◦, β = 90◦, γ = 90◦, V = 4312.0(12)
Å3, Z = 2, ρcalc = 2.016 g/cm3, µ = 6.805 mm−1, F(000) = 2484.0, R1 = 0.0739, wR2 = 0.1494,
3944 independent reflections, [2θ ≤ 49.998] and 235 parameters.

Crystal data of 3 and 4: [C30H46BS6Nb3] + [C30H45S7Nb3] + 2 [CH2Cl2], Mr = 1090.48,
orthorhombic, Pnma, a = 16.903(3) Å, b = 16.437(3) Å, c = 15.215(3) Å, α = β = γ = 90◦,
V = 4227.3(14) Å3, Z = 4, ρcalc = 1.713 g/cm3, µ = 1.422 mm−1, F(000) = 2200, R1 = 0.0546,
wR2 = 0.1606, 3857 independent reflections, [2θ ≤ 49.998] and 232 parameters.

3.4. Computational Details

All molecules were fully optimized using the BP86 functional [57,58], in conjunc-
tion with a def2-svp basis set using the Gaussian 09 program (Gaussian, Wallingford, CT,
USA) [74]. All compounds were fully optimized in gaseous state using their X-ray crystal-
lographic structures. The calculations were performed with the Cp analogues, instead of
Cp*, to save computing time. Note that the B1···S4 distance of 3 was frozen and optimized.
Further, frequency calculations of 3 confirmed the absence of any imaginary frequency.
NBO analyses were carried out with the NBO partitioning scheme [59–61] as employed
in Gaussian 09. Wiberg bond indexes (WBI) [62] were obtained from the NBO analysis.
QTAIM analyses [63–65] were performed utilizing the Multiwfn V.3.6 package (Multiwfn,
Beijing, China) [75]. The aromaticity of the compounds was evaluated by calculating the
Nucleus Independent Chemical Shift (NICS) indices [21,22] on the optimized geometries,
at the same level of theory, by using the GIAO method implemented in Gaussian. All
the optimized structures and orbital graphics were produced using Gaussview [76] and
Chemcraft [77].

4. Conclusions

In summary, we have synthesized and structurally characterized novel species con-
taining a 2-electron aromatic tri-niobium skeleton, which further stabilizes different types
of main group units, such as borate, borane, and mono/di-chalcogenide units. The com-
mon cluster core of all these novel species is Nb3E6 (E = S, Se). Theoretical calculations
revealed the participation of Nb d-orbitals to form an aromatic Nb3 framework. In addition,
the pivotal role of the aromatic Nb3 skeleton in the stabilization of borate, borane, and
mono/di-chalcogenide units is revealed. Additional exploration to evaluate the scope for
isolation of the other main group units, utilizing the trimetallic skeleton of group 4 and
5 transition metals, is currently underway.
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values, calculated natural charges and natural valence population, and WBIs of 1–4. Application of
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