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Abstract: Cancer is a leading cause of death worldwide, with an increasing mortality rate over the
past years. The early detection of cancer contributes to early diagnosis and subsequent treatment.
How to detect early cancer has become one of the hot research directions of cancer. Tumor biomarkers,
biochemical parameters for reflecting cancer occurrence and progression have caused much attention
in cancer early detection. Due to high sensitivity, convenience and low cost, biosensors have been
largely developed to detect tumor biomarkers. This review describes the application of various
biosensors in detecting tumor markers. Firstly, several typical tumor makers, such as neuron-specific
enolase (NSE), carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), squamous cell
carcinoma antigen (SCCA), carbohydrate, antigen19-9 (CA19-9) and tumor suppressor p53 (TP53),
which may be helpful for early cancer detection in the clinic, are briefly described. Then, various
biosensors, mainly focusing on electrochemical biosensors, optical biosensors, photoelectrochemical
biosensors, piezoelectric biosensors and aptamer sensors, are discussed. Specifically, the operation
principles of biosensors, nanomaterials used in biosensors and the application of biosensors in tumor
marker detection have been comprehensively reviewed and provided. Lastly, the challenges and
prospects for developing effective biosensors for early cancer diagnosis are discussed.

Keywords: cancer; tumor biomarker; biosensor; detection; nanomaterial

1. Introduction

As a leading life-threatening disease, cancer has a prominent effect on a large scale and
causes cancer-related mortality to increase rapidly. Due to the poor diagnosis and prognosis
at the early stage, the mortality of cancer patients remains at a high level. At present,
many methods are being used to detect early tumors, such as computed tomography
(CT), chest radiograph (CRG), magnetic resonance imaging (MRI) and positron emission
tomography (PET), as well as a biopsy [1]. It should be noted that a biopsy is still the
diagnostic criteria of tumors. In recent years, methods based on biochemistry, immunology
and molecular biology have been developed for the determination of tumor markers
in serum [2]. Immunoassay techniques such as radioimmunoassay and enzyme-linked
immunosorbent assay (ELISA) have become the main methods in the clinical quantitative
detection of tumor markers, but these methods still have disadvantages, such as being
time-consuming, the high cost and the requirement of qualified personnel and sophisticated
instrumentation [2].

It is worth mentioning that serum tumor markers are produced by the reaction of
tumor tissue or host to tumor, which are proteins related to malignant tumors. They can
reflect and evaluate the occurrence and development of tumors and then predict tumor
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progression. Thus, they can be used in the clinical diagnosis of tumor patients and can also
be used to evaluate the clinical efficacy of tumor patients by monitoring the changes of
tumor markers [3]. Therefore, the subtle detection of tumor markers has important clinical
application value.

Due to the high sensitivity, convenience and low cost, biosensors have been largely
developed to detect tumor biomarkers in the past decade. The biosensor is a kind of
signal technology based on the specific combination of biomolecules and target analytes
to read invisible biological reactions [4]. There are many kinds of biosensors, which are
mainly classified as electrochemical, optical, photoelectrochemical biosensors, piezoelectric
biosensors and aptasensors. The biosensor is composed of a recognition element and a
signal converter, which can recognize the detection object group in a specific sample as the
specificity, convert it into a readable signal and output it. The recognition element, also
known as turbine acceptor, is an important part of biosensors. The signal converter includes
potential measuring electrodes, piezoelectric crystals and current sensors. Electrochemical
biosensors detect the generation or consumption of electroactive substances according
to the principle of potential, current or resistance conversion and indirectly reflect the
concentration of the measured object. Optical biosensors use the interaction between
analyte and converter in optical properties such as absorption, luminescence, fluorescence,
reflectance and surface plasmon resonance (SPR) for quantitative or qualitative detection.
Photoelectrochemical sensors are a combination of the advantages of electrochemical and
optical biosensors. The piezoelectric sensor uses the resonance generated by the external
application of alternating the current and used electrical components and other devices
to convert the measured pressure into electricity for related detection actions. In the
previous descriptions of biosensors, most of them used antibodies as recognition elements,
while the use of other novel biomolecules instead of antibodies is a new strategy for
the current biosensor design. Aptamer sensors use single-stranded oligonucleotides that
can bind to proteins or small molecules as recognition elements. These five biosensors
have been largely studied and applied for the detection of tumor biomarkers, which
have presented advantages of rapid, low-cost, high selectivity and sensitivity and easy
operation in complex samples. With the rapid development of nanomaterials, many
ultrasensitive biosensors have been developed for the detection of tumor biomarkers. Thus,
it is necessary to summarize the recent research developments on biosensors used for
tumor biomarkers detection. In this review, we firstly introduce various typical tumor
biomarkers and comprehensively summarize five biosensors, including electrochemical
biosensors, optical biosensors, photoelectrochemical sensors, piezoelectric biosensors and
aptasensors, as shown in Figure 1. Specifically, the working principle, used nanomaterials
and application of these five biosensors are systematically introduced. Finally, to develop
effective biosensors for the early diagnosis of cancer, the recent challenges and further
opportunities are discussed.
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Figure 1. Schematic illustration of the application of electrochemical, optical, photoelectrochemi-
cal, piezoelectric sensors/biosensors and aptasensors for the detection of tumor biomarkers in a
cancer patient.

2. Tumor Biomarkers

Tumor biomarkers and biochemical parameters for reflecting cancer occurrence and
progression have caused much attention in early cancer detection. There are too many kinds
of tumor biomarkers to generalize all of them. Hence, the most effective approach is to select
several representative biomarkers and describe them. As shown in Table 1, different cancers
present various associated tumor markers. In this review, six typical tumor biomarkers,
including NSE, CEA, PSA, SCCA, CA19-9 and TP53, will be introduced circumstantially.

Table 1. Cancers and the relevant tumor markers. Reprinted with permission from [2].

Cancer Relevant Tumor Markers

Neuroendocrine tumors NSE
Gastrointestinal tumors CEA, CA19-9

Prostate cancer PSA, TP53
Cervical cancer SCCA
Breast cancer CA19-9, TP53

Epithelial ovarian tumors CEA
Liver cancer CEA, SCCA

Colorectal and pancreatic cancer CA19-9
Lung cancer CEA, CA19-9, NSE, SCCA

NSE is an acid protease specific to neurons and neuroendocrine cells. It is a specific
marker of neuroendocrine tumors, such as neuroblastoma, medullary thyroid carcinoma
and small cell lung cancer (70% increased).

CEA is a common tumor marker in gastrointestinal tumors [5]. Most (70–90%) pa-
tients with colon adenocarcinoma are highly positive for CEA, and 53% of patients with
gastric cancer are positive for CEA. The concentration of CEA is related to tumor size and
metastasis, especially when there is liver metastasis [6].

PSA exists in many kinds of tissues and body fluids in the human body. The concen-
tration of PSA expression in prostate tissue and semen is the highest, which is one of the
most abundant proteases in semen. In normal prostate tissue, there is a barrier between
the epithelial cells of the duct and the blood. When prostate cancer occurs, the lesion
destroys the border between the blood and the epithelium. Thus, the PSA secreted by the
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cancerous prostate tissue increases significantly, resulting in a large PSA entering the blood
circulation [7].

SCCA plays an important role in the diagnosis, condition analysis, curative effect
judgment and prognosis of a variety of squamous cell carcinoma, including cervical cancer,
lung cancer, liver cancer, a urogenital system tumor and so on. Many studies have shown
that serum SCCA plays a crucial role in the diagnosing, classifying and staging of cervical
cancer [8].

CA19-9 widely exists in normal human digestive system tumor tissues, such as the
stomach, colon, pancreas and gallbladder. CA19-9 also exists in other system tumor tissues,
such as lung cancer, thyroid cancer and breast cancer [9].

TP53 is a gene that regulates the cell cycle by encoding a protein, which has the effect of
inhibiting a tumor. Therefore, tumor cells lacking p53 can tolerate genomic instability and
enhanced carcinogenic signal transduction, which is a sign of malignant transformation [10].
According to the relevant research, p53 has great potential as a biomarker for breast cancer,
prostate cancer and other cancers.

It is worth mentioning that, in the diagnosis of whether a person has cancer or has
recovered from cancer, the content of the associated tumor markers should be quantita-
tively analyzed first and then evaluated by comparing them with their corresponding
thresholds. The thresholds of various tumor markers have been listed in Table 2. In other
words, the accurate and efficient detection of tumor markers is crucial for cancer diagnosis
and prognosis.

Table 2. Several tumor markers and their normal levels.

Tumor Markers Thresholds

NSE 12.5 mg/L
PSA 4 ug/L

SCCA 1.5 ug/L
CEA 3 ug/L

CA19-9 37 U/L

3. Classification of Biosensors
3.1. Electrochemical Biosensors

Electrochemical biosensors have been applied in many fields, such as biomedical
analysis, food manufacturing and environmental monitoring. The cheap and portable
electrodes endow the electrochemical biosensors with the advantage of measuring the
target analyte quickly in a miniaturized portable system. In addition, the concentration of
the target analyte could be determined even in complex samples, which is beneficial to the
medical diagnosis, environmental monitoring and existing condition monitoring [11]. Re-
cently, electrochemical biosensors have been widely used to detect and quantify biomarkers.
The advantages, such as quick response, accurate quantification, universality, multiplexing
and miniaturization, make electrochemical biosensors have a promising future in detecting
tumor markers [12].

3.1.1. Principles of Electrochemical Biosensors

Electrochemical biosensors work by converting biochemical reactions such as an
enzyme–substrate reaction and antigen–antibody interaction into electrical signals (such as
current, voltage, impedance, etc.). In other words, the electrochemical biosensor detects
the generation or consumption of electroactive substances based on the principle of po-
tential, current or resistance conversion, thus indirectly reflecting the concentration of the
measured object. Figure 2 shows the working principle of an electrochemical biosensor.
In the field of electrochemical biosensing, various responses can be produced based on
different electrochemical techniques. The common electrical analysis techniques include
voltammetry, amperometry, potentiometry and electrochemical impedance spectroscopy
(EIS) [13]. Voltammetry and the ampere method can form over the potential by controlling
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the fixed or variable potential of the whole electrochemical cell. After the overpotential
is formed, electron transfer becomes feasible in thermodynamics, and the oxidation or
reduction reaction will take place [11]. The potential biosensor is a kind of equipment
containing a biosensing element, which is connected to the electrochemical sensor, and its
analysis signal is the potential [14]. EIS measures the resistance and capacitance charac-
teristics of the interface after interfering with the system with a small amplitude (about
2–10 mV) sinusoidal AC excitation signal. Change the frequency in a wide range to obtain
the impedance spectrum [15].

It is worth mentioning that the electrode is the key component of an electrochemical
biosensor, which acts as a solid carrier for immobilizing biomolecules (enzymes, nucleic
acids or antibodies) and electron movement. Therefore, the performance of biosensors can
be significantly improved by using appropriate electrode functional materials. According
to the recently published research, the most commonly used functional materials are
metal nanoparticles, carbon-based nanomaterials and their hybrid composites. In the
field of high-sensitivity electrochemical biosensors, metal nanomaterials have always
been very attractive; among which, gold nanoparticles (AuNPs) have high conductivity,
high affinity and compatibility with biomolecules, so AuNPs are the most widely used
metal nanoparticles to construct electrochemical biosensors [16]. In addition, among the
carbon-based nanomaterials, carbon nanotubes have high mechanical strength, thermal
conductivity and electrical conductivity, so they are often used to construct biosensors [17].
Finally, the hybrid composite of the above materials can give full play to its advantages
and optimize the performance of the sensor. Common electrochemical biosensors based on
these functional materials will be described in detail below [18].

Molecules 2022, 27, x FOR PEER REVIEW 5 of 30 
 

 

different electrochemical techniques. The common electrical analysis techniques include 
voltammetry, amperometry, potentiometry and electrochemical impedance spectroscopy 
(EIS) [13]. Voltammetry and the ampere method can form over the potential by controlling 
the fixed or variable potential of the whole electrochemical cell. After the overpotential is 
formed, electron transfer becomes feasible in thermodynamics, and the oxidation or re-
duction reaction will take place [11]. The potential biosensor is a kind of equipment con-
taining a biosensing element, which is connected to the electrochemical sensor, and its 
analysis signal is the potential [14]. EIS measures the resistance and capacitance charac-
teristics of the interface after interfering with the system with a small amplitude (about 2–
10 mV) sinusoidal AC excitation signal. Change the frequency in a wide range to obtain 
the impedance spectrum [15]. 

It is worth mentioning that the electrode is the key component of an electrochemical 
biosensor, which acts as a solid carrier for immobilizing biomolecules (enzymes, nucleic 
acids or antibodies) and electron movement. Therefore, the performance of biosensors can 
be significantly improved by using appropriate electrode functional materials. According 
to the recently published research, the most commonly used functional materials are 
metal nanoparticles, carbon-based nanomaterials and their hybrid composites. In the field 
of high-sensitivity electrochemical biosensors, metal nanomaterials have always been 
very attractive; among which, gold nanoparticles (AuNPs) have high conductivity, high 
affinity and compatibility with biomolecules, so AuNPs are the most widely used metal 
nanoparticles to construct electrochemical biosensors [16]. In addition, among the carbon-
based nanomaterials, carbon nanotubes have high mechanical strength, thermal conduc-
tivity and electrical conductivity, so they are often used to construct biosensors [17]. Fi-
nally, the hybrid composite of the above materials can give full play to its advantages and 
optimize the performance of the sensor. Common electrochemical biosensors based on 
these functional materials will be described in detail below [18]. 

 
Figure 2. Elements and selected components of a typical biosensor. Reprinted with permission from 
[19]. 

  

Figure 2. Elements and selected components of a typical biosensor. Reprinted with permission from [19].

3.1.2. Electrochemical Biosensors Based on Nanomaterials

Metal nanoparticles, such as Au and Ag nanoparticles, have been widely developed
and coated on the electrode surface used in electrochemical biosensors for tumor biomarker
detection. Many methods that have been used to modify the electrode surface of electro-
chemical biosensors with metal nanoparticles. For example, electrodeposition, a process
that uses the electric current to reduce dissolved metal cations to form a coherent metal
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coating on an electrode, was employed to coat gold nanoparticles on the surface of the
electrode. Furthermore, the AuNP-modified electrode was further modified with antibod-
ies to prepare an electrochemical immunosensor. In addition, the AuNP can be deposited
on the electrode by dip coating, drop casting or multilayer deposition. For example, the
preparation of a sensitive immunosensor to prostate-specific antigen (PSA) labeled by
prostate cancer is achieved by fixing anti-prostate-specific antigen on AuNP.

Graphene, carbon nanotubes (CNTs) and diamond-like carbon nanomaterials have
been widely used in the field of electrochemical sensing due to their excellent properties,
such as a large specific surface area, high electrical conductivity and electron mobility at
room temperature. For example, graphene, which has high charge transport and electron
mobility properties due to its unique electronic band structure, is the most common carbon
nanomaterial that could improve the conductivity and stability of the immunosensor. In
particular, a vast surface area (2630 m2/g) of graphene enables it to interact directly with
a wide range of biomolecules. These unique properties of graphene are employed and
integrated into biosensors for tumor biomarker detection.

In addition to graphene, carbon nanotubes (CNTs) are also common platforms for
signal amplification. CNTs have high mechanical strength, electrical conductivity and
thermal conductivity, resulting in their wide use in nanotechnology. According to the re-
search results, the carbon nanotube-modified field effect transistor has become a promising
device for constructing biosensor platforms. For example, Justino and his colleagues made
a C-reactive protein (CRP) sensor using a CNT-modified electrode. The sensor exhibited
high sensitivity and an extensive detection range from CRP molecules after being exposed
to the CRP solution [20].

Recently, mixed composites of metal nanoparticles and carbon nanomaterials are
increasingly causing much attention. For example, a functionalized gold-graphene oxide
nanocomposite electrode for an electrochemical immunosensor was proposed by Sharma
et al. In their study, it was concluded that the functional GO with good electrical properties
was conducive to the better detection of an electrochemical signal for diuron. In addition,
Zahra et al. proposed an electrochemical biosensor by using modified graphene oxide–
gold nanostructures to detect the total and free PSA antigens. The specificity of antibody
recognition and high binding affinity significantly improved the selectivity and sensitivity
of the sensor that is expected to be used as a diagnostic tool for PSA tumor marker detection
and clinical analysis [21].

3.2. Optical Biosensors

Similar to electrochemical biosensors, optical biosensors have the advantages of high
specificity, high sensitivity and low cost and are widely used in many fields, such as the
environment, medicine and biotechnology. There is a great practical significance and
development prospect for optical biosensors.

3.2.1. Principles of Optical Biosensors

Optical biosensors are the most common kind of biosensors. They use the change
of the optical signal (such as fluorescence, color and refractive index change) caused by
the reaction of the test substance and detection reagents as the detection basis. In another
words, it is based on the interaction between optical fields and biometric elements for
the optical detection and conversion of optical signals into electrical signals to detect the
target analyte. Generally, an optical biosensor is composed of three functional modules:
sensing layer, optical signal conversion and amplification processing (Figure 3). Optical
biosensors are often used in food detection, environmental monitoring, medical fields and
biotechnology fields; among which, the most widely used is in the medical field. They can
be used for genetic analysis, genetic testing, protein testing and drug screening. Cancer
has always been an important problem in the field of medicine. Thus, this review will
introduce the detection of common tumor markers such as CEA, NSE, PSA and SCCA by
optical biosensors.
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3.2.2. Surface-Enhanced Raman Scattering (SERS)

Surface-enhanced Raman scattering (SERS), a spectroscopic technique that combines
modern laser spectroscopy with the exciting optical properties of metallic nanostructures,
has been considered as the most promising optical biosensor for biomarker detection in re-
cent years. The basic principle of Raman spectroscopy is a type of vibrational spectroscopy
that relies on the inelastic scattering of laser photons, which reveals information about
the molecular structure of samples. Due to the low sensitivity, the application of Raman
spectroscopy in the biomedical field was hindered [23]. In recent years, surface-enhanced
Raman scattering has been developed and applied as optical biosensors. Surface-enhanced
Raman scattering exhibits a strong Raman signal due to the presence of plasma nanos-
tructures such as a metal colloid; this is caused by both electromagnetic enhancement
and chemical mechanisms [24]. Typically, a Raman spectrometer consists of a laser (light
source), an out-of-sample light path, a monochromator, an amplifier, a detector, and a
controller. In particular, nanoparticles were used to promote surface-enhanced Raman
scattering (SERS), and the Raman intensity showed strong enhancement (typical increase
range was 106–1012 times), which was very suitable for biomedical application [25].

3.3. Photoelectrochemical Biosensors

A photoelectrochemical sensor is a new type of sensor that combines an optical sensor
and electrochemical sensor skillfully. It is one of the hotspots of the current research because
of its simplicity, fast speed, low detection limit and high sensitivity.

Principle of Photoelectrochemical Biosensors

Its working principle is that, in photoelectrochemical detection, light is irradiated on
the surface of the photosensitive material to generate electrons and holes, causing changes
in the electrical signals. The electrical signal is converted into a detection signal that can
be read out, and the quantitative relationship between the analyte and the photocurrent
or photovoltage is carried out by analyzing the signal. Using the optical signal as the
excitation source can be completely separated from the current or voltage as the detection
signal, which greatly reduces the interference of the background signal. The mechanism of
photoelectric generation is a redox reaction in the solution. The photocurrent is divided
into two forms; one is the anode photocurrent, and the other is the cathode photocurrent.
Photoelectric materials can be divided into inorganic semiconductor materials, such as Si,
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TiO2, CdS, etc., and organic photoelectric molecules, such as organic small molecule photo-
electric materials, composite materials, etc. Among them, TiO2-based composite materials
are currently studied more because of their higher photoelectric conversion efficiency. PEC
sensors are usually composed of three parts: light source, optical path and optoelectronic
components. The excitation light sources are divided into physical light sources (ultravi-
olet and visible light), chemiluminescence and electrochemiluminescence. Nevertheless,
short-wavelength ultraviolet light will damage biological materials, so attention should be
paid to the selection.

3.4. Piezoelectric Biosensors

Piezoelectric sensors are widely used in biosensor detection and analysis because of
their diversity of piezoelectric materials and simple affinity interaction.

3.4.1. Principles of Piezoelectric Biosensors

The piezoelectric biosensor is a kind of micromechanical sensor characterized by using
piezoelectric crystal material as an electrode. The working principle of the piezoelectric
sensor is shown in Figure 4. Under the excitation of the AC voltage, mass restraint is formed
on the surface of the piezoelectric crystal, and then, oscillation changes are produced [26].
Typical piezoelectric materials are anisotropic crystals; that is, crystals without symmetrical
centers, such as aluminum phosphate, aluminum nitride, zinc oxide and so on.

The piezoelectric biosensor as an effective analytical tool has been widely used to detect
biomarkers in genetic diseases, owing to its good characteristics of rapidity, high sensitivity
and low interference [26]. In addition, piezoelectric sensors show good properties in the
field of fungal pathogen detection. For example, Fumio Narita et al. found that the sensor
had certain potential in detecting the novel coronavirus [27]. In this paper, piezoelectric
sensors used in tumor marker detection will be comprehensively discussed.
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3.4.2. Quartz Crystal Microbalance (QCM)

Quartz crystal microbalance is one of the piezoelectric sensors. The most basic princi-
ple is to use the piezoelectric effect of quartz crystals. A quartz crystal vibrates when an
alternating voltage is applied to its two electrodes, but this vibration is usually minimal.
However, when the ac voltage is applied at a certain frequency, the vibration effect increases
significantly, which is called piezoelectric resonance. When the oscillation frequency of
the circuit is equal to the resonance frequency of the quartz crystal oscillation plate, the
frequency can be converted into electrical signals to visualize the vibration frequency.

The QCM is mainly composed of a quartz crystal sensor, signal detection and data
processing. In clinical medicine, it is often used in combination with the immunoassay
known as the quartz crystal microbalance immunoassay. Typically, to amplify the signal,
gold nanoparticles are attached to the surface of a quartz crystal, making the results more
sensitive. The quartz crystal microbalance (QCM) immunosensor has the advantages of
high sensitivity, real-time output, no labeling and low cost [28], which can detect proteins
in human plasma, such as tumor markers. It has become a hot spot in clinical research and
is expected to be applied in clinical detection in the future.

3.5. Aptasensors

Aptasensors are based on the folding of induced binding oligonucleotide aptamers
and can be used to detect proteins, small molecules and inorganic ions. Aptamers are
specific sequences of nucleic acids with unique binding sites for their targets [29].

Principles of Aptasensors

As one of the current research hotspots, the aptamer sensor is mainly composed of
three parts: recognition elements, transducing elements and signal transducing elements.
At present, the aptasensors are mainly classified into three categories: electrical, optical
and electrochemical. Among them, the most commonly used method is the electrochemical
method. The aptamer is immobilized on the electrode surface as a biorecognition element
in electrochemical aptasensors, and the potential response generated by the oxidation and
reduction reactions of the electrode surface is evaluated by specific binding to the target,
analyte or current or by evaluating the potential response. According to the type of response
signal, it can be divided into the amperometric method, cyclic voltammetry, electrical
impedance method, etc. [30]. Among them, the electrochemical aptasensors proposed by
Han et al. mainly have four structures, namely the target-induced structure switching
mode, sandwich or sandwich-like mode, target-induced dissociation or displacement and
competitive replacement mode [29]. Aptamer sensors are not limited by cell lines or
animals, can be used for toxic or nonimmunogenic targets, can be repeatedly synthesized
in large quantities, have good purity and have the advantage of high stability. Given
specific aptasensors for a specific target, they can be modified with functional groups such
as fluorophores, nanoparticles or enzymes to enhance their selectivity and sensitivity while
maintaining their affinity. The main applications are disease monitoring, targeted therapy,
drug analysis and other directions.

4. Application of Biosensor in Detection of Tumor Biomarkers
4.1. NSE Detection

Human lung cancer is one of the diseases with high cancer mortality globally, which
can be divided into small cell carcinoma and non-small cell carcinoma. According to the
relevant literature, neuron-specific enolase (NSE) can be used as a tumor marker with
high expression in non-small cell lung cancer. However, the reported immunobiolumines-
cence, mass spectrometry and other methods have high requirements on the experimental
conditions, complexity and time-consuming pretreatment, so they cannot be widely used.
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4.1.1. NSE Detection Based on Electrochemical Biosensors

Kevin Z et al. used gold nanoparticles/reduced graphene oxide composite (AuNP-
RGO) as a functional material to modify the electrode and created an unlabeled signal-
enhanced electrochemical immunosensor for the detection of neuron-specific enolase (NSE),
as shown in Figure 5a. At the same time, they observed that the DPV signal of AP-anti-
igg/AUNP-RGO as the detection probe was significantly increased to 15.41 µA (Figure 5b),
indicating that AP-anti-igg/AUNP-RGO could significantly improve the intensity and
sensitivity of the immunosensor to detect NSE. Under the optimal conditions, the linear
relationship between NSE and DPV was in the range of 0.1–0.2 µg/mL, the correlation
coefficient was 0.989 and the detection limit was 0.05 ng/mL. The results showed that this
neuron-specific enolase immunosensor had a large capacity and high sensitivity and could
be applied in practice.

4.1.2. NSE Detection Based on Optical Biosensors

NSE is an acid protease specific to neurons and neuroendocrine cells. It is a specific
marker for neuroendocrine tumors, such as neuroblastoma and small cell lung cancer,
and can be used for differential diagnosis, disease monitoring, efficacy evaluation and
recurrence prediction. For example, Li et al. synthesized a three-dimensional (3D) hy-
perbranched TiO2 nanorod array and used it for the first time to prepare a dopamine
(DA)-sensitized photoelectrochemical biosensor [31]. In their work, DA was used as a
sensitizer and combined with TiO2 to achieve the effect of signal amplification. This biosen-
sor for the determination of the NSE exhibited an excellent linear relationship range from
0.1 ng/mL to 1000 ng/mL, with a detection limit of 0.05 ng/mL. Zhou et al. developed the
first black phosphorus (BP) fiberoptic biosensor for the ultrasensitive diagnosis of human
NSE cancer biomarkers (Figure 5c) [32]. The method was extremely sensitive, with a LOD
of 1.0 pg/mL, 100 times more sensitive than other substance-based biosensors.

4.1.3. NSE Detection Based on Photoelectrochemical Biosensors

In addition to being highly expressed in SCLC, NSE also has immune activity in neu-
roendocrine tumors and has been used as a very useful serological tumor marker in clinical
practice. Monitoring the activity level of NSE is an important method to evaluate the
progression of the disease, the effect of treatment and predict the recurrence. The method
is earlier and more convenient than an X-ray examination. Antigen–antibody binding is
mainly used in the current photoelectrochemical sensors. Li et al. used dopamine as a
sensitizer to modify a photoelectrochemical immunosensor on hyperbranched TiO2 arrays,
which can detect NSE in serum with good selectivity, stability and reproducibility [31].
The main advantages take advantage of the high selectivity of antibody–antigen-specific
interactions and the signal amplification strategy of dopamine-sensitized PEC sensors.
Dopamine-sensitized titania can shorten the carrier diffusion distance and enhance the
light-harvesting efficiency and charge-collection efficiency, thereby improving the perfor-
mance of the obtained PEC sensor. Second, this PEC immunosensor can detect analytes
(target compounds) based on changes in the photocurrent during the immune response.
The incubation time and temperature of the antigen–antibody interaction have important
effects on the performance of the immunosensor. The experiments showed that both the
incubation temperature and the pH value of PBS have important effects on the performance
of the sensor. Among them, the optimal incubation temperature was 35 ◦C, and the opti-
mal pH = 7.4; at 20–35 ◦C, the photocurrent increased with the increase of the incubation
temperature, which was due to the immune reaction between NSE and anti-NSE. However,
when the temperature exceeds 35 ◦C, the photocurrent response decreases, which can be
explained by the irreversible variability of NSE caused by high temperatures. Additionally,
this sensor has good specificity, stability and repeatability. When the sensor is used for
the detection of NSE, it has a good linear relationship in the range of 0.1–1000 ng/mL,
and the detection limit is 0.05 ng/mL. Comparatively, Zhang et al.’s photoelectrochemical
immunosensor based on a Z-scheme WO3/NiCo2O4 nanoarray p-n heterojunction utilizes
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the LSPR effect of Au to convert thermions into a photocurrent to achieve signal amplifica-
tion [33]. As a representative spinel-type binary metal oxide, NiCo2O4 has good electrical
conductivity, and WO3/NiCo2O4 with a large specific surface area provides a large num-
ber of active centers for the loading of polydopamine (PDA) films. The good electrical
conductivity and good biocompatibility of PDA films also provide a good foundation for
the design of PEC immunosensors. Similarly, in the range of 0.1 pg/mL–50 ng/mL, the
logarithmic value of the NSE concentration has a linear relationship with the photocurrent
intensity, and the detection limit was 0.07 pg/mL. Moreover, it has good stability, repeata-
bility and selectivity. Other tumor markers in serum, such as SCCA, CEA, etc., will not
affect the experimental results, indicating their specificity and selectivity.

4.1.4. NSE Detection Based on Piezoelectric Biosensors

NSE, a cell-specific isoenzyme of the glycolytic enzyme enolase, is a crucial protein
in the human brain [34] The increase of NSE is shown in patients who experience brain
damage. To better detect the content of NSE, Elisabeth et al. utilized the quartz crystal mi-
crobalance (QCM) biosensor A100 to do research on the epitope characterization of NSE [35].
Accordingly, carboxyl-coated chip surfaces were firstly covalently fixed by polyclonal rabbit
anti-mouse immunoglobulin antibodies. Then, a mixture of monoclonal antibodies of IgG1,
IgG2a, IgG2b, IgG3 and other isoforms unrelated in mice was added to saturate the cap-
tured surface. Statistically, a positive result meant a frequency shift over 10 Hz at antibody
binding. Combined with the data of SPR, QCM, cross-inhibition and immunoassay con-
struction, antibodies could be classified into five epitope groups (A–E). This grouping has a
high degree of consistency among different methodologies.

4.1.5. NSE Detection Based on Aptasensors

NSE plays an important role in the screening, early diagnosis, efficacy evaluation
and prognosis judgment of small cell lung cancer. Zheng et al. used subtractive SELEX
to design DNA aptamers with high affinity and selectivity for NSE [36]. In the secondary
structure prediction of DNA aptamers, the authors found that the stem–loop structure
appeared more frequently in the secondary structure of these aptamers, so three aptamers
were selected to form a stable B-form, stem–loop conformation. Compared with antibodies,
aptamers have the advantages of high affinity, small molecular weight, good repeatability
and good stability. In the optimization of the aptasensor, it was found that, when the
concentration of Apt-5 was between 25 and 100 pmol, the luminescence intensity gradually
increased with the increase of the doping amount of Apt-5. In the control experiment, it was
observed that the chemiluminescence intensity of normal serum and non-small cell lung
cancer serum was close to blank, while the luminescence intensity increased significantly
when combined with NSE-positive serum. It can be explained that it has a certain specificity
and high selectivity. When the NSE concentration was in the range of 1–100 ng/mL, there
was a linear relationship between the luminescence intensity and the concentration of the
novel Apt-5 sensor. The detection limit of NSE is 0.1 ng/mL, which is 2.5 times lower than
the 0.25 ng/mL limit of ELISA used in hospitals.

4.2. CEA Detection

CEA is a tumor-associated antigen firstly extracted from colon cancer and embryonic
tissues, which is formed in the cytoplasm and then secreted out of the cell and into the
surrounding body fluid. In the past, CEA has been used as an early tumor marker of colon
cancer and rectal cancer. Increased CEA is also found in the serum of breast cancer, lung
cancer and other malignant tumors.
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4.2.1. CEA Detection Based on Electrochemical Biosensors

In recent years, electrochemical immunosensors have been widely used in biological
monitoring due to their advantages of high sensitivity, fast detection speed, miniaturization
and low cost. In the past, in order to improve the sensitivity and selectivity of biosensors,
many methods have been used to amplify the signal of the immunosensor; among which,
the most popular method is to use functional materials with excellent catalytic perfor-
mance. For example, Tian et al. designed a novel ultrasensitive sandwich electrochemical
immunosensor for the quantitative detection of CEA, as shown in Figure 6a [39]. CEA is
known to be a standard tumor marker for gastrointestinal tumors. The electrochemical
sandwich immunosensor has good stability, accuracy and selectivity for the detection of
CEA. In addition, the detection limit of the immunosensor was merely shallow, 0.27 pg/mL,
which was conducive to the early diagnosis and follow-up treatment of patients with colon
cancer and gastric cancer.

4.2.2. CEA Detection Based on Optical Biosensors

To provide a signal amplification strategy, Wang et al. used antibody–quantum dot (QD)
conjugates to detect CEA in a sensitive and quantitative way (Figure 6b). After AuNP@Ab1
conjugates captured the target and Ab2@QD conjugates, the signal changes of the SPR
biosensor increased due to the mass enhancement of the quantum dots [40]. In addition,
Liu et al. coupled single-domain anti-CEA antibodies (sdAbs) to the surface of the sensor
to improve the biosensing activity of SPR biosensors [41]. To further improve biosensors,
Al-Enezi et al. developed a novel technique using Affimer-based Eu3+ complexes as
nanobiosensors for the optical biosensing of CEA. This method has high sensitivity, with a
detection limit below 100 fM, especially in clinical trials as a targeting strategy [42].

Li, Shi, Sun, Li and Liu (2016) developed a biosensor based on the fluorescence energy
transfer (FRET) between upconverting nanoparticles (UCPs) and palladium nanoparticles
(PdNPs) for the detection of CEA. The coordination interaction between the CEA aptamer
and PdNPs brought UCPs and PdNPs in close proximity, causing fluorescence quenching.
However, when the CEA was introduced, the binding of CEA to the aptamer weakened
the above-mentioned coordination, so that the recovery of fluorescence could be detected
to quantify the concentration of CEA [43].

Similarly, Yu, Zha, Tang, Qiu and Liu (2022) synthesized polydopamine-coated upcon-
version nanoparticles (UCNPs@PDA) and CEA aptamer-functionalized AuNPs (AuNP–
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CEA aptamer) to form a new modification-free fluorescent biosensor. The interaction
between the AuNP–CEA aptamer and UCNPs@PDA resulted in the process of fluorescence
resonance energy transfer from the latter to the former. The strong affinity of CEA with
its aptamer led to the separation of the AuNP–CEA aptamer and UCNPs@PDA, so the
recovery of the fluorescence could indicate the change in CEA concentration. This biosensor
provided a linear range from 0.1 to 100 ng/mL with a detection limit of 0.031 ng/mL in
aqueous solution and 0.055 ng/mL in human serum [44].

4.2.3. CEA Detection Based on Photoelectrochemical Biosensors

Wang et al. (2016) developed a label-free photoelectrochemical immunosensor for the
detection of CEA. They prepared two-dimensional TiO2 nanosheets were modified with
carboxylated graphitic carbon nitride (g-C3N4), which had a strong photocurrent. Then,
the antibody of CEA was bound to the nanosheets, and the specific binding of CEA and its
antibody resulted in a decrease in the photocurrent [45].

Nie, Tang, Zhang, Wang and Guo (2018) developed a kind of label-free photoelectro-
chemical immunosensor that had good stability and specificity. They introduced electro-
chemically reduced graphene oxide into poly(5-formylindole) to prepare a nanocomposite
that could generate a high photocurrent and modified the antibody on the surface of the
electrode to reduce the photocurrent through the specific binding of CEA and its antibody.
It had a low detection limit of 0.14 pg/mL [46].

4.2.4. CEA Detection Based on Piezoelectric Biosensors

CEA is a kind of tumor marker associated with several specific cancers or carcinomas.
Its normal concentration in a healthy adult is less than 5 ng/mL [47]. The changes in
CEA can be used to measure the treatment of various cancers. Therefore, it is necessary to
establish an effective method to detect CEA at low concentrations in the clinical diagnosis.
Accordingly, Zhang et al. designed a novel multiarray immunoassay device based on a
plug-in model of piezoelectric (Pz) immunosensor to detect the quantity of CEA [48]. The
device utilized a 2 × 5 model Pz multiarray immunoanalyzer assembled with a plug-in Pz
sensor, which can simultaneously detect multiple tumor markers. As a result, the speed of
detection was eight times faster than a single immunosensor, and the detection limitation of
CEA ranged from 1.5 µg/mL to 30 µg/mL. On the one hand, the advantages of Pz devices
are their portability, simplicity, low costs and suitability in the real-time monitoring of bio-
specific interactions with high sensitivity and specificity. On the other hand, disadvantages
such as the difficulty in liquid-phase oscillation and stability limit its application.

4.2.5. CEA Detection Based on Aptasensors

Recently, various aptasensor bioanalytical methods for CEA have been reported,
such as the fluorescence and electrochemical methods. Bai et al. designed an aptasensor
platform based on a hybridization chain reaction (HCR) and G-quadruplex DNAzyme
for the fluorescence detection of CEA. This method needs the labeling or modification
of the oligonucleotide, which combines the specific recognition property of the aptamer
with the quadratic signal amplification strategy of the HCR and G-quadruplex DNAzyme.
In addition, the fluorescent aptasensor shows a detection limit of 0.5 nM and a linear
relationship ranging from 0.25 to 1.5 nM toward the CEA. Without being affected by
interfering proteins such as IgG, AFP and PSA, this aptasensor has a high selectivity to
CEA and is successfully applied to the CEA analysis in diluted human serum samples [49].

Zhai et al. reported a DNAzyme-catalyzed label-free aptasensor based on a multifunc-
tional dendrimer-like DNA nanoassembly. Through an amplified and label-free differential
pulse voltammetry (DPV) electrochemical signal, the peak current of this aptasensor corre-
lated linearly with the CEA concentration, with a linear range of 2–45 ng/mL and a LOD
value of 0.24 ng/mL. The aptasensor also showed high specificity and reproducibility [50].
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4.3. PSA Detection

PSA is a 32-kDa single-chain glycoprotein belonging to the serine protease family
with tissue specificity and chymotrypsin-like effects. It can be synthesized in normal and
cancer-like epithelial cells. Typically, the PSA levels in the blood are usually very low, but
most of the men with prostate cancer have high levels. According to the survey, prostate
cancer is the second-most common cancer among men worldwide. In recent years, the
application of prostate-specific antigen detection technology has promoted the improve-
ment of the diagnosis and treatment of prostate cancer. However, previous methods based
on immunological recognition, such as colorimetry and electrochemiluminescence, are
complex in preparation and operation, which are difficult to apply to the grassroots [51].

4.3.1. PSA Detection Based on Electrochemical Biosensors

Accordingly, Meng et al. demonstrated a novel electrochemical biosensor for the
prostate-specific antigen (PSA) sensitivity analysis. The electrochemical method based on
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peptide cleavage and the detailed sensing principle is shown in Figure 7a. The detection and
analysis performance, selection performance and clinical analysis of the sensor achieved
satisfactory results. In this study, the disadvantages of the complex production of the
traditional methods were improved, and the PSA analysis method was supplemented,
providing a good attempt for the detection of PSA [52].

4.3.2. PSA Detection Based on Optical Biosensors

In order to obtain higher PEC (photoelectrochemical) efficiency, Zhang et al. developed
a new type of label-free photoelectrochemical immunosensor based on SnS2@mpg-C3N4 to
detect PSA [53]. The linear detection range of the photoelectrochemical immunosensor was
50 fg/mL–10 ng/mL, and the detection limit was 21 fg/mL with high sensitivity. Kong et al.
developed a labeling-free fluorescent sensor based on the AIE-silica nanosphere (SiO2 NP)
for PSA detection [54], which illustrated high sensitivity and selectivity for PSA with a
detection limit of 0.5 ng/mL. In addition, Duan et al. designed a nanoparticle (denoted
as MoS2QDs@g-C3N4@CS-AuNPs) to construct an SPR sensor based on surface plasmon
resonance (Figure 7b). Aptasensor based on MoS2QDs@g-C3N4@CS-AuNPs presented a
strong bio-binding affinity for PSA, with a rapid response, highly sensitive detection limit
of 0.72 ng/mL and wide detection range of 1.0–250 ng/mL PSA concentration [55].

Pei et al. (2015) developed a fluorescent turn-on nanoprobe to detect PSA based on
graphene oxide quantum dots@silver (GQDs@Ag) core–shell nanocrystals. One probe
was assembled by quantities of GQDs so that the fluorescent signal could be significantly
enhanced. Using magnetic beads (MBs) immobilized with anti-PSA antibody as a separable
capture probe and GQDs@Ag as a detection probe, PSA was detected by the sandwich
method. The biosensor showed a detection limit of 0.3 pg/mL and the linear range from
1 pg/mL to 20 ng/mL [56].

Yang et al. (2018) developed a fluorescent biosensor based on peptide/Fe3O4@SiO2-
Au nanocomposites (MNCPs). 5-FAM-tagged peptides were self-organized on the surface
of MCNPs to help quench the fluorescence. After PSA antigen specifically recognized and
cleaved the peptides, the fluorescence was then recovered. The biosensor had a wide range
of concentrations of PSA, from 1 × 10−12 g/mL to 1 × 10−9 g/mL, with a detection limit of
3 × 10−13 g/mL [57].

4.3.3. PSA Detection Based on Photoelectrochemical Biosensors

Zhu et al. designed a sensitive novel label-free photoelectrochemical immunosen-
sor, which used an Ag2S-sensitized Ag/AgBr/BiOBr heterojunction to improve the pho-
tocurrent response and sensitivity. The limit of detection of the photoelectrochemical
immunosensor for PSA was 0.25 pg/mL, and the linear range was from 0.001 to 50 ng/mL.
The photocurrent of this immunosensor reduced linearly with the logarithm of the PSA con-
centration, with the advantages of a wide linear range, good stability, high reproducibility,
low cost and good selectivity [58].

Zhao et al. developed a peptide-based photoelectrochemical (PEC) biosensor that
was constructed based on the CdTe/TiO2-sensitized structure as the electrode and CuS
nanocrystals as a signal amplifier. The PEC biosensor was constructed based on the
reaction that the prostate-specific antigen (PSA) was capable of cleaving a specific amino
acid sequence, so that it revealed good specificity, stability and reproducibility, with a linear
range from 0.005 to 20 ng/mL and a LOD value of 0.0015 ng/mL. This biosensor shows
the potential applications of the photoelectrochemical biosensor in bioanalysis, disease
diagnostics and clinical biomedicine [59].

4.3.4. PSA Detection Based on Piezoelectric Biosensors

QCM is a highly sensitive sensor device that can measure the mass loading effect
by using the resonant frequency that varies with the mass of a given sensing surface [60].
Jiwon Kwak et al. showed that gold nanoparticles were used for signal amplification
and designed highly sensitive piezoelectric immunosensors. The QCM sensing system
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used in the above research included a detection module and a fluid module to obtain the
real-time response of the sensor during the immunoanalysis process. The experimental
results showed that the QCM-based sensor with gold holding enhancement on the surface
could improve the sensitivity of immune detection. The limit of detection (LOD) of the PSA
immunoassay in gold-enhanced human serum was 48 pg/mL, and in the absence of signal
amplification, the detection limit was 687 pg/mL. In addition, Jiwon Kwak et al. showed in
another study that, when using a quartz crystal microbalance (QCM) biosensor to measure
the PSA concentration in human plasma, the sensitivity and reproducibility were improved
by a factor of two and three, respectively (Figure 7c,d) [61]. This is because human plasma
contains a large amount of fibrin, which can affect the experimental results. The role of the
sulfate protein is to combine fibrin to form precipitation, which can be easily removed, thus
improving the detection sensitivity. In the above study, the limit of detection (LOD) of PSA
in human plasma was 112 pg/mL, which was lower than the clinical threshold.

4.3.5. PSA Detection Based on Aptasensors

Tang et al. developed a visible and near-infrared light dual responsive photoelectro-
chemical aptasensor based on MoS2 nanoflowers and gold nanobipyramids, the method
calibration to determine the PSA through the “signal-off” and “signal-on“ models. The
limit of detection for PSA in the “signal-off” or “signal-on” mode is calculated to be
1.75 pg/mL and 0.39 pg/mL, respectively. The dual-responsive photoelectrochemical
aptasensor showed a linear response to the logarithm of the PSA concentration in the
range of 0.005–100 ng/mL under the optimized conditions, which was also employed for
determining the PSA in clinical serum samples with satisfactory selectivity and excellent
accuracy [62].

Wan et al. designed a new sandwich electrochemical aptasensor with a signal amplifi-
cation strategy by coupling tyrosinase (Tyr)-triggered redox cycling with nanoscale porous
carbon (NCZIF) to improve the efficiency of the aptasensors. The LOD value of the pro-
posed electrochemical aptasensor for PSA was 0.01 ng/mL, and the linear range was from
0.01 to 50 ng/mL. The method demonstrates simple, rapid, reliable, great performances
and has potential value in practical applications [63].
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4.4. SCCA Detection
4.4.1. SCCA Detection Based on Electrochemical Biosensors

The squamous cell carcinoma antigen (SCCA) has been considered as an effective tu-
mor marker in the diagnosis of cervical cancer, especially in the evaluation of the occurrence
and development of cancer, treatment effect and monitoring prognosis recurrence. Differ-
ent from the traditional fluorescence immunoassay and chemiluminescence immunoassay,
Liu et al. designed a novel ultrasensitive sandwich electrochemical immunosensor for
the quantitative detection of SCCA in consideration of high biological specificity. After
optimization, under the optimal conditions of PBS pH = 7.0, CD-GN 1.0 mg/mL and
Pt/PdCu-3DGF 1.5 mg/mL, the immunosensor had good reproducibility and stability,
relatively comprehensive linear range and lower detection limit. This sensor provides a
new possibility for SCCA detection and has broad application prospects [64].

However, in practice, the concentration of SCCA in the serum of healthy adults is less
than 1.5 ng/mL, which is a great challenge for the selection and accurate determination
of SCCA. In order to overcome the disadvantages of the complex operation and high
cost of the previous detection methods, Qiu et al. made a PEC immunosensor platform
based on Au-NPs@Zn-MOF nanocomposite materials (Figure 8a). Compared with the
previously reported PEC immunosensor, this experiment confirmed that the Au-NPs@Zn-
MOF-based PEC immunosensor had the characteristics of high selectivity, high sensitivity
and high stability for SCCA detection. However, the preparation of gold nanocomposites
is still complex, time-consuming and labor-intensive. Hence, the immunosensor still
had significant challenges and room for improvement in the early detection of tumor
markers [65].

4.4.2. SCCA Detection Based on Optical Biosensors

SCCA is a 48-kDa glycoprotein, which is a subtype of tumor-associated antigen, TA-4.
It is found in the cytoplasm of squamous cell carcinomas of the uterus, cervix, lung and head
and neck. It is the earliest tumor marker used in the diagnosis of squamous cell carcinoma
and can be used as an auxiliary diagnostic index and prognostic monitoring indicator
for a few cancers. For example, Qian et al. developed an LSPR biosensor based on the
triangular silver nanoparticles array with monoclonal anti-SCCA antibodies immobilized
on the chip to directly detect SCCA [66]. Its analytical performance is superior to the
routine CLIA method. In addition, Fan et al. developed a novel label-free immunosensor
platform based on CdS-sensitized Fe-TiO2 nanocomposites for the ultrasensitive detection
of SCCA (Figure 8b). Due to the good PEC response of CdS-enhanced Fe-TiO2, the biosensor
had a wide detection range from 0.001 ng/mL to 75 ng/mL and a low detection limit of
0.22 pg/mL [67]. To create a more efficient photoelectrochemical biosensor, Wei et al.
designed a new photoelectrochemical immunosensor based on Au-NPs@Zn-MOF for
SCCA detection with high sensitivity, high selectivity, stability and repeatability [65].

4.4.3. SCCA Detection Based on Photoelectrochemical Sensors

Fan et al. (2019) developed a visible light photoelectrochemical immunosensor based
on BiOBr/Bi2O3 heterostructures for the ultrasensitive detection of SCCA. By the self-
sacrificial synthesis method, BiOBr interacted with S2 ions to form Bi2S3 on the surface
of BiOBr microspheres, which had excellent visible light photoelectrochemical activity.
Dopamine is self-polymerized to form a polydopamine film on its surface to further consol-
idate photoelectric signal stability and promote antibody binding. The intensity decreased
linearly with the logarithm of the SCCA concentration in the range of 0.001–75 ng/mL with
a detection limit of 0.3 pg/mL [68].
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4.5. CA19-9 Detection

CA19-9 is a tumor marker of pancreatic cancer, gastric cancer, colon cancer and
gallbladder cancer. Although CA19-9 is mainly used for the differential diagnosis and
condition monitoring of pancreatic cancer, its positive rate is also high in colorectal cancer.

4.5.1. CA19-9 Detection Based on Electrochemical Biosensors

The detection of CA19-9 based on electrochemical biosensors has been extensively
studied. For example, Huang et al. used a polysulfide–gold composite (AuNPs@PThi)
as a probe to fabricate a new electrochemical immunosensor (Figure 9a). Under optimal
conditions, the linear range of the electrochemical immunosensor was estimated to be
6.5–520 U/mL, the detection limit was 0.26 U/mL and the signal-to-noise ratio was 3. The
experimental verification of the characterization proves that it is not only beneficial to
signal amplification but also sensitive, stable and reliable to detect CA19-9 [69]. In addition,
Mo et al. designed a novel electrochemical luminescence (ECL) immunosensor based on
spatially resolved biopotential technology, which could also be used to detect CA19-9. The
detection linear range of CA 19-9 was 0.0001–10 U/mL, with a detection limit of 31 µU/mL.
This new sensor presents a lower detection limit and a wider linear range, which provides
a new avenue for the application of the sensor in the clinical field [70].

4.5.2. CA19-9 Detection Based on Optical Biosensors

Based on SERS technology, Zhou et al. developed a sandwich structure composed of
nano-Si immune probes and a SiC@Ag SERS active immune substrate as an ultrasensitive
immunoassay optical biosensor for detecting tumor markers in human serum [71]. Strong
SERS “hot spots” between silver nanoparticles in the structure led to obvious Raman
enhancement. However, due to the purchase of reagents, the maximum limit of the antigen
could not be determined in the case of a high concentration. Hence, the existence of false
negatives needs to be explored. Although this method still has many unsolved problems, it
still has potential application value in the clinical diagnosis.

4.5.3. CA19-9 Detection Based on Photoelectrochemical Sensors

Wang et al. invented a photoelectrochemical sensor, LF-LAPECS. He can sensitively
and quickly detect multiple tumor markers on the electrode, especially CA19-9, and can
be applied to clinical serum samples through experiments. The calibration range of this
invention for CA19-9 is 0.1–1000 U/mL, and the detection limit is 0.01 U/mL, which shows
that it has a wide calibration range and a low detection limit and has a high potential for
clinical detection [72].
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4.5.4. CA19-9 Detection Based on Piezoelectric Biosensors

Compared with the first two biosensors, there is relatively little research on the de-
tection of CA19-9 by piezoelectric sensors. Huang et al. fabricated an improved QCM
immunosensor using poly-L-lysine/hydroxylapatite/carbon nanotube (PLL/HA/CNT)
hybrid particles (Figure 9b), which are able to detect CA19-9 serum in the dynamic con-
centration range of about 12.5–270.0 U/mL. This method is not limited by the shape of the
sensor to a large extent and provides a new idea for the clinical detection of CA19-9 [73].

Molecules 2022, 27, x FOR PEER REVIEW 20 of 30 
 

 

4.5.4. CA19-9 Detection Based on Piezoelectric Biosensors 
Compared with the first two biosensors, there is relatively little research on the de-

tection of CA19-9 by piezoelectric sensors. Huang et al. fabricated an improved QCM im-
munosensor using poly-L-lysine/hydroxylapatite/carbon nanotube (PLL/HA/CNT) hy-
brid particles (Figure 9b), which are able to detect CA19-9 serum in the dynamic concen-
tration range of about 12.5–270.0 U/mL. This method is not limited by the shape of the 
sensor to a large extent and provides a new idea for the clinical detection of CA19-9 [73]. 

 
Figure 9. (a) Schematic diagram of the electrochemical immunosensor. Reprinted with permission 
from [69]. (b) Schematic diagram of a synthetic immunosensor made of PLL/HA/CNT hybrid ma-
terials. Reprinted with permission from [73]. 

4.6. TP53 Detection 
The TP53 tumor suppressor has a strong effect on the growth regulation, genetic sta-

bility and proliferation control of cells. Mutations in the TP53 gene, which occurs in almost 
50% of human tumors, are associated with the accumulation of the mutant protein in the 
nucleus of tumor cells, resulting in increased concentrations in extracellular fluids, such 
as blood, urine and saliva [74]. 

4.6.1. TP53 Detection Based on Electrochemical Biosensors 
Elif et al. developed an electrochemical immunosensor for the sensitive detection of 

TP53 based on an ITO electrode coated with a chitosan/carbon black composite (chitosan–
CB) layer. Compared with traditional sensors, the newly prepared immunosensor demon-
strates good sensitivity, stability and repeatability due to the affinity reaction on the elec-
trode. In addition, this unlabeled immunosensor responds rapidly to TP53 antigen and, 
thus, has long-term stability and high selectivity, and can also be used for the determina-
tion of TP53 in serum samples. In their study, the sensor had a wide linear range of 0.01–
2 pg/mL and a low detection limit of 3 fg/mL. These advantages make it a great advantage 
in the field of clinical detection [75]. 

To further improve the sensitivity, Reza et al. invented a new electrochemical lumi-
nescence (ECL) immunosensor (Figure 10a) to selectively quantify the TP53 protein, 
which utilized the principle of AuNP-enhanced ECL emission from CdS nanocrystals 
(CdS NCS). Under optimal conditions, the linear range of the ECL immunosensor was 
between 20 and 1000 fg/mL, and the calculated detection limit was 4 fg/mL. Although the 
detection limit is slightly higher than the previously introduced sensors, it still has great 
potential for clinical cancer detection due to its high sensitivity [76]. 

Figure 9. (a) Schematic diagram of the electrochemical immunosensor. Reprinted with permission
from [69]. (b) Schematic diagram of a synthetic immunosensor made of PLL/HA/CNT hybrid
materials. Reprinted with permission from [73].

4.6. TP53 Detection

The TP53 tumor suppressor has a strong effect on the growth regulation, genetic
stability and proliferation control of cells. Mutations in the TP53 gene, which occurs in
almost 50% of human tumors, are associated with the accumulation of the mutant protein
in the nucleus of tumor cells, resulting in increased concentrations in extracellular fluids,
such as blood, urine and saliva [74].

4.6.1. TP53 Detection Based on Electrochemical Biosensors

Elif et al. developed an electrochemical immunosensor for the sensitive detection of
TP53 based on an ITO electrode coated with a chitosan/carbon black composite (chitosan–
CB) layer. Compared with traditional sensors, the newly prepared immunosensor demon-
strates good sensitivity, stability and repeatability due to the affinity reaction on the elec-
trode. In addition, this unlabeled immunosensor responds rapidly to TP53 antigen and,
thus, has long-term stability and high selectivity, and can also be used for the determi-
nation of TP53 in serum samples. In their study, the sensor had a wide linear range of
0.01–2 pg/mL and a low detection limit of 3 fg/mL. These advantages make it a great
advantage in the field of clinical detection [75].

To further improve the sensitivity, Reza et al. invented a new electrochemical lumines-
cence (ECL) immunosensor (Figure 10a) to selectively quantify the TP53 protein, which
utilized the principle of AuNP-enhanced ECL emission from CdS nanocrystals (CdS NCS).
Under optimal conditions, the linear range of the ECL immunosensor was between 20 and
1000 fg/mL, and the calculated detection limit was 4 fg/mL. Although the detection limit is
slightly higher than the previously introduced sensors, it still has great potential for clinical
cancer detection due to its high sensitivity [76].
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4.6.2. TP53 Detection Based on Optical Biosensors

P53 is an important tumor marker of colon cancer and plays an important role in
diagnosing colon cancer. SERS can be used to identify TP53 −/− (gene knockout) and TP53
+/+ (wild type). In addition, SERS can identify three different states of the cells (burst, alive
and dead), because there are unique fingerprints in the three different cellular states that
can be used to distinguish them. The experiments were performed on the above cells using
a label-free graphics/gold nanopyramid-based SERS platform and principal component
analysis (PCA), distinguishing between TP53 −/− (gene knockout) and TP53 +/+ (wild
type) and three types of cells (Figure 10b) [77]. However, the technology is still in the
experimental stage, and the clinical samples are insufficient. In addition, how to prevent
the influence of patient substances on the SERS signal is also a key issue. Nevertheless, the
technique has great potential in cancer cell differentiation.

Xu et al. (2018) developed a sensitive fluorescent biosensor based on DNA-functionalized
Fe3O4 nanoparticles. The consensus DNA, which was immobilized on aminated-dextran
modified Fe3O4 NPs, was tagged by Cy-5 to generate fluorescent signals, and the interaction
between DNA and the p53 protein can lead to the decrease of fluorescent emission. This
kind of biosensor had a detection limit of 8 pM, with the linear range from 50 pM to
2 nM [78].

4.6.3. TP53 Detection Based on Photoelectrochemical Biosensors

The P53 gene is the most mutated gene in human cancer [79]. The disadvantage
of the current photoelectrochemical sensor is that it can only realize the analysis of a
single detection object, which is inefficient. While Zheng et al. successfully synthesized
wavelength-selective photoactive materials and constructed a new type of PEC biosensor
for the detection of multiple analytes on a single interface, Zheng’s experiments successfully
used photoactive materials. MPT NPs and TiO2 NPs are the ORVOA 1 gene and p53 gene
as signal indicators, respectively, which can realize the simultaneous detection of the two
genes [80]. Among them, in the preparation of TiO2 NPs/AuNPs/hairpin DNA 2/HT
photoactive bionanoconjugates (probe 2), improvements were made to synthesize TiO2
nanoparticles with spherical flower-like nanostructures, and an enzyme-assisted target
recovery amplification strategy was also introduced to provide efficient signal amplification
by cleaving the signal probe upon binding to the target, thereby releasing and reusing the
target for ultrasensitive monitoring. By hybridizing to DNA captured on the electrode
surface, the cleaved probe can be immobilized on the electrode, resulting in a photocurrent
response for the quantitative determination of the target. The experimental results showed
that the presence of the p53 gene (2.5 fM) caused the excitation light source to respond
to a photocurrent of 106.4 nA at 365 nm, while the photocurrent response to a 590-nm
excitation light source did not change, while the ORVOA 1 gene had the opposite. The
photocurrent of the p53 gene increased linearly with the increase of concentration in the
range of 25 aM~2.5 pM. When the interfering substance is 100 times that of p53, it has no
effect on the photocurrent, which can prove its good selectivity and specificity.

4.6.4. TP53 Detection Based on Piezoelectric Biosensors

The detection of the p53 point mutation (codon 248) in PCR-amplified samples was
investigated by Dany et al. using the same transduction principle as 9.5 MHz quartz
crystals [81]. They successfully immobilized the p53-biotinylated probe on the sensor
surface with 9.5 MHz AT-Cut quartz crystals (14 mm) decorated with gold plating (42.6 mm2

area) on both sides. As a result, the experimental threshold was 0.12 M for all the tested
samples (Figure 10c). Furthermore, the highest signal difference and best discrimination
concentration among the three oligonucleotides was 0.25 M.
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4.7. Other Tumor Biomarkers Detection

ATPase H+ Transporting Accessory Protein 1 (ATP6AP1), which is a component of a
multi-subunit enzyme in Vacuole ATPase (V-ATPase), is highly expressed in breast cancer
tissues [82].

4.7.1. ATP6AP1 Detection Based on Piezoelectric Biosensors

Breast cancer is a common malignant disease among women [83], accounting for 7–10%
of all cancers in China. The cause of breast cancer is unknown. According to the current
studies, the related factors of breast cancer include age of menarche, age of early menopause,
fertility, breastfeeding, drinking, obesity, etc. [84]. Breast cancer cells are mostly derived
from mammary ducts and mammary lobules, which can be divided into noninfiltrating
cancer, invasive special cancer and invasive nonspecial cancer. Currently, the methods of
diagnosing breast cancer include tissue biopsy and mammography. Tissue biopsy is the
“gold standard” for disease diagnosis. Mammography is also widely used in hospitals for
diagnosing breast cancer. However, the major limitation of breast mammography is that
only 70% of breast cancers can be detected. This is because tumors smaller than 7.5 mm
are difficult to be found. Interestingly, Sania et al. [84] found that ATP6AP1 autoantibodies
(AAb) are produced in cancer patients, with the highest concentration in breast cancer
patients. Therefore, it can be used to provide a new idea for the early detection of breast
cancer. ATP6AP1 autoantibodies (AAb) are induced and secreted in the serum of patients
due to changes in the proteoglycan expression or structure. The concentration of the
ATP6AP1 autoantibody could be detected by the quartz crystal microbalance. The strategy
was to overlay the ATP6AP1 autoantibody on the surface of the crystal where the antigen
and antibody bind. The biosensor can convert the vibration frequency into an electrical
signal and be observed directly in the form of a digital signal (Figure 11). However,
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ATP6AP1 autoantibodies (AAb) also have the disadvantages of low sensitivity (30%) and
high specificity (95%) in early detection.
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4.7.2. CA15-3 Detection Based on Electrochemical Biosensor

The tumor marker CA15-3, a serum-based product of the MUC1 gene, is overregulated
in breast cancer and is also overexpressed in many other types of cancer, including lung,
ovarian, pancreatic and colon cancers. Therefore, the detection of CA15-3 is particularly
important [85]. Hong et al. used cyclic voltammetry to monitor changes in the biosensor
current signals to detect CA15-3. Ferrocene carboxylic acid (FC-COOH)-doped silicon
microspheres (SNPs) were modified on the surfaces of gold electrodes and could interact
with CA15-3 antibody-conjugated glutaraldehyde linkage. The linear range of the method
was 2.0~240 U/mL, and the detection limit was 0.64 U/mL. Han et al. also constructed
an electrochemical biosensor using PEDOT and peptides to detect CA15-3. The device
modifies polypeptide-doped PEDOT onto the electrode surface, which can detect CA15-3 in
serum without being affected by biofouling and has high sensitivity and long-term stability.
The linear range is 0.01~1000 U/mL, and the detection limit is 3.34 U/mL [86].

4.7.3. HER2 Detection Based on Photoelectrochemical Sensor

HER2 belongs to the receptor tyrosine kinase family, which plays an important role
in promoting the biological behavior of breast cancer cells, such as division, proliferation
and migration. HER2-positive breast cancer accounts for 20–30% of the molecular types of
breast cancer [87]. The characteristics of HER2-positive breast cancer are a high degree of
malignancy and poor prognosis [88]. The most common tumor biology is HER2-negative
luminal tumors (approximately 70%) [89]. Luo et al. prepared a sensitive photoelectrochem-
ical (PEC) sensor for the detection of human epidermal growth factor receptor 2 (HER2),
using a hexagonal carbon nitride tube (HCNT) as the photoactive material. Magnetic Fe3O4
nanospheres (MNs) modified with anti-HER2 antibodies efficiently capture HER2 in serum
samples. MNs are spherical and relatively uniform in shape. Using the specific binding
of the anti-HER2 antibody to HER2, the anti-HER2 antibody was modified on MNS, and
HER2 was effectively isolated and purified from the serum samples. Signal amplification
was performed with ascorbate oxidase (AAO)-modified Co3O4 nanoparticles (Co3O4 NPs)
and HER2 aptamers. The detection of HER2 is based on the reduction of the photocurrent
intensity. The selectivity and specificity of the sensor were detected using human IgG, CEA,
BACE1, p53 and human IgM, which confirmed its good selectivity and specificity. The
linear range was 1 pg/mL~1 ng/mL, and the detection limit was 0.026 pg/mL [90].



Molecules 2022, 27, 7327 23 of 28

5. Conclusions and Future Perspectives

The progresses and challenges in biosensor construction have facilitated the analysis
of cancer biomarkers. There is no doubt that advances in biosensor technology will help in
the establishment of bedside medical diagnostic devices. This review briefly introduced
some commonly used sensor types for the detection of common tumor markers, such as
electrochemical sensors, optical sensors, piezoelectric sensors, etc. The performance of
these sensors is summarized in Table 3, including the operating linear range and detection
limit of the sensors. Among them, the electrochemical sensors can detect common tumor
markers, such as CEA, NSE, PSA, SCCA and CA19-9. Especially, in the detection of gastric
cancer marker CEA, a variety of electrochemical sensor technologies have emerged com-
bined with a variety of new materials, such as graphene oxide nanomaterials, chelated Eu3+

materials, etc., with a fast analysis speed, good selectivity and high sensitivity. It is helpful
for early diagnosis, improving the treatment effect of patients and improving the quality of
life. In addition, optical biosensors play an important role in the clinical diagnostics, drug
discovery, etc. Generally speaking, optical biosensors have the advantages of high sensitiv-
ity, good stability and high reliability. Compared with ordinary electrochemical biosensors,
they have higher accuracy and more important anti-interference ability. Additionally, in
the experiment using a piezoelectric biosensor to detect PSA, since protamine can bind to
fibrinogen, adding protamine to plasma can improve the detected LOD value.

However, it is still a great challenge to apply biosensors in the early clinical diagnosis
and prognosis monitoring under practical demands. First, biomarkers are highly complex
in organisms, and the detection of biomarkers cannot determine the presence of cancer,
and environmental and genetic factors should also be considered. Second, due to the
crossover of cancer cell genes, it is difficult to identify the type of cancer only by detecting
the biomarkers, which is not helpful for early clinical diagnosis and early treatment. Finally,
taking optical sensors as an example, most of the ones circulating on the market are still
bulky and expensive. Therefore, the performance characteristics of biosensors need to be
further improved, including reusability, stability and compatibility with biological fluids.
Furthermore, they should be more integrated, miniaturized and portable in the future. If
these issues are addressed, biosensors can be used to diagnose and manage cancer at a low
cost in clinical laboratories and hospitals.

Table 3. A summary of the development of biosensors for common biomarkers.

Target Method Type Linear Range Detection Limit Reference

NSE Electrochemical biosensor 10–500 ng·mL−1 0.133 ng·mL−1 [38]
NSE Electrochemical biosensor 0.1–0.2 ng·mL−1 0.05 ng·mL−1 [37]
NSE Optical biosensor 0.1–1000 ng·mL−1 0.05 ng·mL−1 [31]
NSE Optical biosensor - 1.0 pg·mL−1 [32]
NSE photoelectrochemical biosensors 0.1 ng·mL−1–1000 ng·mL−1 0.05 ng·mL−1 [31]
NSE photoelectrochemical biosensors 0.1 pg·mL−1–50 ng·mL−1 0.07 pg·mL−1 [33]
NSE aptasensor 1–100 ng·mL−1 0.1 ng·mL−1 [36]
CEA Electrochemical biosensor 0.001–100 ng·mL−1 0.27 pg·mL−1 [39]
CEA Optical biosensor 10−1–103 ng·mL−1 0.1 ng·mL−1 [40]
CEA Optical biosensor - <100 fM [42]
CEA SERS 0.0001–100.0 ng·mL−1 0.033 pg·mL−1 [91]
CEA Fluorescence 0.1 to 100 ng·mL−1 0.055 ng·mL−1 [44]
CEA Photoelectrochemical sensors 0.14 pg·mL−1 [46]
CEA Piezoelectric biosensor 1.5µg·ml−1–30 ug·ml−1 1.5 µg·ml−1 [48]
CEA Aptasensors 0.25–1.5 nM 0.5 nM [49]
CEA Aptasensors 2–45 ng·mL−1 0.24 ng·mL−1 [50]
PSA Electrochemical biosensor 5 pg·mL−1–20 ng·mL−1 0.33 pg·mL−1 [52]
PSA Optical biosensor 1–50 ng·mL−1 0.5 ng·mL−1 [54]
PSA Optical biosensor 50 fg·mL−1–10 ng·mL−1 21 fg·mL−1 [53]
PSA Optical biosensor 1.0–250 ng·mL−1 0.72 ng·mL−1 [55]
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Table 3. Cont.

Target Method Type Linear Range Detection Limit Reference

PSA Fluorescence 1 pg·mL−1–20 ng·mL−1 0.3 pg·mL−1 [56]
PSA Fluorescence 1 × 10−12–1 × 10−9 g·mL−1 3 × 10−13 g·mL−1 [57]
PSA Photoelectrochemical sensors 0.001 to 50 ng·mL−1 0.25 pg·mL−1 [58]
PSA Photoelectrochemical sensors 0.005 to 20 ng·mL−1 0.0015 ng·mL−1 [59]
PSA QCM - 48 pg·mL−1 [60]
PSA QCM - 112 pg·mL−1 [61]
PSA Aptasensors 0.005–100 ng·mL−1 1.75 pg·mL−1, 0.39 pg·mL−1 [62]
PSA Aptasensors 0.01 to 50 ng·mL−1 0.01 ng·mL−1 [63]

SCCA Electrochemical biosensor 0.0001–1 ng·mL−1

1–30 ng·mL−1 25 fg·mL−1 [64]

SCCA Electrochemical biosensor 5.0 p·mL−1–15.0 ng·mL−1 2.34 pg·mL−1 [65]
SCCA Optical biosensor 0.001–75 ng·mL−1 0.22 pg·mL−1 [67]
SCCA Photoelectrochemical sensors 0.001–75 ng·mL−1 0.3 pg·mL−1 [68]

CA19-9 Electrochemical biosensor 6.5–520 U·mL−1 0.26 U·mL−1 [69]
CA19-9 Electrochemical biosensor 0.0001–10 U·mL−1 31 µU·mL−1 [70]
CA19-9 SERS - 1.3 × 10−3 U·mL−1 [71]
CA19-9 Photoelectrochemical sensors 0.1–1000 U·mL−1 0.01 U·mL−1 [72]
CA19-9 Piezoelectric biosensor 12.5–270.0 U·mL−1 - [73]

TP53 Electrochemical biosensor 0.01–2 pg·mL−1 3 fg·mL−1 [75]
TP53 Electrochemical biosensor 20–1000 fg·mL−1 4 fg·mL−1 [76]
TP53 Fluorescence 50 pM–2 nM 8 pM [78]
TP53 Photoelectrochemical biosensors 25 aM–2.5 pM - [80]
TP53 Piezoelectric biosensor - 0.12 M [81]

ATP6 AP1 QCM - 1.73 × 10−2 mg [84]

CA15-3 Electrochemical biosensor(cyclic
voltammetry) 2.0~240 U·mL−1 0.64 U·mL−1 [86]

CA15-3 Electrochemical biosensor(PEDOT) 0.01~1000 U·mL−1 3.34 U·mL−1 [86]
HER2 photoelectrochemical sensor 1 pg·mL−1–1 ng·mL−1 0.026 pg·mL−1 [90]
AMF electrochemical biosensor 43 fM [92]

CYFRA-21 electrochemical biosensor 10−2 pM [92]
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