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Abstract: Conversion of hazardous compounds to value-added chemicals using clean energy pos-
sesses massive industrial interest. This applies especially to the hazardous compounds that are
frequently released in daily life. In this work, a S-scheme photocatalyst is optimized by rational
loading of carbon quantum dots (CQDs) during the synthetic process. As a bridge, the presence of
CQDs between TiO2 and CdIn2S4 improves the electron extraction from TiO2 and supports the charge
transport in S-scheme. Thanks to this, the TiO2/CQDs/CdIn2S4 presents outstanding photoactivity
in converting the polycyclic aromatic hydrocarbons (PAHs) released by cigarette to value-added
benzaldehyde. The optimized photocatalyst performs 87.79% conversion rate and 72.76% selectivity
in 1 h reaction under a simulated solar source, as confirmed by FT-IR and GC-MS. A combina-
tion of experiments and theoretical calculations are conducted to demonstrate the role of CQDs in
TiO2/CQDs/CdIn2S4 toward photocatalysis.

Keywords: carbon quantum dots; photocatalysis; degradation; polycyclic aromatic hydrocarbons

1. Introduction

In fossil industrial societies, environmental pollution is closely related to the rapid
progress of modern industry [1–3]. Among the kinds of pollutants, more and more public
attention has been paid to the ecological environment change caused by organic pollu-
tants [4,5]. In domestic sewage, organic pollutants usually include benzene compounds
(Polychlorinated biphenyls) [6], formaldehyde [7], tobacco tar (PAHs) [8]. When tobacco
and cigarette paper are insufficiently burned, the tobacco tars with polycyclic aromatic
hydrocarbons (PAHs) as major pollutants may be formed [9]. PAHs are aromatic hydro-
carbons with two or more fused aromatic rings, which can be combined in two forms, the
non-viscous ring type and the viscous ring type [10]. It is well known that PAHs in the
environment will be particularly harmful to human health [11], causing a variety of hazards
to the respiratory system and circulatory system. Currently, the general methods of dealing
with PAHs in pollutants include biological degradation [12], adsorption process [10] and
photocatalytic degradation [13]. Although biodegradation is environmentally friendly, it
can be restricted by various factors such as temperature, pH and microbial adaptations,
and adsorption treatment prefers transferring organic pollutants to the adsorbent rather
than reducing the concentration of it [14]. In contrast, semiconductor photocatalysis is
considered as an appealing method for breaking down toxic compounds into non-toxic
carbon dioxide and water under mild conditions [15]. Semiconductor-based photocatalytic
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reactions are environment friendly, having a high surface area, low cost and high modi-
fication, etc. [16,17]. It is worth noting that there is still little research on tobacco tar via
photocatalytic degradation.

In recently years, abundant types of photocatalysts have been playing an important
role, including ZnO [18], SrTiO3 [19], SnO2 [20], Bi2S3 [21], and so on. Unfortunately,
the narrow absorption spectra and unsatisfactory photocatalytic performance limit their
application. Thus, exploring highly active at the range of visible-light-driven photocatalysts
is still a constant pursuit of researchers.

Titanium oxide (TiO2) is a classical semiconductor with favorable thermal and chem-
ical stability [22,23]. However, limited by the wide band gap (3.2 eV) [24,25] and rapid
photo-generated electron-hole recombination, the solar energy utilization of TiO2 is typi-
cally inefficient, resulting in a low photocatalytic efficiency [26,27]. Therefore, researchers
have developed a variety of strategies for enhancing the photocatalytic performance of
TiO2, such as precious metal deposition, pigment sensitization and metal ion doping,
etc. [28]. Comparing with the above strategies, the construction of heterojunctions has been
demonstrated to be an effective way for tuning the absorption and manipulating the charge
separation [29]. For instance, a TiO2/CdIn2S4 hierarchical nano hetero-structure photocata-
lyst demonstrated an ~5.5 times higher in hydrogen production from water compared to
bare TiO2 under visible light [30].

CdIn2S4, as a ternary metal chalcogenide compound, is equipped with an appropriate
band gap (2.03–2.26 eV) and photoredox potential, promoting the light capture efficiency
at visible light range [31,32]. Considering these advantages, CdIn2S4 has been reported to
contribute to photocatalytic degradation of pollutants [33], water splitting [31], and carbon
dioxide (CO2) photoreduction [34]. However, due to the photoinduced hole self-oxidation
of bare CdIn2S4 and the rapid recombination of photoexcited charges, the practical applica-
tion suffers a huge impediment [35]. In recent years, combining semiconductor materials
with CdIn2S4 has been one of the approaches to solving the transfer direction of photo-
generated carriers [36]. Moreover, the charge transfer rate of the composite photocatalyst
system is closely related to the electrical conductivity between the material interfaces, which
directly affects its catalytic activity [37]. Therefore, the introduction of materials with good
electrical conductivity can facilitate the charge transfer of photoexcited semiconductors
and co-catalysts.

Carbon quantum dots (CQDs), as a novel carbon nano material, are universally
employed in various fields because of their excellent properties [38]. In the field of pho-
tocatalysis, CQDs have been used to modify binary semiconductor nano materials for its
efficient electronic transmission capability [39]. For instance, Liang et al. showed a novel
Z-scheme g-C3N4/CQDs/CdIn2S4 heterojunction showing an improvement of ~1.5 times
higher photocatalytic degradation than g-C3N4/CdIn2S4 composite [40]. Pei et al. synthe-
sized the ternary NiS/CQDs/ZnIn2S4 nanocomposite by a simple hydrothermal method.
Compared with NiS/ZnIn2S4 heterojunction, the hydrogen production efficiency was more
than 1.75 times [37]. Looking at these facts, it can be anticipated that CQDs play a crucial
role in the charge transfer between TiO2 and CdIn2S4.

In this study, an active photocatalyst was developed by hydrothermal method that
involves TiO2/CdIn2S4 heterojunction being modified with CQDs as bridge to improve
the electron transport efficiency. Meanwhile, we investigated the effect of different ratios
of CQDs on the photocatalytic performance of the TiO2/CQDs/CdIn2S4 heterojunction
to obtain the optimum fabrication parameters. The composition, structure, morphology
and optical properties of the prepared heterojunction were analyzed thoroughly. PAHs, a
typical hazardous organic chemical in products of incomplete combustion tobacco, was
chosen as the typical pollutant in tobacco tar. The photocatalytic degradation mechanism
of PAHs by prepared heterojunction, the electron transfer and decomposition products
were analyzed in detail.
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2. Experimental
2.1. Chemicals

Thioacetamide (C2H5NS, Macklin®99% purity), indium nitrate hydrate, (InH3O9·xH2O,
Aladdin®99% purity), cadmium nitrate tetrahydrate (CdN2O6·4H2O, Aladdin®99% pu-
rity), citric acid (C6H8O7, Macklin®98% purity), urea (CH4N2O, Aladdin®99.5% purity),
acenaphthylene (ANY) (C12H8, Aladdin®97% purity), titanium oxide, rutile (60 nm) (TiO2,
Macklin®99.8% purity) were used in this study.

2.2. Synthesis of CQDs Colloidal Solution

In a typical synthesis, 4 g of citric acid (AC) and 4 g of urea were added to 80 mL
of distilled water and the prepared solution was stirred for 15 min at 600 rpm. Then, the
mixture solution was transferred into a Teflon-lined cylinder in a stainless-steel autoclave
for hydrothermal synthesis of CQDs at 120 °C for 12 h. The brownish-green final CQD
colloidal solution was collected after cooling at room temperature naturally [41].

2.3. Preparation of the TiO2/CdIn2S4 Photocatalyst

The hydrothermal method was used to synthesize the TiO2/CdIn2S4 photocatalysts.
The 80 mg TiO2 (60 nm), 0.308 g cadmium nitrate (Cd(NO3)2·4H2O), 0.600 g indium
nitrate (In(NO3)3·3H2O) and 0.302 g thioacetamide (C2H5NS) were dissolved in 70 mL of
distilled water. Then, the solution was taken to be stirred for about 4 h with the Teflon
magneton. After that, the mixed solution was sent to a 100 mL Teflon-lined autoclave
with hydrothermal method at 120 ◦C for 12 h. After cooling to room temperature, the
as-prepared photocatalyst was washed with distilled water and ethanol three times and
dried at 70 ◦C for 4 h.

2.4. Preparation of the TiO2/CQDs/CdIn2S4 Photocatalysts

The TiO2/CQDs/CdIn2S4 photocatalysts were prepared by the hydrothermal method.
In detail, 0.154 g cadmium nitrate (Cd(NO3)2·4H2O), 0.300 g indium nitrate (In(NO3)3·3H2O)
and 0.151 g thioacetamide (C2H5NS) were dissolved in 30 mL of distilled water (as solution
A). Meanwhile, the CQDs dispersion divided into different gradients from 250uL to 2500 uL
was dripped in 40 mL distilled water before 40 mg TiO2 was added and stirred for 1 h (as
solution B). Then, solution A was slowly added into solution B to obtain solution C. After
being stirred for 10 h, solution C was subjected to a 100 mL Teflon-lined autoclave and
maintained at 120 ◦C for 12 h. The obtained final product was washed with distilled water
and ethanol three times and dried at 70 ◦C for 4 h [30]. The scheme for the synthesis is
presented in Scheme 1.

2.5. Characterization

The crystalline phase and crystalline size of the samples were analyzed by using an X-
ray powder diffraction (XRD) technique (Rigaku Corporation, Japan) with Cu Kα1 radiation
(λ = 1.541866 Å), scanning angle from 10◦ to 80◦ (2θ). The morphology and structure of the
TiO2/CQDs/CdIn2S4/photocatalysts were measured by transmission electron microscope
(TEM, Japan-JEOL-JEM 2100F) and scanning election microscopy (SEM, American-FEI-
Quanta FEG 250). Transmission electron microscope was employed for the elemental
mapping (Japan-JEOL-JEM 2100 F). X-ray photoelectron spectroscopy (XPS) was measured
by Thermo SCIENTIFIC ESCALAB 250Xi (ThermoFisher Nexsa, America, X-ray source-Al
Kα ray (hν = 1486.8 eV) the work function: 4.97 eV). The FT-IR spectra in the range from
400 to 4000 cm−1 was analyzed by a thermogravimetric spectrum instrument (America-
Agilent-7890). Electron paramagnetic resonance (EPR) measurements was obtained using a
CW-EPR Bruker spectrometer (Germany Bruker-A200). Spectrum measurement system
was applied to collect. The UV-vis absorption spectroscopy of the samples (DH-2000-BAL)
and the steady-state photoluminescence (PL) spectra of the photocatalysts were recorded
by fluorescence spectrometer (QE65000-FL). The gas chromatography-mass spectrometer
(GC-MS) was used to analyze the photocatalytic degradation of PAHs. In this experiment,



Molecules 2022, 27, 7292 4 of 16

the temperature is programmed as follows: maintain the initial 45 ◦C for 1.5 min; 10 ◦C/min
to 200 ◦C for 1 min; 2.5 ◦C/min to 250 ◦C for 1 min; 4 ◦C/min to 280 ◦C for 3 min; 5 ◦C/min
to 300 ◦C and hold for 10 min.
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2.6. Photocatalytic Experiment

The photocatalytic activities of TiO2/CQDs/CdIn2S4 (different ratio of CQDs), TiO2/CdIn2S4
and bare CdIn2S4 were studied by comparative absorption spectra, and the optimal pro-
portion of CQDs in the photocatalyst was determined. The 50 mg of the as-prepared
photocatalysts was added in the substrate solution. The 300 W Xe lamp was used as
the light source to provide UV or visible light (long-pass filter (>400 nm)). To evaluate
the photocatalytic performance for cigarette tar degradation, acenaphthylene (ANY) was
employed for the photocatalytic experiments, due to its predominant content in cigarette
tar. The substrate was dissolved in toluene solvent at 1 mg/L, and the amount of the
photocatalyst was 0.5 g/L. Before the illumination, the mixture was stirred with Teflon
magneton for 30 min under dark conditions to ensure uniform mixing of photocatalyst and
polycyclic aromatic hydrocarbon molecules.

To calculate density functional theory (DFT) within the generalized gradient approx-
imation (GGA) using the PBE [42] formulation, Vienna Ab Initio Package (VASP) was
exploited [43,44]. In this study, we performed the projected augmented wave (PAW) po-
tentials for describing the ionic cores and to account for valence electrons, working on
450 eV kinetic energy cutoffs [45,46]. With Gaussian smearing, partial occupancies of the
Kohn–Sham orbitals were allowed at a width of 0.05 eV. The on-site corrections (DFT+U)
were subjected to the 3D electron of Ti atoms (Ueff = 4.5 eV). Electronic energy was iden-
tified as self-consistent when the change in energy was less than 10−5 eV. The geometry
optimization was known as convergent when the force change was less than 0.02 eV/Å.
Grimme’s DFT-D3 approach was employed to illustrate the dispersion interactions.

We determined a = b = 3.858 Å and c = 9.652 Å for anatase TiO2 unit cells when
employing a 10 × 10 × 4 Monkhorst-Pack k-point grid for Brillouin zone sampling. For
Brillouin zone sampling, the equilibrium lattice constant of cubic CdIn2S4 is a = 10.920 Å,
in the presence of a 2 × 2 × 2 Monkhorst-Pack k-point grid. Hexagonal graphene unit
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cells isolated by a vacuum layer of 15 Å depth were optimized for equilibrium lattice
constants, being regarded as a = 2.468 Å, when employing a 15 × 15 × 15 Monkhorst-Pack
k-point grid for Brillouin zone sampling. After that, two heterojunction surface models
were constructed. The first was a heterojunction surface model based on TiO2/CdIn2S4
(101). The part of CdIn2S4 has a p (1 × 2) periodicity in the X and Y directions and one
stoichiometric layer in the Z direction; the TiO2 (101) part has a p (1 × 6) periodicity in the
X and Y directions and two stoichiometric layers in the Z direction; the TiO2/CdIn2S4 (101)
slab was added with a vacuum layer in the Z direction at the depth of 15 Å in order to
separate the surface slab from its periodic duplicates. The second heterojunction model
was built by adding a graphene monolayer with a (4 × 5

√
3) periodicity between the two

parts of model 1. During structural optimizations, the Γ point in the Brillouin zone was
used for k-point sampling, and the bottom stoichiometric layer of the TiO2 (101) part was
fixed while the rest were allowed to fully relax.

3. Result and Discussions
3.1. Characterizations of Structure and Morphology

The morphology and microstructure of the as-prepared photocatalysts were initially
checked by scanning electron microscope (SEM). As shown in Figure 1A, TiO2 presented a
spherical shape with uniform particle size of ca. 65 nm. After coupling TiO2 with CdIn2S4
through a hydrothermal method, the stacked nanospheres with wrinkles were monitored
(Figure 1B), which is consistent with the previous reports [32,47]. The morphology can
be attributed to that the anisotropy of CdIn2S4 drives a directional growth, leading to the
presence of nanosheets and subsequent self-assembly. While, the decoration of carbon
quantum dots (CQDs) on TiO2/CdIn2S4 resulted in no obvious morphological changes as
observed by SEM, which can be explained by the small size of the CQDs (Figure 1C) [48].
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Figure 1. SEM images of (A) as-prepared TiO2; (B) TiO2/CdIn2S4; (C) TiO2/CQDs/CdIn2S4;
(D) PXRD patterns of TiO2/CdIn2S4 and TiO2/CQDs/CdIn2S4; (E–G) TEM images of
TiO2/CQDs/CdIn2S4 at different magnifications and locations; (H) TEM-EDS elemental mapping of
TiO2/CQDs/CdIn2S4.
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To confirm the phase and crystal structures of the as-prepared samples, powder X-ray
diffraction (PXRD) (Figures 1D and S1) analysis was performed. On the one hand, the main
diffraction peaks located at 2θ = 23.15◦, 27.24◦, 33.00◦, 40.73◦, 43.31◦ and 47.41◦ can be
indexed to cubic crystal structure of CdIn2S4 (JCPDS#27-0060), corresponding to the indices
of (220), (311), (400), (422), (511) and (440) planes, respectively [49,50]. On the other hand,
the diffraction peaks in TiO2/CQDs/CdIn2S4 composite exhibit a standard phase of tetrago-
nal TiO2 (JCPDS#21-1272) with the lattice (101), (004), (200), (105) and (211) [30]. In addition,
CQDs (top right) showed a broad peak centered at 2θ = 22.57◦ with low intensity owing
to the small size, which is consistent with the previous reports [48,51–53]. Thus, the (220)
plane of CdIn2S4 at 2θ = 23.2◦ in TiO2/CQDs/CdIn2S4 did not alter significantly compared
with TiO2/CdIn2S4 due to the low intensity of CQDs characteristic peak. The crystal size
of CQDs is evaluated based on the PXRD patterns using Debye–Scherrer equation [53–56],
which is capable of calculating the size of nanocrystals based on the X-ray diffraction fea-
tures, regardless of the aggregation of these nanocrystals. Meanwhile, the full width at half
maximum (FWHM) of as-prepared CQDs is measured to be 546.01×10−4 rad, suggesting
an ultra-small size of ca. 2.5615 nm (Table 1), confirming that the synthesized samples
were quantum dots with the unique property of quantum dots, whose size ranges from
1 to 10 nm. As seen in Figure 1D, in comparison to TiO2/CdIn2S4, TiO2/CQDs/CdIn2S4
presents no significant change, which is ascribed to the weak XRD signal of CQDs.

Table 1. The crystal sizes of the photocatalysts and CQDs calculated by Debye–Scherrer equation.

Sample β (rad) 2θ (◦) D311 (nm)

TiO2/CQDs/CdIn2S4 86.873 × 10−4 27.181 16.275

TiO2/CdIn2S4 75.534 × 10−4 27.220 18.681

CQDs 546.01 × 10−4 22.570 2.5615

Transmission electron microscopy (TEM) was employed to further demonstrate the
microscopic structure of TiO2/CQDs/CdIn2S4. The uniformly distributed lattice fringes in
Figure 1E,F clearly present the intimate interfacial contact between TiO2 and CdIn2S4. The
lattice spacings of 0.357 nm and 0.327 nm are exhibited in Figure 1F,G, which correspond
to (101) planes of the tetragonal phase of TiO2 and (311) planes of the cubic phase of
CdIn2S4 [33,57], respectively; this is in full accord with the PXRD results. Based on the crys-
tal parameters of TiO2 and CdIn2S4, the lattice mismatch can be obtained as ∆d/dTiO2 = 8%.
The small lattice mismatch typically indicates rapid transfer of photogenerated carriers
between interfaces of TiO2/CdIn2S4 due to the lower interfacial trap state [58]. Next, energy
dispersive spectra (EDS) mapping was employed to investigate the elemental composition
and distribution of TiO2/CQDs/CdIn2S4 photocatalysts. As shown in Figure 1H, carbon
can be clearly detected to be evenly distributed in the whole TiO2/CdIn2S4 region. In
addition, Cd, In, S, Ti and O elements were also confirmed from the sample, which can
correspond to the elemental composition of TiO2/CQDs/CdIn2S4 photocatalysts. For
further confirming the content difference of CQDs between TiO2/CQDs/CdIn2S4 and
TiO2/CdIn2S4, Figures S5 and S6 and Table S1 show that C element was not found in
TiO2/CdIn2S4 photocatalysts.

3.2. Band Structure of TiO2/CQDs/CdIn2S4 Photocatalysts

Figure 2A illustrates the UV-Vis diffuse reflectance spectrum (DRS) of bare TiO2,
CdIn2S4, TiO2/CdIn2S4 and TiO2/CQDs/CdIn2S4 photocatalysts. The tetragonal TiO2
exhibited a typical absorption edges at 387 nm, situated in the absorption range of ultra-
violet light [59]. Meanwhile, the absorption edge of CdIn2S4 can be observed at 610 nm
corresponding to the band gap energy of 2.03 eV [49]. Furthermore, the loading of CdIn2S4
on TiO2 lead to a light absorption range of the composite extended to the visible region
comparing to pristine TiO2 [30,60]. After the introduction of CQDs, TiO2/CQDs/CdIn2S4
presented a slightly enhanced absorption capability in range from 600 to 900 nm, which can
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be attributed to the narrow band gap energy of CQDs [48]. The valence state of the samples
was evaluated by X-ray photoelectron spectroscopy (XPS), from which the characteristic
binding energies of Cd (3d), In (3d), S (2p) and Ti (2p) were in good agreement with the
rational valence state of the composite (Figure 2B–E). As shown in Figure 2F, the XPS profile
of O 1s in the initial state presented three peaks located at 529.67, 521.97 and 533.02 eV,
corresponding to the lattice oxygen, adsorbed oxygen [61] and surface hydroxyl, respec-
tively [62–64]. Under UV illumination, we observed a dramatically reduced O 1s (533.50 eV)
peak corresponding to the surface hydroxyl (Figure 2F). Considering the reductivity of
hydroxyl species and that the valance of TiO2 was composed by O orbitals, this result
indicates that the O in TiO2 featured highly active oxidation sites in TiO2/CQDs/CdIn2S4,
possibly as a S-scheme structure (Figure S6) [60], where the hydroxyl species were oxidized
by the photo-generated holes in the valence band of TiO2. Based on the valence plots
depicted in the Figure S2, the valence band (EVB) of the CdIn2S4 and TiO2 were calcu-
lated to be 0.56 eV and 2.23 eV [65]. Meanwhile, due to the band gap energy (Eg) of the
CdIn2S4 (Eg = 2.02 eV) and TiO2 (Eg = 3.20 eV) shown in Figure 2A, the band structure of
the S-scheme of TiO2/CQDs/CdIn2S4 and type-II of TiO2/CdIn2S4 were constructed in
Figure 2G. Notably, compared with the type-II, the photogenerated electrons in CB of TiO2
and the holes produced in the VB of CdIn2S4 are inclined to recombine on the CQDs bridge
during the photocatalytic reaction of S-scheme under the Coulombic attraction between
electrons and holes [66]. Since more holes are accumulated in the VB of TiO2, the oxidation
ability of the S-scheme photocatalyst becomes stronger.
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spectra of the main elements in TiO2/CQDs/CdIn2S4; (F) In-situ XPS spectra of O1s orbital in
TiO2/CQDs/CdIn2S4, the data was collected with/without 365 nm irradiation; (G) The band posi-
tion and charge transfer of S-scheme photocatalytic reaction process of TiO2/CQDs/CdIn2S4 and the
type-II photocatalytic reaction process of TiO2/CdIn2S4 under illumination.
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3.3. Influence of S Defects Formation

Figure 3A presents the cubic spinel structure CdIn2S4 indexing to the space group
FD-3m (No.227), where the purple, magenta and yellow balls represent the Cd, In and S
atoms, respectively [67]. The In atom is connected to six S atoms, forming the In-S octa-
hedral structure. The blue and red balls represent the Ti and O atoms, which constitutes
the tetragonal TiO2. The CQDs serve as a bridge to conduct electricity between TiO2 and
CdIn2S4 (Figure 3B). To further investigate the roles of CQDs in TiO2/CQDs/CdIn2S4, the
density of state (DOS) was conducted using first-principle calculations. As depicted in
Figure 3C, the shallow trap states that primarily consisted of S (3p), O (2p) and In (5p)
orbitals were projected, which are consistent with the pristine component (Figure S3). A
peak corresponding to S 3p orbital at the Fermi level (E-Ef = 0 eV) indicates the presence
of S defects [68]. The generation of surface sulfur vacancies typically leads to the accumu-
lation of charges on adjacent Cd and In atoms, which may serve as highly active sites for
intermediate chemisorption during photocatalytic degradation. Additionally, with respect
to TiO2/CdIn2S4 (Figure 3C), after the introduction of CQDs (Figure 3D), the DOS of va-
lence band orbital of O atom shows a clear downward trend due to the increased electron
extraction from O, suggesting an enhancement in the oxidation capacity of TiO2 [69], which
is consistent with our in-situ XPS result. Furthermore, in consideration of the critical role of
radicals in the photocatalytic process, electron paramagnetic resonance (EPR) was applied
to monitor the influence of CQDs on radical generation under illumination. The EPR results
in Figure S4 confirmed that the samples with/without are both capable of producing super-
oxide and hydroxyl radicals under illumination, and the radical concentration generated
from the sample with CQDs is slightly higher than that of the control group.
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3.4. Influence of CQDs Content on Oxidation Performance

The as-prepared photocatalysts were exploited to degrade PAHs from cigarette tar
to produce valuable products. First, 10 mg of the as-prepared photocatalysts was added
in PAHs substrate, then the reaction was conducted under 100 mW cm−2 simulated solar
source with AM 1.5 G filter. A combination of gas chromatography-mass spectroscopy
(GC-MS), Fourier-transform infrared spectroscopy (FT-IR) and UV-vis DRS were employed
to evaluate the degradation rate and products. Before the photocatalytic tests, the PAHs
substrate and photocatalysts were initially mixed and stirred under dark conditions for
30 min to achieve adsorption equilibrium, during which we monitored no obvious change
in UV-vis DRS.

In terms of the photocatalytic performance, the ratio of CQDs in TiO2/CQDs/CdIn2S4
presented a strong impact on the photocatalytic degradation rate over PAHs (Figure 4A).
Namely, the photocatalytic activity increased with the increased ratio of CQDs, it and
reached the zenith at 20 to 30 mg/L, which was then followed with a deceased activity.
This may be due to the overloading of CQDs leading to a reduced charge transfer efficiency
between TiO2 and CdIn2S4, which suppresses the S-scheme features of the photocatalysts.
To further optimize the ratio of CQDs, we tested the range of CQDs between 20 to 25 mg/L,
in which the 23 mg/L presented a degradation rate up to 78.5% (Figure 4B). As illustrated in
Figure 4C, the color of the substrate changed from the initial brown to a transparent colorless
solvent in 1 h photocatalytic process. In addition to the loss of color, a blue shift of the
absorption maximum (from 430 to 385 nm) was also monitored during the photocatalytic
reaction (Figure 4D). As it is known that the molecular structure can be reflected by the
absorption spectra, to be specific, a decreased number of conjugated carbon-carbon double
bonds typically result in an absorption spectrum with a shorter wavelength [70]. In
our case, the blue shift suggests that carbon–carbon double bonds in PAHs is possibly
destroyed during the photocatalytic degradation. The comparison of the degradation
performances among the serials of samples were exhibited in Figure 4E, particularly, the
loading of rational content of CQDs between TiO2 and CdIn2S4 dramatically improved the
photocatalytic activity, comparing to the control group (from 45.81 to 78.50%), suggesting
the photoactivity can be efficiently promoted by adding CQDs. Furthermore, the PAHs
degradation performance was compared as shown in Table 2. Besides, the stability of
TiO2/CQDs/CdIn2S4 was checked by repeating the experiments 3 times using the recycled
samples (Figure 4F) Comparing to the initial cycle, ca. 7.2% photoactivity loss was observed
in the second cycle. Meanwhile, for further confirming the stability of photocatalysts
in PAHs degradation, as shown in Figure S7, 97.6% samples were retained in the two
TiO2/CQDs/CdIn2S4 sample groups after 5 h photocatalytic degradation. While in the third
cycle, the photoactivity loss was less than 2%, relative to the second cycle. As confirmed by
PXRD (Figure 4G,H), the characteristic patterns of TiO2/CQDs/CdIn2S4 basically remain
the same after 3 reaction cycles. As depicted in Figure S8, the hot filtration test was
conducted to confirm the compatibility of TiO2/CQDs/CdIn2S4 photocatalysts [71]. After
10 min of reaction under simulated sunlight (degradation of 65.2% PAHs), the photocatalyst
was removed and filtered. Then the filtrate was illuminated for another 50 min under the
same condition with no significant increase in degradation, confirming that no leaching
of the photocatalyst components emerged [72]. Meanwhile, the ICP-MS analysis was
performed to reveal the metal leaching of the pure filtrate [73]. The contents of Cd, In and Ti
were 0.00055, 0.000554 and 0.05477 ppm, respectively, indicating the TiO2/CQDs/CdIn2S4
photocatalyst was stable and that the photocatalytic activity derives from the whole as-
prepared photocatalyst, rather than from the constituents of possible leaching.
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Figure 4. (A,B) The PAHs degradation rate by TiO2/CQDs/CdIn2S4 with different CQDs content;
(C) UV-vis DRS of PAHs with different photocatalytic degradation time; (D) digital photograph
of PAHs with different photocatalytic degradation time; (E) UV-vis DRS of PAHs degraded by
different photocatalysts; (F) repeated reactions of PAHs degradation over TiO2/CQDs/CdIn2S4;
(G,H) PXRD patterns of TiO2/CQDs/CdIn2S4 before and after 3 reaction cycles. Reaction conditions:
100 mW cm−2 illumination for 1 h with 50 mg photocatalyst under room temperature.
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Table 2. Review of photocatalytic degradation performance for PAHs by varies photocatalysts.

Photocatalyst Light Source Weight of
Photocatalyst Amount of PAHs Irradiation

Time (min)
Degradation

Efficiency (%) Reference

TiO2TiO2/CQDs/CdIn2S4

Xe lamp (300 W)
with a cutoff filter

(>400 nm)
50 mg

50 mL aqueous
solution,
1 mg/L

60 87.79 This work

Co3O4/Bi2O2CO3
500 W xenon

lamp 25 mg
50 mL aqueous

solution,
10 mg/L

150 91.02 [74]

ZnO/g-C3N4 Visible light Not mentioned Not mentioned 240 84.50 [75]

ZnO
15 W UVC lamp
with emission at

254 nm
Not mentioned 3.5 mL of

anthracene 55 60.00 [76]

CeVO4 nanoparticles
Xe lamp (300 W)
with a 420 nm

cutoff filter
50 mg

200 mL Nap
solution,
30 mg/L

60 ~60.00 [77]

ZnFe2O4-CS daylight 20 mg
5 mL aqueous

solution,
2−10 mgL−1

720 95.00 [78]

TiO2-Graphene
300 W high

pressure mercury
lamp (λ > 320 nm)

25 mg
250 mL aqueous

solution,
0.5–5.0 µg/mL

120 ~80.00 [79]

ZnO NPs UV lamp (368 nm,
40 W) 10 mg

50 mL aqueous
solution,
23 mg/L

230 90.00 [80]

3.5. Photocatalytic Performance for PAHs

The obtained products were initially analyzed by FT-IR spectroscopy, as shown in
Figure 5A. After degradation, the most obvious changes in FT-TR spectra are two newly
appeared signals located at ca. 1260 and 1730 cm−1 with high intensity, which can be
assigned to the C-C key stretching vibration and aldehyde group, respectively [79,81]. In
addition, increased intensity of FT-IR signals were also observed at 2860 and 2930 cm−1,
which can be indexed to the cyclohexane bands [82]. These results are in good agreement
with the benzaldehyde (m/z = 106) and dimethylcyclohexane (m/z = 112) products recorded
by GC-MS (Table 3) [83]. It should be noted that the conversion rates based on GC-MS are
slightly higher than that of UV-vis DRS, since some side products might not be reflected by
absorption spectra. In contrast to the conversion rate of 58.42% presented by the control
group without CQDs, the degradation of PAHs using the optimal TiO2/CQDs/CdIn2S4,
(Figure 5B) GC-MS monitored that 87.79% of PAHs was decomposed to benzaldehyde
(63.88%), dimethylcyclohexane (21.18%) and side products (2.73%) of very low proportion
after 1 h of reaction.
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Table 3. GC-MS data of the main products from photocatalytic degradation of PAHs over
TiO2/CQDs/CdIn2S4.

Peak Retention Time m/z Empirical Formula Product

2 4.472 112 C8H16 dimethylcyclohexane

3 4.565 112 C8H16 dimethylcyclohexane

4 4.743 112 C8H16 dimethylcyclohexane

5 4.859 112 C8H16 dimethylcyclohexane

6 4.938 154 C12H8 acenaphthene

7 5.447 106 C7H6O benzaldehyde

8 5.588 106 C7H6O benzaldehyde

4. Conclusions

In summary, TiO2/CdIn2S4 with S-Scheme band structure was modified by the in-
troduction of CQDs during the synthetic process. Based on the in-situ XPS tests and
theoretical calculations, we found that the presence of CQDs between TiO2 and CdIn2S4
can efficiently promote the oxidation capability of the photocatalyst, which benefits the
photocatalytic degradation of PAHs. Thanks to this, the TiO2/CQDs/CdIn2S4 presents out-
standing photoactivity in converting the polycyclic aromatic hydrocarbons (PAHs) released
by cigarettes to value-added benzaldehyde. The optimized photocatalyst performs 87.79%
conversion rate and 72.76% selectivity in 1 h reaction under simulated solar source, as
confirmed by FT-IR and GC-MS, which was more efficient than the control group (58.42%
conversion rate).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217292/s1, Figure S1: XRD of (a) bare CdIn2S4 and
(b) bare TiO2; Figure S2: The valance band edges of (a) CdIn2S4 and (b) TiO2; Figure S3: (a,b) the
band structure of bare CdIn2S4 bulk and bare TiO2 bulk, (c,d) the density of states for bare CdIn2S4
bulk and bare TiO2 bulk; Figure S4: EPR spectrum of (a) TiO2/CdIn2S4 and (b) TiO2/CQDs/CdIn2S4;
Figure S5: The elemental composition of (a) TiO2/CQDs/CdIn2S4 and (b) TiO2/CdIn2S4 ana-
lyzed by TEM-EDS; Figure S6: (a) HAADF TEM image of TiO2/CdIn2S4 heterostructure, (b–g)
respective elemental mapping of Cd, In, S, Ti and O; Figure S7: Stability of PAHs degradation of
TiO2/CQDs/CdIn2S4; Figure S8: Hot filtration test of TiO2/CQDs/CdIn2S4; Table S1: Relative
atomic content of TiO2/CQDs/CdIn2S4 and TiO2/CdIn2S4; References [65,84].
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