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Abstract: Very recently, there is a great research interest in electrochemiluminescence (ECL) featuring
thermally activated delayed fluorescence (TADF) properties, i.e., TADF-ECL. It is appealing since
the earlier reports in this topic well-confirmed that this strategy has a great potential in achieving
all-exciton-harvesting ECL efficiency under electrochemical excitation, which is a breakthrough in
the topic of organic ECL. However, organic phase electrochemistry and ECL studies surrounding
TADF-ECL are still extremely rare. Especially, the ECL spectra of previous reported TADF emitters
are still very different from their PL spectra. In this work, we systematically measure and discuss
the liquid electrochemistry and ECL behavior of two typical TADF molecules in organic medium.
Most importantly, we verify for the first time that the ECL spectra of them (coreactant ECL mode) are
identical to their PL spectra counterparts, which confirms the effectiveness of TADF photophysical
properties in the coreactant ECL mode in practice.

Keywords: electrochemiluminescence; thermally activated delayed fluorescence (TADF); coreactant
ECL; ECL sensing; spectra

1. Introduction

It is well-known that electrochemiluminescence (ECL) is one promising analytical
method, in which photon signals are electrogenerated by electrochemical excitation in
electrolytic cells [1,2]. Up to the present, a great deal of applications has been realized for
such ECL techniques, such as ultrasensitive life analysis, environmental analysis, high-
resolution activity mapping on nanocatalysts and more recently single-photon-level tissue
and cell imaging, etc. [1–7]. Despite these successes, it is obvious in that the scarcity
of qualified ECL luminophores largely hampers the development of ECL. Until now,
except for some peculiar cases [8], almost all ECL applications use the state-of-the-art
tris(2,2′-bipyridyl)ruthenium(II) Ru(bpy)3

2+ or its analogues [2,7,9]. This system has been
well-applied since it possesses satisfactory electrochemical stability, high ECL efficiency and
mature labelling methodology towards various analyzing targets [9]. However, there are
still so many drawbacks to be resolved for this system, such as the high potential for ECL,
hard to tailor ECL spectra, high cost and very limited room for further enhancing of ECL
efficiency (ΦECL). To accelerate the development of ECL, it is excepted to enrich qualified
ECL luminophores. In this way, much better overall ECL performance is anticipated.

Nowadays, alongside such demands, a great deal of attention is focusing on develop-
ing advanced organic ECL luminophores [10–15]. Especially, two peculiar strategies have
been launched with great developing potential [16], that is: (i) organic aggregation-induced
ECL (AIECL) [17] and (ii) thermally activated delayed fluorescent ECL (TADF-ECL) [18,19],
respectively. As for AIECL [20], it is appealing since the notorious aggregation-caused
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quenching (ACQ) limiting issue is largely restrained or even removed by the aggregation-
induced emission (AIE) effect [21], which guarantees the achievements of a much higher
ΦECL for them [10,12,17,22–24]. For instance, a series of organic AIECL systems were devel-
oped, e.g., tetraphenylethylene (TPE)-based nanocrystals or polymer dots [17,24], carbon
dots [23], silole or triphenylporphyrin-based compounds [10,22]. Most of them showed
excellent ECL stabilities and satisfactory ΦECL and even were applied in various biosensing
applications with satisfactory effects [14,15]. As for the topic of TADF-ECL [18,19], it is
significant in that such a strategy is characteristic of all-exciton-harvesting for ECL emission.
Compared to every reported organic ECL system [17,22,25–27], the theoretical ΦECL of
organic TADF-ECL systems is increased by a factor of four, i.e., from 25% to 100%. It is
reasonable since common organic ECL systems belong to fluorescence in photophysics. In
this case, it is merely electrochemically generated singlets (ca. 25% in total) that are har-
vested for ECL emissions. At the best condition, i.e., when the PL quantum efficiency (ΦPL)
of those ECL fluorophores equals to 100%, the maximized ΦECL of those fluorescent-type
organic ECL systems can achieve a value of 25%. By contrast, TADF-ECL outperforms in
ΦECL since all those dark triplets (~75% in total under electrochemical excitation) [18] can
be emissive through the delayed fluorescent route, i.e., DF-ECL (Scheme 1). Such processes
can be efficient since the exchange energy (∆EST) between the first singlet level (S1) and
the first triplet level (T1) is low enough (0.1–0.3 eV) for TADF luminophores [28], which
guarantees the achievement of a fast and efficient reverse inter-system crossing (RISC)
process from T1 to S1 (Scheme 1). In this case, the maximized ΦECL of the TADF-ECL
system can be as high as 100%.
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To date, some progress has been achieved in the topic of TADF-ECL, such as the
achievements of highly efficient TADF-ECL in organic medium [18,19,29–31], extremely
narrow ECL spectra [32], reliable TADF-ECL in aqueous medium [12,33] and TADF-ECL
sensing applications [19,34]. In 2014, Ishimatsu et al. reported the first annihilation
TADF-ECL, in which a TADF molecular 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene
(4CzIPN) [35] was used as the ECL luminophore in organic medium [18]. Under high-
frequency step potential driving, it achieved a ΦECL of 47 ± 6.0% in dichloromethane
(DCM) medium, which approached the corresponding ΦPL, i.e., 54%. The ECL spectra
of the annihilation ECL system containing 4CzIPN resembled the PL spectra of 4CzIPN.
These results were combined to confirm the achievement of TADF-ECL in annihilation ECL
mode [18,29]. To achieve the practical sensing application of TADF-ECL in real scenarios,
our group restarted the studies of TADF-ECL in 2021 [12,19,30,33] and focused on the
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possibility of coreactant TADF-ECL. As confirmed, stable and efficient oxidative–reduction
polymer TADF-ECL [19] or reductive–oxidation polymer TADF-ECL [30] was successfully
constructed by using TADF polymer modified glassy carbon electrode (GCE) as the light-
emissive surface-modified working electrode of the coreactant TADF-ECL system. Either
of them showed much higher ΦECL (nearly four-fold) as compared to that of the traditional
fluorescent ECL counterparts. Under successive electrochemical driving (step potential
or linear CV scanning), the ECL stability of those TADF-ECL systems is also satisfactory.
Solid-state TADF-ECL sensing on L-cysteine was further performed, showing ultralow
detection limits, high sensitivity and good specificity [19]. Very recently, we also realized
stable and efficient aqueous TADF-ECL [12,33,34], which is significant to achieve practi-
cal TADF-ECL sensing applications in life science in the near future. The corresponding
methods are divided into two general categories. Firstly, we have developed TADF-ECL in
aqueous media by using aggregation-induced delayed fluorescence (AIDF) luminogens,
also called as AIDF-ECL [12]. Since AIDF-ECL integrates the merits of TADF and the AIE
effect of organic luminophores in aqueous media, the ΦECL of such an AIDF-ECL model
system distinctly outperformed that of a TPE-based AIECL counterpart. Secondly, we have
explored the nanoencapsulation strategy to prepare air-stable and water-soluble TADF-ECL
luminophores [33]. Importantly, the oxygen quenching effect [36] on the TADF-ECL system
in an aqueous medium is well-removed by this method. Using those aqueous-soluble
TADF molecular nanoparticles such as ECL luminophores, stable and efficient aqueous
TADF-ECL were realized, irrespective of annihilation or coreactant ECL [33]. In early 2022,
using such nanoencapsulation strategies, we reported on the first aqueous coreactant TADF-
ECL dopamine biosensing applications, which showed satisfactory linearity, selectivity,
repeatability and detection limits [34].

Despite those progresses in the topic of TADF-ECL, it should be noticed that under-
standing of mechanisms of TADF-ECL is still in its infancy. Especially, as for the coreactant
ECL mode, we found that the ECL spectra of the reported TADF luminophores/coreactant
couple do not fully resemble its PL spectra counterparts [12,19,30,31,33,34]. It is plausible
in that in some cases, more complicated mechanisms could be involved, e.g., the exciplex
formation and organic long-persistent emission [31]. To confirm the coreactant TADF-ECL
definitively, it is believed that the corresponding ECL and PL spectra of a certain TADF
luminophores/coreactant couple should be the same. Moreover, the questions concerning
the relationship between the electrochemical properties of TADF luminophores and its ECL
efficiency, stability and potential should be further studied. To answer these questions, it is
necessary to further perform electrochemical and ECL studies of typical TADF molecules
in an organic medium, which is the most simplified condition to disclose such questions.

Herein, we present the detailed studies on the annihilation and coreactant ECL of two
typical TADF molecules in a DCM medium. First of all, basic photophysical and electro-
chemical measurements are performed to clarify their intrinsic physical and electrochemical
properties. After that, annihilation and coreactant ECL studies are conducted, including the
evaluation of ΦECL, ECL stability, potentials and most importantly their ECL spectra. Very
meaningfully, the ECL and PL spectra of those two TADF luminophores in the coreactant
ECL mode are identical, which confirms the TADF emission nature of those luminophores
in the coreactant ECL mode. Moreover, some peculiar clues were discovered to understand
the determining factors of ΦECL and ECL potentials of coreactant TADF-ECL, which is very
meaningful to enrich our understanding on TADF-ECL and accelerate its development
towards higher performance and better applications.

2. Experimental
2.1. TADF Luminophores

The TADF compound of 4CzIPN (788.89 g mol−1) [35] was purchased from Xi’an
Polymer Light Technology Corp, while the homemade 3,6-di(tert-butyl)-1,8-di(4-(bis(4-
(tertbutyl)phenyl)amino)phenyl)-9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl) phenyl) carbazole
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(BPAPTC) (1296.77 g mol−1) [37] was synthesized by our collaborators. All those materials
were used as received.

2.2. Measurements of Photophysics

All those photophysical studies were performed on DCM solution containing those
TADF molecules with a concentration of 25 µM. The absorbance was measured by a UV–Vis
spectrophotometer (Shimadzu UV-1780, Shimadzu, Kyoto, Japan). The steady-state PL
spectra and transient PL decay curves of those samples in solution were conducted by the
Edinburgh FLS1000 spectrofluorometer, in which an Xe2 xenon lamp and a picosecond
pulsed LED (EPLED-365) were the light source (365 nm as the excitation wavelength) while
it was required. The PL transient delay curves were fitted by bi-exponential functions,
which was commonly used to derive the prompt and delayed fluorescent emissions of
TADF emitters [38]. The absolute PLQY in the atmosphere of those samples was measured
by an integrating sphere that was coupled with Edinburgh FLS1000.

2.3. Cyclic Voltammetry (CV) and ECL Measurements

CV experiments were measured by the CHI 660B electrochemistry workstation (CH
Instruments Inc.). Prior to CV measurements, the glassy carbon electrode (GCE) working
electrode (4 mm in diameter) was routinely cleaned [12]. A common three-electrode
configuration was used for those CV studies, in which GCE, Pt wire and Ag wire were
the working electrode, counter electrode and the quasi-reference electrode, respectively
(0.1 mM 4CzIPN or 0.1 mM BPAPTC molecules dissolved in 0.1 M tetra-n-butylammonium
hexafluorophosphate (TBAPF6) as supporting electrolyte in DCM). The CV tests used
the scanning rate of 100 mV/s and ferrocene (Fc)/ferrocenium (Fc+) as the calibrating
reference [39].

ECL studies were measured by the MPI–EII ECL detection system (Remex Electronic
Instrument Lt. Co, Xi’an, China), in which the configurations and the condition of the
electrolytic cells are the same as that measured in CV studies. The more detailed in-
troductions were presented in our earlier work [19]. The PMT voltage and scanning
rate were set at 850 V and 100 mV/s, respectively. For the oxidative–reduction ECL and
reductive–oxidation ECL studies in DCM, the used TADF luminophores were 0.1 mM in
concentration and the coreactant was tri-n-propylamine (TPrA) (40 mM) or benzoyl perox-
ide (BPO) (25 mM), respectively. While for determining the relative ΦECL, these coupled
coreactant ECL systems were measured by using the general method [19,40], i.e., using the
sample of Ru(bpy)3

2+ (0.1 mM)/TPrA (40 mM) in acetonitrile solution containing 0.1 M
TBAPF6 as the reference. The ECL spectra of these were measured by Edinburgh FLS1000,
in which the electrolytic cells were placed into the sample chamber of Edinburgh FLS1000
and electrochemically triggered by the CHI 660B electrochemistry workstation.

3. Results and Discussion
3.1. Photophysical Properties of TADF Luminophores in DCM

Previously, 4CzIPN [35] and BPAPTC [37] were confirmed to be satisfactory TADF
emitters and well-applied in organic light-emitting diodes. As a typical charge-transfer-type
emitter [41], photophysical properties of these TADF molecules are largely influenced by
the solvent that it is dissolved in. Since the subsequent CV and ECL studies are performed
in the DCM solvent, we measured the corresponding photophysical properties in DCM.
As it is shown in Figure 1a,c, the absorption spectra of those two emitters are basically
unchanged as compared to the earlier reports measured in toluene [42]. Either of them
show their intrinsic absorption and clear charge-transfer absorption features at the long
wavelength range, indicating that the charge-transfer features of these two molecules
are maintained in DCM. As for the steady-state PL spectra, some extent of redshift and
broadening are observed, e.g., the PL emission peak (λPL) of 4CzIPN and BPAPTC in DCM
locates at 543 and 585 nm, respectively, rather than 507 and 520 nm in toluene [35,37].
Such a difference is commonly reported for TADF materials and ascribed to the polarity
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effect of the solvent medium [41]. In this way, the PL spectra of TADF luminophores
are gradually redshifted on increasing polarity of solvents. Figure 1b,d showed their
respective PL transient behaviors, which displayed the typical two-component PL transient
behaviors of TADF emitters [35]. According to the well-known photophysical theory of
TADF emission [28,38,43], the corresponding prompt and delayed fluorescent lifetime
(τpf, τdf) and ratios (Φpf/Φdf) were calculated, i.e., 24 ns, 1603 ns, 39.1%/60.9% for 4CzIPN
and 30 ns, 328 ns, 63.5%/36.5% for BPAPTC, respectively, surely confirming the TADF
emission features of those two samples in DCM. The measured conditions of those PL
transient experiments are the same as that used in the subsequent CV/ECL study. Under
electrochemical driving in those DCM media, it is anticipated that these two luminophores
will emit light via the same TADF mechanism.
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3.2. Electrochemistry

CV was performed for those two molecules in DCM solvent to determine their redox
properties, in which a routine three-electrode structure was used, i.e., a GCE as the working
electrode, a Pt wire as the counter electrode and an Ag wire as the quasi-reference electrode
in DCM media containing 0.1 M TBAPF6 as a supporting electrolyte with a scanning rate of
100 mV/s. As shown in Figure S1a, 4CzIPN displayed a clear reversible cathodic wave with
an onset reduction potential at −1.29 V (vs. Ag/Ag+) but irreversible anodic wave with
an onset oxidation potential at +1.28 V (vs. Ag/Ag+). It is analogous to the earlier results
measured in acetonitrile solvent [33]. Accordingly, it indicates that the electroreduction
process of 4CzIPN should be reversible and stable while the electrooxidation process
is unstable. As mentioned [18,27], the electrochemical oxidation of carbazole would be
involved for such an electrooxidation process. As for the CV results of BPAPTC molecules
in DCM (shown in Supplementary Figure S1b), it is different in that in this situation, the
electrooxidation of BPAPTC is becoming reversible and shows a clear reversible wave with
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an onset oxidation potential at 0.66 V (vs. Ag/Ag+). There is no distinctive electrochemical
reduction wave for BPAPTC, indicating that the corresponding electroreduction process
is unstable.

3.3. Annihilation and Coreactant TADF-ECL

At first, annihilation ECL studies of these two TADF luminophores were performed.
As shown in Figure 2a, under linear CV scanning, intense ECL emission can be observed for
4CzIPN either in the anodic or cathodic bias condition, which indicates that either radical
electrooxidation or electroreduction products of 4CzIPN, i.e., 4CzIPN•+ or 4CzIPN•−, are
stable to guarantee exciton formation and then followed by ECL emission. Meanwhile,
the ECL onset potentials, irrespective of anodic or cathodic scanning ranges, resemble
its redox potentials showing in Figure S1a. We also notice that the anodic ECL intensity
of 4CzIPN is higher than its cathodic ECL intensity. This result is consistent with its CV
behaviors. Accordingly, it is highly possible that the stability of 4CzIPN•− is superior to
that of 4CzIPN•+. Under step potential operation (±1.6V, 1Hz), the ECL intensity of them
(either at +1.6 V or−1.6 V) is distinctly enhanced by ca. 3-fold and becomes comparable. As
compared to CV linear scanning (Figure 2a), the step potential driving condition (Figure 2b)
shortens the waiting time of those radical intermediate products prior to collision, which
accounts for such enhancing effects of ECL intensity. As for BPAPTC, it is different in that
the cathodic ECL intensity is dramatically higher than the anodic ECL intensity (Figure 2c).
Compared to 4CzIPN (Figure 2a), the anodic and cathodic ECL onset potentials of BPAPTC
(Figure 2c) were changed to ca. 0.6 V and −1.8 V, respectively, which is also consistent with
its electrochemical redox characteristics shown in Supplementary Figure S1b. Under step
potential driving between +0.8 V and−2 V (1 Hz), the cathodic ECL intensity at−2 V is also
dramatically enhanced while the anodic ECL intensity at +0.8 V is still weak (Figure 2d).
Accordingly, it indicates that under the electroreduction process, the radical intermediate
species of BPAPTC, i.e., BAPTC•−, are highly unstable, while the BAPTC•+ counterpart
generated under the electrooxidation process is stable enough. Such deduction is also
consistent with the CV characteristics (Supplementary Figure S1b). In short, in conjunction
with CV studies, the corresponding annihilation ECL studies of these two TADF molecules
well-reflect the intrinsic relationship between its CV characteristics and ECL potential,
intensity and stability. To achieve highly intensive ECL emissions in annihilation ECL
mode, these TADF molecules should possess satisfactory electrochemical reversibility.

Subsequently, coreactant ECL studies are conducted for these two TADF molecules, in
which TADF molecular 4CzIPN or BPAPTC in couple with the state-of-the-art coreactant,
i.e., TPrA or BPO, are dissolved in DCM medium containing 0.1 M TBAPF6 support-
ing electrolyte and a scanning rate of 100 mV/s is used to perform the corresponding
ECL measurements (see Experimental Sections for the details). First of all, the results of
oxidative–reduction ECL using 0.1 mM 4CzIPN/40 mM TPrA are shown in Figure 3. As
depicted, compared to the condition using the bare GCE as the working electrode, the
addition of 40 mM TPrA in the electrolytic cells sharply enhances the electrochemical
oxidation current. Especially, while the potential is higher than +0.61 V (vs. Ag/Ag+), the
anodic current is obviously increased. According to earlier reports [44,45], it corresponds
to the electrooxidation process of TPrA. During this scanning ranging from 0 to 1.6 to 0 V,
no detectable ECL signals can be observed (Figure 3b). Additionally, the electrooxidation
of 0.1 mM 4CzIPN alone does not lead to ECL emission (not shown here). By contrast, as
for the situation involving the couple of 0.1 mM 4CzIPN/40 mM TPrA, the anodic current
is distinctly increased while the potential is higher than +0.64 V and reaches the peak
current at ca. +1.19 V (vs. Ag/Ag+). Therefore, in this case, both TPrA and 4CzIPN are
electrochemically oxidized. Meanwhile, the ECL intensity is gradually enhanced as the
potential is higher than ca. 1.2 V and reaches the maximum value at +1.6 V. These results
are combined to confirm the occurrence of coreactant ECL, in which the oxidized TPrA
functions as the reducing agent to inject electrons into the oxidized 4CzIPN radical inter-
mediate species, i.e., 4CzIPN•+, to generate excitons, which is followed by ECL emission
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via radiative decay. We further characterize the CV/ECL stability via 36 multicycle anodic
scanning of this system containing the 4CzIPN/TPrA couple. As it is shown in Figure 3c,
the anodic current is stable under these continuous cycle scanning conditions. Meanwhile,
after the first seven cycles, the ECL intensity is also somewhat stable (Figure 3d). We notice
that the ECL stability of such oxidative–reduction ECL mode of 4CzIPN is distinctly better
than that observed in annihilation ECL mode [18,29]. In that report, the inherently unstable
4CzIPN•+ largely limited the corresponding ECL stability. Our results indicate that such
an unstable issue can be solved to a large extent by adding an effective coreactant, e.g.,
TPrA. In this way, fast and efficient electron transfer processes between the coreactant, e.g.,
TPrA, and the unstable radical intermediate species of TADF luminophores, e.g., 4CzIPN•+,
could accelerate the process of exciton formation on TADF luminophores, which is critical
to enhance its ECL intensity and stability for practical sensing applications.
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Reductive–oxidation ECL studies on 4CzIPN are further conducted by using the
traditional BPO as the coreactant. As shown in Figure 4a, no ECL signals can be detected
while the electrolytic cell merely containing 25 mM BPO is biased from 0 to −1.7 to 0 V.
However, as for the system containing the couple of 0.1 mM 4CzIPN/25 mM BPO in
solution, ECL appears at −1.48 V and then reaches an extremely high peak value at ca.
1.7 V. Such phenomena well-confirm that it is reductive–oxidation ECL emission. Moreover,
we notice that the peak potential of cathodic current of the 4CzIPN/BPO couple is located
at −1.2 V, which is distinctly lower than that of pure 4CzIPN, i.e., ca. −1.5 V. Previously,
Zu et al. also observed such a kind of feature and attributed it to the electrocatalysis effect
of the coreactant on luminophores [44]. In other words, it is highly possible in that strong
charge-transfer actions between those two species would be involved in such cathodic
scanning. Despite this phenomenom, we notice that the resultant cathodic ECL onset
potential is still as high as−1.48 V, which is followed by a quick increase in ECL intensity at
the much higher potential. It thus well-confirms that both sufficient electroreduction of BPO
and 4CzIPN are indispensable for such ECL emission. As calculated, such 0.1 mM 4CzIPN/
25 mM BPO coreactant ECL system shows a high relative ΦECL of 197% (vs. Ru(bpy)3/TPrA
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reference, taken as 100% as the standard), which is higher than its corresponding oxidative–
reduction ΦECL using the couple of 4CzIPN/TPrA, i.e., 12.0%. We speculate that the most
possible reason accounting for such differences in ΦECL is the different electrochemical
activity and/or reversibility of 4CzIPN•+ and 4CzIPN•−. As for the CV and ECL stability
situations of such an efficient 4CzIPN/BPO couple, we performed the successive CV and
ECL scanning (26 cycles). As shown in Figure 4c, the cathodic current is not stable. On
increasing the scanning cycles, the cathodic current is gradually reduced, along with a
monotonic shift of peak potential to the much lower value. The detailed mechanism is
still unclear and in study. However, the corresponding ECL intensity seems stable enough.
Especially, after the first seven cycles, the subsequent ECL intensity tends to be stable,
without any noticeable fluctuations in ECL intensity.
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TPrA. Stability of CV curves (c) and ECL intensity (d) after continued scans of 4CzIPN in the presence
of 40 mM TPrA.
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4CzIPN containing 25 mM BPO in DCM with 0.1 M TBAPF6 electrolyte. Stability of CV curves (c)
and ECL intensity of 4CzIPN/BPO couple under continual scans (d).

Oxidation–reduction ECL is further constructed by using the couple of 0.1 mM
BPAPTC/25 mM TPrA. As observed, it displays the typical coreactant ECL behavior.
No detectable ECL can be observed while the system merely contains BPAPTC or TPrA. It
is only in the presence of both BPAPTC and TPrA that we can see significant ECL emis-
sion (Figure 5a,b). Very meaningfully, the ECL signals begin to rise at an onset potential
of 0.46 V and then reach the first peak value at +0.62 V and the second peak value at
+1.19 V. Such ECL onset potential is distinctly lower than that of the 4CzIPN/TPrA couple
shown in Figure 3 and even the lowest results among all ever reported ECLs using TADF
emitters [12,18,19,29–31,33,34]. We speculate that the achievement of such low ECL onset
potential is mainly attributed to the distinctly lowered electrochemical oxidation potentials
of BPAPTC (Supplementary Figure S1b). Moreover, oxidation potentials of BPAPTC and
TPrA are closely matched with each other, which is beneficial for coreactant ECL emission
at a much lower potential. As calculated, such 0.1 mM BPAPTC/25 mM TPrA coreactant
ECL system shows a high relative ΦECL of 116% (vs. 100% for the Ru(bpy)3/TPrA refer-
ence). Moreover, it is interesting to observe two ECL peaks, which were similar to the
well-known Ru(bpy)3

2+/TPrA system [44,45]. As disclosed, the evolution of those two
ECL peaks were dependent on the concentrations of Ru(bpy)3

2+ and TPrA. These different
experimental conditions triggered different subprocesses of these coreactant systems, which
well-disclosed the origins of those observed two ECL peaks [45]. The similar mechanism
studies are in process for this BPAPTC/TPrA couple, which will be disclosed elsewhere.
As shown in Figure 5c, the anodic CV scanning for such a couple is stable under 30 cycles,
which is accompanied with stable ECL emissions shown in Figure 5d. It is believed that
it is attributed to the high reversibility of BPAPTC under the electrochemical oxidation
process (Supplementary Figure S1b).
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3.4. ECL Spectra and Mechanisms of Coreactant TADF-ECL

Figure 6 depicts the PL and ECL spectra of these two TADF lumiphores. It is obvious
that the PL and ECL spectra of the same TADF luminophores are basically identical.
Compared to PL spectra in DCM, the ECL spectra of those coreactant ECL couples show
slight redshifts, which is due to some extent of polarity effect of the supporting electrolyte,
i.e., TBAPF6 (see Supplementary Figure S2). To directly confirm the TADF emission nature
of the coreactant ECL mode involving TPrA or BPO, the corresponding ECL spectra should
be identical to the intrinsic PL spectra of those TADF luminophores concerned. In this sense,
current results surely confirm this point. Previously, we noticed that the coreactant ECL
spectra in TADF-polymer-modified GCE configurations [19,30] or aqueous ECL using TADF
aggregates or TADF nanoencapsulation emitters [12,33,34] were significantly different
from their PL counterparts. In general, a noticeable difference in λpeak and/or full width
at half maximum (FWHM) of the PL and ECL spectra was observed in those reports,
which were attributed to some interrupting factors, such as difference in polarization [46],
the involvement of surface state transition [47] or others. To rule out these interrupting
possibilities, the implementation of such simplified solution-state coreactant ECL studies
is very meaningful, which directly confirms the effectiveness of TADF emission in such
coreactant ECL driving methods for the first time.

The mechanisms of coreactant ECL featuring TADF emission (TADF-ECL) are schemat-
ically shown in Figure 7, which is based on the above mentioned ECL studies, ECL spectra
and the earlier disclosed mechanisms of TPrA- or BPO-involved coreactant ECL [19,25,48].
For the oxidative–reduction TADF-ECL, we use BPAPTC/TPrA TADF-ECL system as the
example (shown in Figure 7a). Under electrochemical oxidation, holes are directly injected
into the highest occupied molecular orbitals (HOMO) of BPAPTC molecules and electrons
are injected from TPrA• into the lowest unoccupied molecular orbitals (LUMO). After that,
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the columbic interactions between holes and electrons in BPAPTC lead to the generation of
excitons, which is followed by ECL emission via the TADF mechanism. For the reductive–
oxidation TADF-ECL, we thus use the 4CzIPN/BPO TADF-ECL system as the example
(shown in Figure 7b). Under the electroreduction process, electrons are directly injected into
the LUMO of 4CzIPN molecules and holes are indirectly injected from C6H5CO2

• radical
intermediate species into the HOMO of 4CzIPN molecules. Subsequently, excitons (Frankel
type) are generated on those 4CzIPN molecules, which is followed by ECL emission via
the TADF mechanism. Thanks to the all-exciton-harvesting superiority of TADF emission,
both electrochemically generated singlet and triplet excitons can radiatively decay via such
coreactant TADF-ECL mode. It is thus very meaningful to further develop such coreactant
TADF-ECL featuring low ECL potentials and high ΦECL towards a satisfactory application
in a wide range.
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4. Conclusions

In conclusion, we present a details study on liquid ECL using two common TADF
molecules in an organic medium. Both CV, annihilation and coreactant ECL mode are
measured and discussed, with the purpose of establishing more clear relationships be-
tween potential/activity/stability of those different radical intermediate species of TADF
molecules and the resultant ECL potential, efficiencies, i.e., ΦECL, and stabilities in core-
actant ECL mode. The conclusions are as follows: (i) it is highly feasible to realize a low
ECL potential for coreactant TADF-ECL by choosing TADF luminophores featuring low
redox potential. In this work, a satisfactory ECL onset potential as low as +0.46 V (vs.
Ag/Ag+) is achieved for BPAPTC; (ii) redox reversibility of TADF molecules highly de-
termines the activity/stability of its electrogenerated radical intermediate species and the
resultant ECL efficiency; (iii) if radical intermediate species of TADF luminophores are
unstable, e.g., 4CzIPN•+, its ECL efficiency and stability can be largely promoted by using
coreactant ECL mode with a suitable coreactant. Moreover, for the first time, it is confirmed
that the ECL spectra of those coreactant ECL systems are identical to the PL spectra of
those TADF luminophores. It thus proves that those coreactant ECL systems emit light
via those TADF emitters themselves, rather than other complexed emission routes. It is
anticipated that the performance and application of TADF-ECL is promising. Currently,
more in-depth mechanistic studies concerning TADF-ECL have been performed and will
be disclosed elsewhere.
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