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Abstract: With several major polarity and weak optical properties, the sensitive detection of HCOOH
remains a major challenge. Given the special role of HCOOH in assisting in the catalytic hydrogena-
tion process of Ir complexes, HCOOH (as a hydrogen source) could rapidly activate Ir complexes
as catalysts and further reduce the substrates. This work developed a facile and sensitive HCOOH
fluorescence sensor utilizing an optimal catalytic fluorescence generation system, which consists of
the phenyl-pyrazole-type Ir-complex PP-Ir-Cl and the coumarin-type fluorescence probe P-coumarin.
The sensor demonstrates excellent sensitivity and specificity for HCOOH and formates; the limits
of detection for HCOOH, HCOONa, and HCOOEt3N were tested to be 50.6 ppb, 68.0 ppb, and
146.0 ppb, respectively. Compared to previous methods, the proposed sensor exhibits good detection
accuracy and excellent sensitivity. Therefore, the proposed HCOOH sensor could be used as a new
detection method for HCOOH and could provide a new design path for other sensors.

Keywords: HCOOH detection; Ir complexes; catalytic hydrogenation; fluorescence probe

1. Introduction

With global warming, carbon dioxide (CO2) fixation and utilization have become
global hot research topics [1–3]. Catalytic technologies (including chemical catalytic tech-
nology, electrocatalytic technology, and photocatalytic technology) have attracted more
and more attention since they could successfully convert carbon dioxide to formic acid
(HCOOH), methanol (MeOH), and other chemicals [4–7]. Among these manufactured
chemicals, HCOOH and formate have been widely used in oil exploitation; leather, textile,
and oxalic acid production; and other fields [8–13]. In addition, HCOOH is an important
liquid hydrogen storage material [14–17], which could be used as a potential feedstock for
fuel cells. In the bioanalysis field, HCOOH in urine is also used as an important biomarker
of human exposure to formaldehyde [18]. Based on these important performances, the anal-
ysis of HCOOH has attracted much attention. However, the sensitive detection of HCOOH
still faces many challenges due to its severely high polarity, strong acidity, and weak optical
property, which must be aided by the expensive high-performance liquid chromatography
(HPLC), nuclear magnetic resonance (NMR) techniques, and some titrimetric analyses.

Currently, the main industrial analytical method of HCOOH is the potassium perman-
ganate (KMnO4) oxidation indirect iodine quantity method, which can only analyze high
concentrations of HCOOH [19]. This method mainly benefits from the good reducibility of
HCOOH. HCOOH could be rapidly oxidized into carbonic acid by KMnO4, and the excess
KMnO4 quantitatively oxidizes potassium iodide (KI) into iodine (I2). The concentration of
HCOOH could be obtained by titrating the generated I2 with sodium thiosulfate (Na2S2O3).
The analysis of trace amounts of HCOOH is currently performed using expensive instru-
ments, such as HPLC [20]. The detection limits can usually be reached between 0.1 mg/mL
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and 1.0 mg/mL. Even so, when HCOOH is detected using HPLC, specialized organic acid
analysis columns (such as Aminex HPX-87H Ion Exclusion Column) are necessary due to
the severely high polarity. Thus, there is an urgent need to develop more sensitive and
convenient HCOOH detection methods.

In various catalytic hydrogenation processes, HCOOH/HCOONa is often used as an
important hydrogen source, which has many advantages, such as low cost, nontoxicity,
stability, and good water solubility [21,22]. In particular, some metal iridium complexes
have shown excellent catalytic hydrogenation performance for various important oxidation
molecules (such as quinone derivatives and nicotinamide adenine dinucleotide) in the
presence of HCOOH [23]. In previous work, we have successfully developed an ultra-
highly active [NˆN¯] iridium complex [Cp*Ir(pba)Cl] (Cp* = pentamethylcyclopentadiene,
pba = 4-(picolinamido)benzoic acid), which exhibits the highest hydrogenation activity
for NAD+ in the physiological condition (turnover frequency (TOF) is 7825 h−1 at 37 ◦C)
when HCOONa is used as a hydrogen source [24]. Based on the excellent hydrogen donor
capacity of HCOOH and the development of highly active Ir-complex catalysis, we aimed
to build a sensitive and convenient HCOOH fluorescence sensor based on highly active
Ir-complexes’ catalytic transfer hydrogen reactions.

Here, a novel HCOOH fluorescence sensor was developed based on highly active cat-
alytic hydrogenation reactions, which consists of highly active and stable phenyl pyrazole
Ir-complex catalysis and a sensitive quinone hydrogenation fluorescence turn-on probe.
For a complete catalytic hydrogenation system, the hydrogen sources (such as HCOOH and
H2) are also essential, besides the catalysts and substrates. As shown in Scheme 1, in the
absence of HCOOH, the substrates of the quinone fluorescence probe cannot be reduced by
an Ir complex and hardly any fluorescence signals are detected due to the intramolecular
charge transfer (ICT) effect. However, in the presence of HCOOH, the quinone in the
probe molecules could be quickly reduced to hydroquinone and removed from the probe
structure. Thus, the hydroxyl group of coumarin fluorochrome is free again, which will
produce a strong fluorescence signal. The optimal hydrogenation fluorescence response
system was obtained by studying the interaction between the catalysts and the probes.
A super-active catalyst could easily lead to fluorescence decrease in fluorochrome due to
the over-reduction effect. However, a less active catalyst may struggle to fully reduce the
quinone of the probe molecules to hydroquinone, and the obtained fluorescence signals
were also very weak. Furthermore, the optimal hydrogenation fluorescence response sys-
tem demonstrated excellent sensitivity and selectivity for HCOOH and formates (HCOONa
and HCOOEt3N). Compared to NMR analytical methods, the proposed sensor exhibits
good detection accuracy and higher sensitivity, which could be used as a potential sensitive
detection method for trace HCOOH analysis and could provide a new design path for
more sensors.

Scheme 1. Schematic illustration of the Ir-complex catalytic fluorescence turn-on system for HCOO−

detection.
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2. Results
2.1. Detection Principle of the Ir-Complex Catalytic Fluorescence Sensor for HCOO−

As an important hydrogen source, HCOOH has been widely applied in various hy-
drogenation catalytic reactions. In previous work, we have systematically studied the
fluorescence response performance of several main iridium complexes for redox-type fluo-
rescence probes in the presence of HCOONa. The previous studies’ results demonstrated
that CˆN-type phenyl pyrazole Ir complex PP-Ir-Cl could best catalyze the fluorescence
probe P-coumarin to convert it into coumarin dye, which leads to a higher fluorescence
signal and a better formic acid detection performance. Therefore, in order to establish the
optimal HCOOH-sensor-based catalytic hydrogenation reaction, PP-Ir-Cl and P-coumarin
were selected as the hydrogenation catalyst and the fluorescence probe, respectively.

2.2. Optimization of Experimental Parameters

In order to obtain the optimal conditions, we investigated the effects of various
experimental parameters, including the pH of the reaction solution, the reaction solvents,
temperature, the amount of the catalyst PP-Ir-Cl, and the reaction time, on the fluorescence
response performance of the HCOOH sensor. As shown in Figure 1A, the fluorescence
intensity of the probe increases with an increase in pH from 2.0 to 8.0, regardless of whether
HCOONa is present or not, which could be attributed to the coefficient of the unstable
fluorescence probe P-coumarin at a higher pH condition and the self-fluorescence pH
response performance of the probe substrate 7-hydroxycoumarin. In order to obtain an
optimal detection performance, the signal-to-noise ratios (SNR) of different pH conditions
were compared. The optimal SNR was found to be 34 at pH = 4.0, which means 4.0 was the
optimal pH for the probe P-coumarin. Furthermore, the effects of different organic solvents
on the fluorescence response of the HCOOH sensor were studied under the optimal pH
condition (Figure 1B). The results showed that protic solvents, such as methanol and ethanol,
could ensure both a high fluorescence signal with HCOONa and a low background noise
without HCOONa. Therefore, 10 v/v% of methanol was used in subsequent experiments
to obtain a high fluorescence signal and a stable SNR. In a catalytic hydrogenation reaction,
the temperature usually has a significant influence on the reaction efficiency. Thus, the
reaction temperature of the HCOOH sensor was also investigated in the range from 20
to 80 ◦C under a pH = 4.0 condition and in the presence of 1 mM of HCOONa and
10 v/v% of methanol (Figure 1C). We found that the fluorescence intensity of the sensor
increased with an increase in temperature when it was below 60 ◦C due to the influence of
reaction thermodynamics, and slightly decreased at 80 ◦C, which might be attributed to
the over-reduction of the catalyst PP-Ir-Cl for the probe substrate 7-hydroxycoumarin. A
temperature of 60 ◦C was demonstrated to possess the highest fluorescence signal and, thus,
could be used as the optimal reaction temperature in subsequent experiments. In order to
obtain a better detection performance, the effects of three different amounts of the catalyst
PP-Ir-Cl (1.0 µM, 5.0 µM, and 10.0 µM) on the fluorescence signals of the sensor were also
investigated in an HAc-NaAc buffer (0.2 M, pH = 4.0) containing 1.0 mM of HCOONa,
100 µM of P-coumarin, and 10 v/v% of methanol at 60 ◦C for 30 min (Figure 1D). The best
fluorescence signal and SNR (34) were obtained at 5.0 µM of the catalyst amount, which
could be attributed to the appropriate reduction degree of the 5.0 µM of PP-Ir-Cl for the P-
coumarin. Under the abovementioned optimal conditions, we further studied the variation
in the fluorescence intensity of the sensor with reaction time in the presence of 1.0 mM of
HCOONa (Figure 1E). The fluorescence intensity of the sensor increased with an increase
in reaction time from 0 to 30 min and reached the highest value at 30 min. Finally, in order
to evaluate the fluorescence stability of the hydrogenation product 7-hydroxycoumarin
under the optimal reaction conditions, three different concentrations of 7-hydroxycoumarin
(20 µM, 50 µM, and 100 µM) in an HAc-NaAc buffer (0.2 M, pH = 4.0) containing 1.0 mM
of HCOONa, 10 v/v% of methanol, and three different concentrations of PP-Ir-Cl (0 µM,
1.0 µM, and 10 µM) were incubated at 60 ◦C for 30 min, and then, the fluorescence intensity
was tested. As shown in Figure 1F, the fluorescence intensity of the dye 7-hydroxycoumarin



Molecules 2022, 27, 7431 4 of 9

is almost unaffected by the catalyst and the reaction environment, which shows the extreme
stability of 7-hydroxycoumarin in the proposed sensor environment.

Figure 1. The effects of pH (A), organic solvent (B), reaction temperature (C), catalyst amount (D),
and reaction time (E) on the Ir-complex catalytic fluorescence sensor. (F) The fluorescence stability
test of the dye 7-hydroxycoumain, which is the hydrogenation product of the probe. Conditions:
0.1 M phosphate buffer solution containing 10 v/v% of MeOH (A,C,D–F), 10 µM of Ir complex (A–C),
pH = 4.0 (B–F), reaction time of 60 min (A–D,F), and reaction temperature of 60 ◦C (A,B,D–F).

2.3. Ir-Complex Catalytic Fluorescence Sensor for the Detection of HCOOH and Formates
(HCOONa and HCOOEt3N)

Under the optimal experimental conditions, the analytical performance of the devel-
oped Ir-complex catalytic fluorescence sensor was first investigated by detecting various
concentrations of HCOOH. As shown in Figure 2A, the fluorescence intensity increases
with an increase in HCOOH concentration in the range from 3.9 µM to 2.0 mM, indicating
that more HCOOH could provide more protons and could catalyze the probe to produce
more fluorescence substance 7-hydroxycoumain. The recovery values of the fluorescence
intensity are in a linear relationship with the logarithm of the HCOOH concentration in
the range from 7.8 µM to 0.5 mM, and the limit of detection (LOD) was calculated to be
1.1 µM (50.6 ppb) according to the 3σ/s. Figure 2B demonstrates that the linear equation is
I = 410.6logCHCOOH − 136.53 with a linear correlation coefficient of 0.9871, where I is the
recovery intensity value of fluorescence. Compared to other proposed methods of HCOOH
detection, the HCOOH fluorescence sensor exhibits a lower LOD and a satisfactory linear
range (Table 1).

Table 1. Comparison of several different methods for HCOOH detection.

Methods Linear Range (ppm) Detection Limit
(ppm) Ref.

GC-MS 2.3–230 0.92 [25]
CE 0.23–9.2 0.10 [26]

Resistance 10–100 10.00 [27]
HPLC 100–2000 5.00 [28]

Fluorescence 0.078–5.000 0.05 This work
GC-MS is gas chromatography–mass spectrometry; CE is capillary electrophoresis; and HPLC is high-performance
liquid chromatography.
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Figure 2. (A) Fluorescence spectra of the Ir-complex catalytic fluorescence sensor in a series of
concentrations of HCOOH (from a to h: 3.9, 7.8, 15.6, 62.5, 125.0, 500, 1000, and 2000 µM, respectively).
(B) Calibration curves of the fluorescence intensity versus the concentration of HCOOH; The inset
indicates that the curve is linear in the range from 7.8 to 500 µM, I = 410.6logCHCOOH − 136.53,
R2 = 0.9871.

Moreover, the Ir-complex catalytic fluorescence sensor was used to detect two im-
portant formates: HCOONa and HCOOEt3N. As shown in Figure 3A, the fluorescence
intensity increases with an increase in HCOONa concentration in the range from 0.1 µM to
1.0 mM, which indicates that more HCOONa could help catalyze the probe to produce more
of the fluorescence substance 7-hydroxycoumain. The recovery values of the fluorescence
intensity are in a linear relationship with the logarithm of the HCOONa concentration in
the range from 0.1 µM to 50 µM, and the limit of detection (LOD) was calculated to be
1.0 µM (68 ppb) according to the 3σ/s. Figure 3B demonstrates that the linear equation
is I = 667.1logCHCOONa − 1392.5 with a linear correlation coefficient of 0.9980, where I
is the recovery intensity value of fluorescence. Figure 3C shows that the fluorescence
intensity increases with an increase in HCOOEt3N concentration in the range from 0.5 µM
to 1.25 mM, which indicates that more HCOOEt3N could also help catalyze the probe
to produce more fluorescence substance 7-hydroxycoumain. The recovery values of the
fluorescence intensity are in a linear relationship with the logarithm of the HCOOEt3N
concentration in the range from 10 µM to 500 µM, and the limit of detection (LOD) was
calculated to be 1.0 µM (146 ppb) according to the 3σ/s. Figure 3D demonstrates that the
linear equation is I = 1950.5logCHCOOEt3N − 1449.2 with a linear correlation coefficient of
0.9902, where I is the recovery intensity value of fluorescence.

Figure 3. (A) Fluorescence spectra of the Ir-complex catalytic fluorescence sensor in a series of con-
centrations of HCOONa (from a to h: 0.1, 0.5, 1.0, 10.0, 50.0, 100.0, 500.0, and 1000.0 µM, respectively).
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(B) Calibration curves of the fluorescence intensity versus the concentration of HCOONa; The in-
set indicates that the curve is linear in the range from 0.1 to 50 µM, I = 667.1logCHCOONa − 1392.5,
R2 = 0.9980. (C) Fluorescence spectra of the Ir-complex catalytic fluorescence sensor in a series of
concentrations of HCOOEt3N (from a to j: 0.5, 1.0, 10.0, 25.0, 50.0, 100.0, 250.0, 500.0, 1000.0, and
1250.0 µM, respectively). (D) Calibration curves of the fluorescence intensity versus the concen-
tration of HCOOEt3N; The inset indicates that the curve is linear in the range from 10 to 500 µM,
I = 1950.5logCHCOOEt3N − 1449.2, R2 = 0.9902.

2.4. The Selectivity and Repeatability of the Ir-Complex Catalytic Fluorescence Sensor

As an important organic acid, the detection of HCOOH is easily disturbed by other
organic acids, especially ethanoic acid and propanoic acid, due to similar physical and
chemical properties. Thus, the specificity of the HCOOH sensor was also evaluated using
various interfering substances (5.0 mM), instead of HCOOH or formate (1.0 mM), under
the same experimental conditions. Various inorganic and organic salts, and organic acids,
including methanol MeOH, ethanol EtOH, tert-Butanol, NADH, oxalic acid, sodium sulfate,
2-bromopropionic acid, 4-bromobutyric acid, mandelic acid, NH2(CH2)5COOH, glucose,
KCl, acetic acid HAc, NaAc, NaH2PO4, Na2HPO4, sodium citrate, and NaCl, were used as
the interfering agents because they are common in the environment. As shown in Figure 4A,
compared to HCOOH and formate, the fluorescence intensity of the interfering agents is
negligible except for NADH and sodium citrate. The stronger fluorescence intensity from
NADH and sodium citrate might be attributed to their stronger reducibility. These results
indicate that the developed HCOOH sensor has a strong anti-interference ability and can
accurately detect HCOOH in complex samples. For a sensitive sensor, its repeatability is
also very important. In order to investigate the repeatability of the sensor, we carried out
five repeated experiments under the same experimental conditions. As shown in Figure 4B,
the fluorescence signals of the five repeated experiments are almost consistent, which
demonstrate that the established HCOOH sensor is stable.
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Figure 4. (A) The interference of various organic acids and ions on the developed HCOOH fluores-
cence sensor. The concentrations of the HCOOH and HCOONa are 1.0 mM, and the concentrations
of the other interfering substances are 5.0 mM. (B) Reproducibility of sensor response to HCOOH
fluorescence. Experimental conditions: 1.0 mM HCOOH, 0.1 M PBS solution containing 10 v/v% of
MeOH, pH = 4.0, 5.0 µM of Ir complex, reaction time of 30 min, and reaction temperature of 60 ◦C.

2.5. Detection of Actual Samples

To investigate the practicability of the developed HCOOH sensor, the sensor was
applied to detect HCOOH in triethylamine solution, which is usually used as the reaction
solution in CO2 chemocatalysis and electrocatalysis systems. Three parallel samples were
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obtained and underwent the standard recovery test. The results are shown in Table 2. The
recovery of HCOOH ranged from 94.77% to 107.73%, and the RSD was from 0.2% to 4.9%,
demonstrating that the fluorescence sensor possesses practicability with promise for future
applications.

Table 2. Recoveries when detecting HCOOH in actual samples (n = 3).

Sample Added (µM) Found (µM) Recovery (%) RDS (%)

1 50 49.96 99.92 0.4
2 100 94.77 94.77 0.2
3 150 149.95 99.97 4.9
4 200 215.45 107.73 2.7
5 300 311.14 103.72 4.0

3. Materials and Methods
3.1. Materials and Apparatus

HCOOH, HCOONa, HCOOEt3N, methanol, ethanol, tert-butanol, nicotinamide ade-
nine dinucleotide disodium salt (NADH), oxalic acid, sodium sulfate, glucose, KCl, acetic
acid HAc, sodium acetate NaAc, NaH2PO4, Na2HPO4, sodium citrate, and NaCl were
purchased from the Shanghai Aladdin Biochemical Technology Co. (Shanghai, China).
2-Bromopropionic acid, 4-bromobutyric acid, mandelic acid, and aminocaproic acid
NH2(CH2)5COOH were acquired from the MACKLIN reagent (Shanghai, China). The
Ir-complex PP-Ir-Cl and the fluorescence probe P-coumarin were synthesized according
to our previous work [23,24]. The UHQ II system (Elga) was used to purify water to a
resistivity of 18 MΩ·cm for the preparation of all solutions. Phosphate buffer solution (PBS)
was prepared using Na2HPO4 and NaH2PO4. HAc-NaAc buffer solution was prepared
using HAc and NaAc. Fluorescence spectra were collected using an F-4700 fluorescence
spectrophotometer (HITACHI, Tokyo, Japan).

3.2. Detection Protocol and Spectrophotometric Analysis

In a typical detection experiment, 990 µL of 0.2 M phosphate buffer with different
pH or an HAc-NaAc buffer containing 10 v/v% of different organic solvents, 100 uM of
the fluorescence probe P-coumarin, and different amounts of the Ir-complex PP-Ir-Cl was
added to different concentrations of HCOOH or formate solution and incubated for 1 h
at 60 ◦C. The fluorescence intensity of each sample was then tested. Finally, a standard
curve line was constructed between various concentrations of HCOOH or formates and
the recovery values of fluorescence intensity. In addition, the fluorescence probe selectivity
was studied under the optimal conditions using various interfering substances instead of
HCOOH or formates.

3.3. Detection of Actual Samples

The fluorescence sensor had excellent specificity for HCOO−. To study the perfor-
mance of the sensor in a CO2 hydrogenation reaction, the sensor was applied to detect
the produced HCOOH in a triethylamine environment. Briefly, 1.0 mL of triethylamine
solution containing various concentrations of HCOOH (50 µM, 100 µM, 150 µM, 200 µM,
and 300 µM) was first removed of free triethylamine using a vacuum distillation, and then
1.0 mL of HAc-NaAc buffer (0.2 M, pH = 4.0) containing 10 v/v% of methanol, 100 uM
of the fluorescence probe P-coumarin, and 5.0 uM of the Ir-complex PP-Ir-Cl was added
and incubated for 1.0 h at 60 ◦C. Finally, the fluorescence spectroscopy of each sample was
tested. Three experiments were performed in parallel, and the RSD was calculated.

4. Conclusions

In conclusion, we have developed a facile and rapid fluorescence sensor for HCOOH
based on highly active Ir-complexes’ catalytic transfer hydrogen fluorescence turn-on reac-
tion and using HCOOH or formates as the hydrogen source. The excellent HCOOH-assisted
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catalytic fluorescence response system was obtained by optimizing various experimental
conditions, including pH, reaction solvents, temperature, catalyst amount, and reaction
time. The proposed HCOOH sensor shows good sensitivity and specificity for the detection
of HCOOH, HCOONa, and HCOOEt3N, with a satisfactory linear range and a low LOD
(50.6 ppb), and it can achieve an accurate determination of HCOOH samples in a CO2
catalytic hydrogenation system. Therefore, the HCOOH sensor could be used as a new
detection method for HCOOH and can provide a new design path for other sensors.
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