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Abstract: Hypertension is a common risk factor for cardiovascular disease and mortality worldwide.
Proper nutrition and diet are known to play an indispensable role in the treatment and management of
hypertension. Bioactive compounds that occur in small quantities in foods such as onions, fish and red
wine are being intensively studied to uncover their vasoprotective, antioxidant, anti-proliferative and
anti-inflammatory effects which are beneficial to attenuate chronic disease and protect human health.
In this article, the anti-hypertensive, and cardio-protective effects of five food-derived bioactive
compounds: resveratrol, quercetin, coenzyme Q10, DHA and EPA and their proposed mechanisms of
action are reviewed in detail.

Keywords: resveratrol; coenzyme Q10; quercetin; docosahexaenoic acid; eicosapentaenoic acid;
bioactive compounds; hypertension

1. Introduction

High blood pressure, also known as hypertension, is a chronic condition affecting
over 1.28 billion people globally and results in nearly 9.4 million deaths every year due
to the associated complications [1,2]. Current therapeutic interventions have indisputably
shown great promise in patients with hypertension, yet, about 30% of the patients are still
struggling to manage their elevated blood pressure, irrespective of their compliance [3].

In this context, over the years, several food-derived bioactive constituents including
angiotensin-converting enzyme (ACE) inhibitory peptides, vitamins C and E, flavonoids,
flavanols, cathecins, anthocyanins, phenolic acids, polyphenols, tannins, resveratrol, polysac-
charides, fibre, saponin, and sterols have been evaluated for their anti-hypertensive efficacy
in various experimental settings [4]. Although several compounds have shown potential
benefits in in vitro and pre-clinical animal studies, only limited bioactive compounds have
shown blood pressure-lowering efficacy in randomized human feeding studies.

In this review, we provide a detailed insight into the current research developments on
bioactive compounds for the management and treatment of hypertension. By providing a
brief overview of the pathogenesis of hypertension, we aim to review the anti-hypertensive
effects of five selected food-derived bio-actives, resveratrol, quercetin, coenzyme Q10,
docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), which have been shown
efficacy in randomized human feeding studies and try to elucidate the modes of action
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(Figure 1). We further deliberate on the challenges and future perspectives of these studies
and its findings.
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Figure 1. Most popular food sources of the bioactive compounds are resveratrol, quercetin, coenzyme
Q10, EPA, DHA.

2. Literature Search

The literature search was conducted with the use of the scientific databases and search
engines Pubmed, Google Scholar and Scopus. The search terms “resveratrol”, “docosahex-
aenoic acid”, “DHA”, “eicosapentaenoic acid”, “EPA”, “quercetin” and “coenzyme Q10”
were used in combination with any of the following terms: “hypertension”, “blood pressure”
“spontaneously hypertensive rat”, “SHR”, “renovascular hypertension” “2K1C”, “pulmonary
hypertension”, “salt sensitive hypertension”, “Dahl salt sensitive rat”, “clinical trial”. There
were no limitations placed on the literature search pertaining to the publication date of
the studies. Case reports, commentaries and editorials were excluded from the literature
search. For the preclinical trials, the studies were only considered if the animal model fell
under the following categories: pulmonary hypertension, spontaneously hypertensive rats,
renovascular hypertension and salt sensitive hypertension. Normotensive animal models
were excluded from the literature search. For the clinical trials, any studies evaluating the
select bioactive compounds in combination with other treatments were excluded. Studies
pertaining to metabolites or analogues of the compounds were also excluded. Furthermore,
only clinical trials containing hypertensive subjects were considered.

3. Hypertension

Hypertension or high blood pressure is among the most prevalent and important
modifiable risk factors for cardiovascular disease and premature mortality [5]. As of 2021,
the World Health Organization estimates that 1.28 billion adults aged 30–79 years have
hypertension, two-thirds of which live in low- and middle- income countries [6]; this
number may be higher, as approximately 46% of adults with hypertension are unaware
of their condition [6]. In Canada, roughly 25% of the adult population are living with
hypertension and the lifetime incidence of developing hypertension is approximated to be
90% [7]. Furthermore, hypertension continues to be a leading cause of premature death
worldwide accounting for 8.5 million deaths annually [8]; this is why hypertension is
colloquially known as the “silent killer”.

The 2017 American Heart Associate guidelines define hypertension or systemic arterial
hypertension as a chronic increase in systolic blood pressure (SBP) above 130 mm Hg and/or
diastolic blood pressure (DBP) above 80 mm Hg measured in a relaxed sitting posture [9].
In addition, blood pressure classification in adults is as follows: normal (<120 mm Hg SBP
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and <80 mm Hg DBP), prehypertensive (120–129 mm Hg SBP and <80 mm Hg DBP), stage
1 hypertension (130–139 mm Hg SBP or 80–89 mm Hg DBP), and stage 2 hypertension
(≥140 mm Hg SBP or ≥90 mm Hg DBP) [9]. Despite the major health, social, and financial
impact of hypertension, it often remains undiagnosed and/or ineffectively treated [10].
Several factors have been implicated in the development of hypertension. Modifiable factors
include smoking, obesity, a sedentary lifestyle, high saturated and trans-fat consumption,
high sodium intake, low potassium, and calcium intake. Non-modifiable risk factors are
genetic predisposition, age, sex, and ethnicity [6].

Regulation of blood pressure is a complex integrated response involving a variety
of organ systems, including the central nervous system, cardiovascular system, kidneys,
and adrenal glands. Uncontrolled hypertension can damage these organs, and it is a major
contributor to the development of congestive heart failure, end-stage renal disease, and
stroke [10]. Hypertensive heart disease is one of the major complications of untreated hy-
pertension. The cardiac consequences of high blood pressure include abnormalities in the
structure and function of the myocardium, including left ventricular hypertrophy, systolic
and diastolic dysfunction, and in severe cases, overt heart failure [10]. It has been reported
that the lifetime risk for developing heart failure is 1 in 9 men and 1 in 6 women among
patients with hypertension and without an established myocardial infarction, highlighting
the risk conferred by hypertension alone [11]. Although the exact molecular mechanisms by
which hypertension predisposes patients to heart failure have not been fully elucidated, it
is generally believed that chronic blood pressure elevation leads to the development of left
ventricular hypertrophy, a compensatory response by which the heart walls increase in size
in an attempt to counter the increased ventricular systolic wall stress [12]. At the cellular
level, the development of cardiac hypertrophy involves an increase in cardiomyocyte size,
enhanced protein synthesis, and sarcomeric reorganization [13]. Prolonged cardiac hyper-
trophy becomes maladaptive, and it is associated with a rapid decline in the contractile
performance of the myocardium (systolic and diastolic dysfunction), eventually leading to
heart failure [10]. While the development of hypertension has been attributed to aberrations
in vasculature, central nervous system, and kidneys, accumulating evidence suggests that
immune system dysregulation also contributes. Cells of the innate and adaptive immune
systems have been reported to play important roles in the initiation and maintenance
of hypertension in different animal models. For example, studies have shown that mice
lacking adaptive immune cells are resistant to blood pressure elevation in response to
angiotensin II and high salt [14]. Hypertension is characterized by enhanced expression
of adhesion molecules on blood vessels, the heart, and the kidneys; therefore, enhancing
extravasation and accumulation of immune cells such as macrophages and T lymphocytes
in these organs; these infiltrating cells secrete and stimulate other immune cells to secrete
pro-hypertensive cytokines such as interleukin 6 (IL-6), IL-17 and tumor necrosis factor-α
(TNF-α) [14,15]. Therefore, assessment of immune cell function in hypertension is crucial
in the discovery and mechanistic understanding of novel therapeutic strategies to prevent
and treat hypertension.

The established anti-hypertensive drug classes available for treating hypertension/heart
failure include diuretics, β-adrenergic receptor blockers, calcium channel blockers,
angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone
antagonists [16]. However, many of these medications have side effects that may adversely
impact the quality of life. Consequently, new effective and safer therapeutic agents for
hypertension and hypertensive heart disease need to be developed to improve the quality
of life in hypertensive patients. Observational trials have reported an increased risk of
cardiovascular disease as SBP and DBP increase [17]. In a meta-analysis of 61 prospective
trials, every 20/10 mm Hg increase in blood pressure was correlated with a doubling of
the risk of mortality from heart disease and cerebrovascular accident [9,18]. It is important
to recognize that the lifetime risk of developing hypertension is three times higher in the
prehypertensive population as compared with normotensive subjects [19]. Therefore, it is
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essential to detect and manage elevated blood pressure at early stages to reduce the risk of
cardiovascular comorbidities and premature death.

Hypertension is classified as either idiopathic/essential (primary) or non-essential
(secondary) hypertension [20–22]. Essential hypertension affects more than 90% of hyper-
tensive patients and is a heterogenous disorder of genetic origin influenced by different
environmental factors [20]. In contrast, non-essential hypertension is usually caused by a
specific secondary condition such as renal or endocrine disorders [21]. Several interrelated
contributing factors have been reported to be involved in the pathogenesis of essential
hypertension, including genetic predisposition, enhanced sympathetic nervous system
activity, increased peripheral vascular resistance, endothelial dysfunction, and imbalance
in the renin-angiotensin-aldosterone system [20]. Non-essential hypertension is the direct
result of a specific disorder such as renal parenchymal disease (chronic kidney disease);
renovascular disease including fibromuscular dysplasia and atherosclerotic renal artery
stenosis; as well as endocrine abnormalities such as primary aldosteronism, pheochromo-
cytoma, high cortisol levels, and thyroid or parathyroid abnormalities [21].

3.1. Regulation of Blood Pressure

Blood pressure regulation is defined as the control of blood supply to a particular organ
to match its metabolic needs [23]. The main cardiovascular factors that determine blood
pressure are cardiac output and total peripheral resistance, which are mainly influenced by
neurohormonal mechanisms and intravascular blood volume [24] Control of blood pressure
involves different complex mechanisms, including neural mechanisms, renal-endocrine
mechanisms, and endothelium-dependent mechanisms [23,24]. Imbalance or dysregulation
of blood pressure control mechanisms can lead to chronic blood pressure elevation, which
will eventually lead to target organ damage, including overt heart failure, end-stage renal
disease, and stroke [10,24]. Blood pressure control mechanisms can be classified into
local and global regulation mechanisms. Local mechanisms regulate blood pressure by
controlling blood supply to body tissues acutely through vasoconstriction and vasodilation,
and chronically by modifying the number and diameter of blood vessels supplying body
organs [23]. Besides local blood pressure control mechanisms, global control mechanisms
regulate blood flow by modifying cardiac output and control blood pressure mainly by
regulation of the sympathetic nervous system. The renal-endocrine system is another
crucial chronic control mechanism that regulates blood pressure by regulating sodium and
fluid homeostasis [23].

3.1.1. Sympathetic Nervous System

An increase in the activity of the sympathetic nervous system (SNS) is associated with
higher cardiac output, tachycardia, higher norepinephrine levels, and peripheral vasocon-
striction in hypertensive young adults [23]. The SNS is also more active in hypertensive
patients with prediabetes, sleep apnea, heart disease, and kidney disease [23,24]. Further-
more, studies have revealed that the occurrence and maintenance of essential hypertension
are related to an imbalance in the autonomic nervous system with increased stimulation of
the SNS and decreased parasympathetic nervous system stimulation [24]. Baroreceptors,
pressure changes sensing receptors, are located in different places in the arterial system,
but their main locations are the carotid sinus and the aortic arch. An acute rise in blood
pressure causes the carotid artery to stretch and stimulate baroreceptors to send impulses
to the central nervous system to decrease the activity of the SNS [23,24]. SNS also plays
an important role as a chronic blood pressure regulator by stimulating renin release in the
juxtaglomerular apparatus in the kidney by activating the sympathetic renal nerve [23].
Enhanced sympathetic renal nerve activity with associated salt retention and sustained
hypertension have been reported in obesity-induced hypertension models [25].
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3.1.2. Renin-Angiotensin-Aldosterone System

The renin-angiotensin-aldosterone system (RAAS) is a hormonal system that plays a
fundamental role in blood pressure regulation by controlling vasoconstriction and sodium
and fluid homeostasis, and it is an important mediator of essential hypertension [24]. The
most important function of the RAAS is to maintain pressure-fluid homeostasis in the renal
system by preserving adequate renal perfusion in cases of extracellular fluid depletion as a
consequence of increased sodium and fluid excretion. To maintain pressure-volume balance,
when the volume of the extracellular fluid expands, the activity of the RAAS is suppressed to
enhance sodium and water excretion [24]. Renin, also referred to as angiotensinogenase, is an
aspartic protease enzyme that is synthesized in the juxtaglomerular apparatus in the kidneys.
Upon stimulation with different stimuli including stimulation of the renal sympathetic nerve,
and vasodilation, renin is released and activates the hydrolysis of angiotensinogen (a protein
that is synthesized and released to the systemic circulation by the liver) to angiotensin
I [24]. Angiotensin I is a mild vasoconstrictor, and it is not strong enough to induce major
circulatory changes [23]. ACE is a key mediator in the RAAS that regulates blood pressure
by converting angiotensin I to the potent vasoconstrictor angiotensin II, which plays a
central role in the pathogenesis of essential hypertension. Angiotensin II mediates its actions
by binding to and activating the transmembrane G protein-coupled receptors (AT1 and
AT2); it activates renal sodium reabsorption, induces endothelial dysfunction, and has
proinflammatory properties; therefore, angiotensin II is implicated in the pathogenesis
of hypertension-related microvascular (nephropathy and retinopathy) and macrovascular
damages (heart attacks and cerebrovascular accidents) [24]. In addition to ACE, ACE2 has
a crucial role in blood pressure regulation by mediating the conversion of angiotensin II to
angiotensin (1–7). Angiotensin (1–7) stimulates vasodilation, enhances sodium and fluid
excretion, and has been reported to have cardiovascular protective activities [24]. Aldosterone
is a mineralocorticoid hormone produced primarily by the adrenal cortex in the adrenal
gland that regulates blood pressure by enhancing renal sodium reabsorption via activating
renal epithelial sodium channels in the collecting tubules [23,24]. Aldosterone contributes to
the development of hypertension by enhancing vascular extracellular matrix accumulation,
endothelial dysfunction, and oxidative stress [24].

3.1.3. Endothelium

The endothelium plays a crucial role in the control of blood pressure by regulating
blood vessel tone through nitric oxide production (also referred to as endothelium-derived
relaxing factor). In response to blood flow-induced shear stress, nitric oxide is synthe-
sized by endothelial cells from L-arginine by the action of nitric oxide synthase. Nitric
oxide induces vasodilatation by stimulating guanylyl cyclase to produce cyclic guanosine
monophosphate, which mediates vascular smooth muscle relaxation. Studies have demon-
strated that hypertensive patients have lower levels of nitric oxide compared with their
normotensive counterparts [24]. Furthermore, a decrease in nitric oxide levels has been
reported to potentiate the vasoconstrictor actions of angiotensin II [23]. In addition to nitric
oxide, endothelial cells produce the potent vasoconstrictor polypeptide, endothelin 1 (ET1).
By binding to ETA receptors located in the vascular smooth muscle cells, ET1 induces
systemic vasoconstriction resulting in an increase in arterial blood pressure. ET1 can also
elevate blood pressure by enhancing the SNS [23]. Even though results from different
studies have not consistently shown increases in ET1 levels in hypertension, studies have
reported that hypertensive patients have a higher sensitivity to the vascular effects of
ET1 [24]. Endothelial dysfunction strongly contributes to the development of hypertension.
In addition to pressure-related vascular damage, studies have demonstrated that oxida-
tive stress contributes to the development of endothelial dysfunction in hypertension [24].
Increased superoxide anions levels as a result of decreased superoxide dismutase activity
reduces the bioavailability of nitric oxide by binding to it and forming peroxynitrite, a
highly reactive oxidant.
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3.2. Hypertensive Heart Disease

Several prospective cohort studies have revealed that high blood pressure increases the
risk of premature mortality and cardiovascular complications [26]. Hypertensive subjects
have more than twice the risk for developing ischemic heart disease, and more than triple
the risk for developing congestive heart failure and cerebrovascular accident [27]. Several
forms of heart disease including left ventricular hypertrophy, coronary heart disease, heart
failure and sudden cardiac death have been etiologically linked to hypertension [26].

3.2.1. Left Ventricular Hypertrophy

Left ventricular hypertrophy (LVH) is defined as the enlargement and thickening of
the left ventricle of the myocardium. Based on echocardiographic measurements, LVH is
diagnosed when left ventricular weight indexed to body surface area is >131 g·m−2 for
men and >100 g·m−2 for women. The risk of developing LVH in normotensive subjects
has been estimated to be 1.3%–1.6%, whereas the risk increases in subjects with mild and
severe hypertension to 2.7%–5.6% and 75.6–82.6%, respectively [27]. LVH is associated
with higher mortality rates for ischemic heart disease, heart failure, and cerebrovascular
accidents. The Framingham heart study demonstrated that hypertensive subjects with LVH
have a poor prognosis irrespective of blood pressure levels [26,27]. LVH is also linked to
a higher risk of cerebrovascular accident, myocardial infarction, and peripheral arterial
disease [20]. Ventricular enlargement can be classified into concentric or eccentric LVH.
While in concentric LVH the walls of the left ventricle thicken relative to the internal cavity,
eccentric LVH mainly involves the enlargement of the intraventricular septum. Concentric
LVH is commonly seen in patients with mildly to severely elevated blood pressure and is
associated with normal or decreased cardiac output [27].

Several etiological factors have been implicated in the pathogenesis of LVH in hyper-
tension, including pressure overload with an increase in total peripheral resistance, as well
as neurogenic and hormonal factors [27].

Left Ventricular Pressure Overload

The main determinants of pressure overload of the left ventricle in the context of
hypertension are aortic stenosis and increased arterial blood pressure. Both increased
intraventricular pressure and aortic stenosis result in cardiomyocyte hypertrophy and
enhanced peri-myocytic extracellular matrix deposition [27].

Renin-Angiotensin-Aldosterone-System (RAAS)

Different hypertrophic factors, including the components of the RAAS, such as
angiotensin-II and aldosterone have an important role in the development of hypertensive
heart disease by inducing cardiac hypertrophy [28]. Experimental data suggest that the
stimulation of the RAAS by suprarenal aortic constriction or intravenous administration
of angiotensin-II or aldosterone can directly induce cardiac hypertrophy and fibrosis. The
involvement of the RAAS in the development of LVH in hypertension is evidenced by
the efficacy of the angiotensin-converting enzyme inhibitors and angiotensin-II receptor
blockers in preventing/regressing hypertensive LVH [27].

Aldosterone

Besides its blood pressure-elevating effects, such as enhancing sodium retention, and
stimulating the SNS, aldosterone has been reported to induce cardiac fibrosis and potentiate
the fibrotic effects of angiotensin-II in hypertension. Therefore, aldosterone has a critical
role in the pathogenesis of hypertension-associated LVH; it has also been suggested that the
effects of aldosterone with regards to the pathogenesis of hypertensive heart disease and
heart failure are independent of renin and angiotensin-II because the administration of an
aldosterone receptor antagonist, Aldactone, in combination with other standard heart failure
medications markedly improved the outcomes in individuals with severe heart failure [27].
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Sympathetic Nervous System

Activation of the SNS in hypertension may contribute to the development of LVH. The
role of SNS in stimulating LVH is evidenced by the presence of LVH and heart failure in
subjects with pheochromocytoma, a catecholamine-secreting tumor of the medulla of the
adrenal gland [27].

High Sodium Intake and Salt Sensitivity

Another important factor that can affect left ventricular mass in hypertension is high
dietary sodium consumption. In spontaneously hypertensive rats the development of LVH
was potentiated by a high-sodium diet. Furthermore, high-sodium intake caused an increase
in the myocardial weight in Wistar Kyoto Rats independently of blood pressure [27,29]. Salt
sensitivity is known to increase cardiac output by promoting an expansion of extracellular
fluid volume, increasing SNS activity, impairing the RAAS, and decreasing NO synthesis
in the endothelium resulting in increased vascular resistance [30]. Salt sensitivity has
been identified as a critical determinant of the influence of dietary sodium on LVH since
hypertensive patients with salt sensitivity are more likely to develop LVH compared with
salt-resistant hypertensive patients [31].

Renovascular Hypertension

Renovascular hypertension is defined as high blood pressure as a result of the narrow-
ing of the arteries in the kidneys; it is a major form of secondary hypertension that involves
decreased blood flow to the kidneys and increased activation of the RAAS [32]; it accounts
for 1–5% of all cases of hypertension [33]. The most common causes of renovascular hy-
pertension are atherosclerotic renal artery stenosis, fibromuscular dysplasia, compression,
dissection, or infarction of the renal artery [34]. In addition to vasoconstriction and sodium
retention, increased activity of the RAAS axis leads to activation of inflammatory and
fibrogenic mechanisms, which result in vascular remodeling, renal tissue fibrosis and LVH.
Increased sympathetic activation, oxidative stress and endothelial dysfunction are associ-
ated with increased activity of RAAS and contribute to the development of renovascular
hypertension [33].

Pulmonary Hypertension

Pulmonary arterial hypertension (PAH) is a progressive disease associated with in-
creased construction and remodeling of pulmonary arteries causing increased pulmonary
vascular resistance, right ventricular hypertrophy and dysfunction and heart failure [35] It
is characterized by resistance to apoptosis, increased proliferation, and migration of pul-
monary artery smooth muscle cells (PASMCs) [36]. PAH is defined by a mean pulmonary
arterial pressure (mPAP) of ≥25 mmHg in a relaxed sitting position, a pulmonary vascular
resistance of >3 Wood units and an end-expiratory pulmonary artery wedge pressure of
≤15 mmHg [37]. It is estimated that globally, PAH affects 1% of the population. Though the
symptoms are often unspecific, PAH is often accompanied by exercise intolerance, extreme
fatigue and exhaustion and syncope after slight exertion. In the case of cardiac decom-
pensation, cervical venous congestion, ascites, and edema occur due to the rise of right
cardiac filling pressures [38]. Though PAH is associated with RV dysfunction, it is often
a consequence of left-sided heart disease and is usually a result of systemic hypertension
and ischemic heart disease [39].

3.3. Food-Derived Bioactive Compounds for Management of Hypertension

Proper nutrition is imperative in the prevention and management of hypertension.
Poor dietary habits, such as the consumption of high amounts of sodium and saturated and
trans fats and low amounts of fibre, are considered important risk factors for hypertension.
One important strategy is the use of functional foods and nutraceuticals; these are foods
that offer health-related benefits and are considered advantageous for the treatment and
prevention of disease [40]. This review emphasizes the importance of frequent consumption
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of healthy foods that contain bioactive compounds such as phenolic antioxidants (resver-
atrol, quercetin, and coenzyme Q10) (Figure 2) and essential fatty acids (DHA and EPA)
(Figure 3), which exhibit antioxidant, anti-hyperlipidemic, anti-inflammatory and anti-
proliferative effects that confer protection against hypertension and aid in the management
of the condition.
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4. Quercetin

Quercetin is a bitter tasting flavonoid known for its potent antiviral, anti-carcinogenic,
antioxidant, anti-inflammatory and disease-prevention abilities [41–44]. Structurally, quercetin
is a pentahydroxyflavone containing five hydroxy groups located at the 3-, 3’-, 4’-, 5- and
7-positions [45]; it is known to be one of the most abundant flavonoids in fruit, vegetables,
and red wine. Sources of quercetin include onions, shallots, brassica vegetables, apples,
grapes, berries, tomatoes honey, tea, nuts, and seeds [42,44]. Numerous studies have deter-
mined the health advantages of quercetin, including the capacity to prevent cardiovascular
disease by lowering blood pressure.

4.1. Preclinical Trials
4.1.1. Pulmonary Hypertension Models

Quercetin has been reported to exert protective effects against PAH such as decreased
mPAP, prevention of right ventricular hypertrophy and remodeling of pulmonary arteries
in various PAH animal studies [36,46,47]. In addition, in monocrotaline (MCT) induced
PAH rat models, quercetin supplementation was found to decrease proliferating cell nu-
clear antigen expression and wall thickness and area of pulmonary arteries [46]; it inhibited
a decrease in KV currents and the overexpression of 5-HT2A and inducible nitric oxide
synthase (NOS) induced by MCT in PASMCs while also reducing AKT and S6 phospho-
rylation [47]. One study found that quercetin attenuated MCT-induced expression of
inflammatory cytokines HIF-1, ET-1, transforming growth factor β1 (TGFβ1), Vascular
endothelial growth factor, IL-1, IL-6 and TNF-α in lung tissues. Furthermore, it significantly
increased hepatocyte growth factor and N-acetylcysteine levels, which respectively play
roles in cell proliferation and apoptosis inhibition [48]. Quercetin was shown to also inhibit
PASMC proliferation by modulating the expression of various functional proteins that are
related to the growth and metastasis pathways of PASMCs in a chronic hypoxia model of
PAH; this included the inhibition of the TrkA/AKT signaling pathway, which resulted in
decreased migration of PASMCs, cell cycle arrest and apoptosis induction [36].

4.1.2. Renovascular Hypertension Model

The two-kidney, one-clip Goldblatt hypertension animal model (2K1C) is commonly
used to study renovascular hypertension, as decreased perfusion to the kidneys through par-
tial obstruction of the renal artery will persistently increase blood pressure [32]. Quercetin
has been shown to possess anti-hypertensive properties in this model by the following stud-
ies. Choi et al. reported that quercetin treatments augmented aortic acetylcholine-induced
relaxation and inhibited aortic phenylephrine-induced contraction [49]. Garcia-Saura et al.
demonstrated that quercetin treatment reduced systolic blood pressure (SBP), endothelial
dysfunction, cardiac hypertrophy, and proteinuria in this model [32]. Pereira et al. con-
cluded that quercetin significantly reduced vascular Nicotinamide adenine dinucleotide
phosphate (NAD(P)H) oxidase activity, reactive oxygen species (ROS) levels and
metalloproteinase-2 activity. Oxidative stress and increased activity of NAD(P)H oxi-
dase play a role in endothelial dysfunction, hypertrophy and hypertension-induced ar-
terial contractility [50]. Excessive ROS concentrations in vascular smooth muscle cells
(VSMC), including superoxide radicals produced by NAD(P)H oxidase, activate prolif-
erative signaling pathways, which result in vascular cell proliferation and remodeling.
ROS also modulates gene expression and activity of metalloproteinases that cleave extra-
and intracellular proteins, which contribute further to vascular remodeling and changes
in function [50]. Montenegro et al. reported that quercetin treatment effectively reduced
SBP, NADPH oxidase activity and vascular superoxide production while improving both
endothelial-dependent responses to acetylcholine and plasma nitrite and nitroso species
concentrations [51]. Plasma nitrite and nitroso compounds have been proven to be relevant
markers of nitric oxide (NO) formation. NO may be scavenged by superoxide anions,
reducing its bioavailability, and therefore diminishing its vasodilating properties. The
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results of these studies suggest that quercetin is able to improve endothelial function and
increase NO formation through potent antioxidant effects in the 2K1C animal model.

4.1.3. SHR Model

The spontaneously hypertensive rat (SHR) model is an animal model used to study
primary hypertension; it is the most studied model of hypertension to date. In SHRs,
hypertension develops around 5–6 weeks of age. In the adult phase, systolic blood pressure
can reach 180–200 mmHg [52]. SHRs eventually develop characteristics of cardiovascular
disease such as increased oxidative stress, cardiac hypertrophy, vascular dysfunction, and
ultimately progress to heart failure at 18–24 months [53].

Several studies have evaluated the cardioprotective effects of quercetin in an SHR model.
Quercetin and its metabolites effectively reduce an increase in blood pressure and heart
rate [54–66] and improve left ventricular [62,65,66] and renal hypertrophy [62]; it enhances the
endothelium-dependent aortic vasodilation induced by acetylcholine [54,57,59,62,63,67,68], but
had no effect on the endothelium-independent response induced by nitroprusside [54,63,68].
Quercetin also reduces mesenteric contractions in response to phenylephrine, which is
associated with depolarization and an increase in smooth muscle intracellular calcium
concentration [54,57,58,68,69]; these results suggest that this flavonoid is able to provide
vascular protection by ameliorating endothelial dysfunction in a hypertensive model.

Quercetin possesses potent antioxidative properties that allow it to effectively attenu-
ate oxidative stress in this model. It is reported that dietary quercetin improves oxidation
status in many ways; it attenuates lipid peroxidation by reducing both plasma and hepatic
malondialdehyde (MDA) levels [55,60,62,64]. MDA is a final product in the peroxidation
of polyunsaturated fatty acids and is commonly used as a marker for oxidative stress. Fur-
thermore, quercetin treatment significantly increased glutathione peroxidase activity and
reduced aortic superoxide production in SHRs [55,62]. The flavonoid is also able to prevent
vascular oxidative damage by effectively scavenging superoxide anions and attenuating
vascular NADPH oxidase-driven superoxide production in vascular smooth muscle cells
(VSMC) [57,63,70]. In addition, quercetin is reported to suppress the reduction of NOS activ-
ity and increase plasma and urine NO metabolites in SHRs [63,64]. A proposed mechanism
is that the radical scavenging properties of quercetin allow for increased bioavailability
of endothelium-derived nitric oxide, which enhances the vasodilatory response in blood
vessels [54]. Furthermore, oral administration of quercetin is observed to be more effective
than intraperitoneal in terms of preventative effects related to cardiovascular complications
in SHR [57].

Quercetin is most popular for its blood pressure-lowering and antioxidant proper-
ties. However, there is evidence that quercetin also ameliorates structural and functional
properties in the heart. The following studies evaluate the effects of quercetin against
cardiac hypertrophy in an SHR model. In addition to lower blood pressure and LV-body
weight ratio in SHR, Yan et al. reported that quercetin treatment significantly attenuated
Ang II-induced H9C2 myoblast cell hypertrophy in vitro. In addition, it suppressed the
activation of transcription factors c-fos and s-jun, which are components of activator pro-
tein 1 (AP-1), as well as the downstream hypertrophy gene. In addition, the treatment
significantly increased peroxisome proliferator-activated receptor γ (PPAR-γ) activity. AP-1
is known to play a significant role in cardiomyocyte hypertrophy. PPAR-γ is a transcription
factor that regulates gene expression in the AP-1 pathway and many others. The PPAR-γ
dependent pathway has been shown to play a critical role in the inhibition of cardiac hyper-
trophy [65]. Furthermore, Chen et al. reported that quercetin ameliorated the hypertrophic
response such as increased mRNA levels of atrial natriuretic factor and β-myosin heavy
chain induced by Ang-II in H9C2 cells. The flavonoid was also able to protect against
mitochondrial dysfunction by modulation of the sirtuin 3 /poly (ADP-ribose) polymerase-1
pathway, adding to the protective effects against cardiac hypertrophy [66]. Honcharov et al.
reported that quercetin treatment leads to significantly improved morphological and func-
tional parameters of the heart by inhibiting trypsin-like and chymotrypsin-like proteasome
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activities in the aorta and trypsin-like, and peptidyl-glutamyl peptide-hydrolyzing-like
activities in the heart [71]. The proteasome is a dynamic multicatalytic complex that has a
large role in protein degradation in most organs. Notably, proteasome function is critical to
maintaining the health of the myocardium and modulation of this complex can alter the
outcome of many cardiac risk factors and diseases such as high blood pressure, hypertro-
phy, cardiomyopathy, and ischemic heart disease [72,73]. Therefore, the current literature
suggests that quercetin may be able to protect against cardiac hypertrophy in many ways,
in addition to its antioxidative and anti-hypertensive effects.

4.1.4. Salt Sensitive Hypertension Models

The Dahl salt-sensitive rat model has been extensively used to study salt-sensitive
hypertension and chronic kidney disease, as the kidney plays a critical role in the long-term
regulation of blood pressure through the regulation of the body’s fluid and electrolyte
balance [74]. In this model, quercetin is reported to significantly reduce the elevated
systolic arterial pressure and MAP caused by a high-salt diet, as well as improve kidney
function [75,76]. A study by Aoi et al. determined that quercetin reduces epithelial Na+

channel (ENaC) mRNA expression in the kidney, but not in the colon, which is significantly
increased by a high-salt diet. ENaC is important for the regulation of blood pressure, as
it contributes to the reabsorption of Na+ in renal tubules [75]. In addition to preventing a
rise systolic blood pressure, Makraj et al. reported that quercetin increased urinary output
and sodium output, and decreased kidney AT1a mRNA expression in this model [76].
Therefore, quercetin may exert anti-hypertensive effects by protecting the function of the
kidneys in the case of salt-sensitive hypertension.

In other salt-induced models of hypertension, quercetin has proved to possess anti-
hypertensive effects. In respective comparative studies, quercetin has been reported to
be more effective than nifedipine and verapamil, which are calcium channel blockers, in
improving hemodynamic and metabolic abnormalities associated with a high salt diet
in sodium chloride-induced hypertensive rat and deoxycorticosterone acetate (DOCA)-
salt hypertensive rat models [77,78]. In a sodium fluoride-induced hypertension model,
quercetin was shown to effectively restore blood pressure, normalize the QRS interval—an
electrocardiographic parameter, improve antioxidant defense by improving the expression
of heat shock protein 70 and provide cardioprotective effects by increasing the expression
of Extracellular signal-regulated kinases (ERK) and PPARγ [79]. Prolonged QRS durations
are associated with hypertension-induced LV hypertrophy and are considered an inde-
pendent risk factor for cardiovascular and all-cause mortality [80]; these results suggest
that quercetin is effective in attenuating salt-sensitive hypertension by modulation of the
antioxidant defense system.

4.2. Clinical Trials

One double-blind, placebo-controlled, crossover design study administered a high
dose of quercetin aglycone (1095 mg) to 17 overweight, normotensive, and hypertensive
men [81]. Participants in the hypertensive group had an SBP of 142 ± 9 mm Hg and a DBP
of 91 ± 7 mm Hg; they were aged 41 ± 12 years with a BMI of 29 ± 5 kg/m2. The results of
the study determined that quercetin treatment significantly reduced SBP and DBP in the
hypertensive group.

Another double-blind, randomized, crossover, placebo-controlled trial studied the effects
of quercetin in 49 men aged 48 to 68 years [82]. Participants had a BMI of 26.3 ± 0.3 kg/m2

with an SBP of 138.4 ± 2.3 mm Hg and a DBP of 84.4 ± 1.3 mm Hg. There were two
groups: APOE3/3 and APOE4. The men received 150 mg/d of quercetin, while the others
received the placebo treatment for 8 weeks; those who received the quercetin treatment
had their SBP significantly lowered; this beneficial effect was associated with decreased
triacylglycerol and increased HDL-C levels.

Egert et al. did a study on how quercetin impacts overweight/obese patients. There
were 42 men and 51 women aged 25 to 65 years included in this double-blinded, placebo-
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controlled, crossover trial. SBP was 130.3 ± 16.4 mm Hg, and DBP was 81.6 ± 9.3 mm
Hg, with a BMI of 30.6 ± 3.2 kg/m2. For 6 weeks, participants either consumed 150 mg/d
of quercetin or a placebo. The results indicated that the APOE3/3 group that consumed
quercetin had their significantly SBP lowered. Participants in the APOE4 group had no
significant effects on blood pressure. The authors suggested that ineffective treatment for
the APOE4 group can be attributed to the fact that carriers of the APOE4 allele may not be
responsive to quercetin. The beneficial effect was associated with a decrease in oxidized
LDL and TNF-α in overweight-obese carriers of the apo ε3/ε3 genotype [83].

A similar study looked at how quercetin affects men and women with prehypertension
or stage 1 hypertension [84]. For prehypertensives, SBP was 137 ± 2 mm Hg, and DBP
were 86 ± 1 mm Hg with a BMI of 29.8 ± 1.3 kg/m2. For stage 1 hypertensives, SBP was
148 ± 2 mm Hg and DBP were 96 ± 1 mm Hg with a BMI of 29.3 ± 1.3 kg/m2. This
randomized, double-blind, placebo-controlled, crossover study had a total of 41 partici-
pants who either consumed 730 mg/d of quercetin or a placebo for 12 weeks. For those
with stage 1 hypertension, SBP and DBP were significantly lowered. The SBP and DBP of
prehypertensive participants were not affected by the quercetin treatment. According to
the authors, quercetin’s ability to lower blood pressure may be dependent on the sever-
ity of hypertension. Data from preclinical trials support this statement, as decreases in
blood pressure due to quercetin supplementation were observed in hypertensive but not
normotensive rats [85,86].

Shi and Williamson looked at the effects of quercetin in 22 pre-hyperuricemic men
aged 19 to 60 years. Participants had an SBP of 123.2 ± 7.2 mm Hg, and a DBP of
73.8 ± 9.2 mm Hg. The BMI ranged from 18.5 to 29.9 kg/m2. This randomized, double-
blinded, placebo-controlled, cross-over trial had participants consuming 500 mg of quercetin
or a placebo daily for 4 weeks. Quercetin significantly lowered DBP, although there were
no changes to SBP [87].

In another double-blind, placebo-controlled, randomized clinical trial, researchers
studied how quercetin will affect patients with post-myocardial infarction [88]. There were
88 men and women aged 35 to 65 years included in this study, with a BMI of less than
35 kg/m2. For the quercetin group, participants had an SBP of 126.25 (19.41) mm Hg, and a
DBP of 10.06 (81.95) mm Hg. For 8 weeks, participants consumed 500 mg/day of quercetin
or a placebo. There were no significant changes to SBP or DBP. The authors suggest that
this may be due to the anti-hypertensive drugs that these post-MI patients were taking
to control hypertension. Therefore, the efficacy of quercetin to lower blood pressure may
decrease when the blood pressure is already in a managed state [88].

One double-blinded, randomized, placebo-controlled cross-over trial observed the
effects of quercetin in 93 overweight men and women with high-cardiovascular disease risk
phenotype [89]. Participants were aged 25 to 65 with a BMI between 25 and 35 kg/m2. SBP
was 130.3 ± 16.4 mm Hg, and DBP was 81.6 ± 9.3 mm Hg. Participants received 150 mg/d
of quercetin or a placebo for 6 weeks. SBP decreased significantly for participants in the
quercetin group, with no changes to DBP. The lowering of SBP was associated with the
reduction of oxidized LDL levels [89].

The last study looked at the effects of quercetin in patients with gout and essential
hypertension [90]. This 12-month clinical trial included 84 men aged 57.2 ± 7.8 years in the
main group, and 56.2 ± 6.9 years in the comparative group, with a BMI of 30.9 ± 3.9 kg/m2

and 31.1 ± 3.9 kg/m2 respectively. The main group participants had an SBP of M, and a
DBP of 84.4 ± 5.5 mm Hg. Comparative group participants had an SBP of 138.8 ± 6.4 mm
Hg and a DBP of 84.4 ± 9.7 mm Hg. Participants received 1000 mg of quercetin twice a day
for 6 months. Then, the dose was lowered to 500 mg twice a day for another 6 months. The
results determined that SBP and DBP decreased significantly. Treatment also lowered uric
acid levels and normalized kidney and diastolic heart function in these participants [90].

Overall, the majority of the randomized controlled trials (RCT) outcomes show a sig-
nificant effect of quercetin supplementation in the lowering of BP, which suggests that this
bioactive has the potential to be considered as an add-on to anti-hypertensive therapy. Fur-
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ther well-designed trials are needed to optimize the effective dosage and to investigate the
possible drug interactions between quercetin and existing anti-hypertensive medications.

5. Resveratrol

Resveratrol is a polyphenol that naturally occurs in a variety of food sources such as
grapes, peanuts, apples, plums, blueberries, and soy, with the highest concentrations of
resveratrol found in red wine and Itadori tea [91,92]; it has a stilbene structure consisting
of two phenolic rings bonded by a double styrene bond which allows for resveratrol to
occur in isometric cis- and trans-forms. However, trans-resveratrol is seemingly the most
predominant and stable form [93]. Resveratrol is a phytoalexin widely known for its wide
range of biological functions, including its antimicrobial, anti-inflammatory, antioxidant,
vasorelaxant, neuroprotective, anticarcinogenic, antiviral, and cardioprotective effects, and
plays a significant role in maintaining human health [92–95].

5.1. Preclinical Studies
5.1.1. Pulmonary Hypertension Models

Several studies have evaluated the anti-proliferative, antioxidant and anti-inflammatory
effects of resveratrol in models of pulmonary hypertension. Resveratrol has been reported to
normalize right ventricular systolic pressure and prevent RV hypertrophy, and oxidative stress
as well as reduce the expression of inflammatory markers such as IL-6, IL-1, TNF-α, platelet-
derived growth factor-α/β, TGF-β, monocyte chemoattractant protein-1 [96–101]. Resveratrol
also effectively reduces pulmonary vascular remodeling, including medial thickness and
muscularization of pulmonary arteries, and PASMCs proliferation [96–98,100–104]. In an
MCT-induced PAH model, a study by Csiszar et al. reported that resveratrol treatment
significantly downregulated NAD(P)H oxidase and improved the expression of endothelial
NO synthase (eNOS) which in turn improved endothelial function of the pulmonary
arteries [96]. Shi et al. revealed that resveratrol suppressed SphK1/S1P-mediated NF-κB
activation and cyclin D1 expression in the MCT-PAH rat model. The SphK1/S1P pathway
is known to play an essential role in the development of PAH by activation of NF-κB which
then up-regulates the expression of cyclin D1; this leads to PASMCs proliferation and
pulmonary vascular remodeling. Lui et al. reported that resveratrol suppressed pulmonary
vascular remodeling by modulation of the NR4A3/cyclin D1 pathway [105]. Paffett et al.
determined that resveratrol normalized atrophy and apoptosis-mediating pulmonary artery
atrogin-1 mRNA expression in MCT-induced pulmonary hypertensive rats [98].

Using a hypoxic pulmonary hypertension (HPH) rat model, Xu et al. reported that
resveratrol treatment reduced ROS production and inflammatory markers in PASMCs in-
duced by hypoxic conditions. Resveratrol inhibited the expression of HIF-1α, the main tran-
scriptional regulator of cellular response to hypoxia, by suppression of the MAPK/ERK1
and PI3K/AKT pathways [100]. Resveratrol is thought to interact with this pathway by
diminishing the expression and phosphorylation of AKT, therefore preventing the devel-
opment of HPH [106]. The results of another study determined that resveratrol has an
inhibitory effect on arginase II in PASMC, also through modulation of the PI3K/AKT
pathway in an HPH rat model [101]. Arginase II metabolizes the conversion of arginine to
ornithine and urea; it is known to be important in cell proliferation in various cell types.
The induction of arginase II has been shown to play a role in the development of PAH [101];
these results suggest that resveratrol exerts anti-proliferative effects that may attenuate the
development of hypoxic pulmonary hypertension.

5.1.2. Renovascular Hypertension Model

A handful of studies have used the 2k1C rat model to determine the anti-hypertensive
and cardioprotective effects of resveratrol in the case of renovascular hypertension. In all
studies in this category, a consistent finding was significantly reduced systolic blood pressure
in 2K1C rats [107–112]. Two studies compared the benefits of resveratrol to those of captopril,
an angiotensin-converting enzyme inhibitor in the 2K1C model. The results of both studies
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determined that resveratrol treatment exerted better hypotensive effects than captopril. In one
of the studies, resveratrol, alone or in combination with captopril, was able to normalize aortic
thickness and reduce aortic fibrosis [111]. In the second study, Resveratrol reduced collagen
deposition and whole-heart hypertrophy. A larger reduction in ventricular hypertrophy was
observed with resveratrol compared to captopril [110]. In other studies using this model,
resveratrol treatment ameliorated contractile responses to phenylephrine [112] and ACh-
induced relaxations in the aorta [107] and effectively improved the cardiac hypertrophy
index and ROS basal levels in aortic rings [108]. Toklu et al. reported an improvement
in parameters related to heart structure and function, such as aortic contractility and left
ventricular function. In addition, various oxidative stress markers such as MDA and the
activities of glutathione, superoxide dismutase, Na+/K+-ATPase, lactate dehydrogenase
and catalase were markedly improved [112]. In a diabetic renovascular hypertension study,
resveratrol was able to lower systolic blood pressure, improve glucose and lipid metabolism
and improve the expression of enzymes in the antioxidant defense system [109]; these results
provide evidence that resveratrol is effective in combating oxidative stress, hypertension,
and hypertrophy and in the event of renovascular hypertension.

5.1.3. SHR Models

A large body of research has analyzed the efficacy of resveratrol in improving cardiac
and metabolic parameters in an SHR model. Many studies have observed attenuation
of high blood pressure in this model following resveratrol treatment [15,113–117], while
others did not see an improvement [118–122]. In addition, resveratrol has been reported
to improve a multitude of parameters related to oxidative stress, hemodynamic parame-
ters, and cardiac morphology in this model. The cardio-protective and anti-hypertensive
effects of resveratrol are observed to be much more pronounced in SHR rather than in their
Wistar Kyoto normotensive controls. Chronic resveratrol treatment was shown to signif-
icantly improve aortic endothelium-dependent relaxation to acetylcholine [115,117,119]
and endothelium-independent relaxation to sodium nitroprusside [117]. Resveratrol also
effectively improves NO bioavailability, increases eNOS and AMPK activities and prevent
eNOS uncoupling in SHRs, which would result in improved endothelial function and va-
sodilation [113–115,117,118,123,124]. Furthermore, uncoupled eNOS generates ROS, which
would reduce NO bioavailability and contribute further to oxidative stress.

Many studies have observed the antioxidant effects of resveratrol in this model. In vitro
studies following resveratrol treatment have shown attenuation of an array of oxidative
stress markers such as superoxide anion [125], H2O2 [117,119,126], nitrotyrosine [116,117],
8-isoprostane [15,116], protein carbonyl [15] and TBARS [113,116,118,120–122]. In addition,
it has also effectively improved the activity of enzymes in the antioxidant defense system
such as superoxide dismutase [15,113,117], glutathione peroxidase [113], glutathione re-
ductase [113], glutathione-S-transferase [15] and catalase [126], and reduced NAD(P)H
reductase, heme oxygenase-1, NAD(P):quinine oxidoreductase-1 activities [116,125]. More-
over, resveratrol treatment was shown to decrease the infiltration of pro-inflammatory
immune cells such as lymphocytes, macrophages, and Ang II-positive cells in renal tubu-
lointerstitial areas, which may suggest the polyphenolic compound may also possess
anti-inflammatory qualities [15].

In terms of cardiac function, resveratrol has proven to be effective in preventing the
development of hypertrophy and cardiac dysfunction. Grujic-Milanovic et al. reported
resveratrol treatment provided protective effects against hypertrophy by preserving the lam-
ina elastica interna and elastic fibers in the aortic endothelium of female SHR and blunting
the expression of TGF-β, which mediates the promotion of vessel structure alterations [113].
Thandapilly et al. observed prevention in the increase of the diastolic functional parameter,
IVRt, and an improvement in the systolic functional parameter ejection fraction in 20-week-
old SHR [122]. Another study by the same laboratory group determined that resveratrol
reduced collagen deposition in left ventricular tissue and prevented a reduction in frac-
tional shortening as well as attenuated stiffening of wall components of SHR arteries [120];
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these results suggest resveratrol can prevent the development of concentric hypertrophy
and contractile dysfunction. Another study reported reduced vascular remodeling and
also attenuated ERK signaling and the expression of proliferating cell nuclear antigen in
arteries of SHR following resveratrol treatment [121]. Other anti-proliferative effects of
resveratrol such as attenuation of the overexpression of cell proliferation proteins such
as cyclin D1, cyclin E, Cdk2/4, phosphorylated retinoblastoma protein, Giα proteins and
enhanced phosphorylation of ERK1/2 and AKT in SHR VSMC have been observed; this ef-
fectively lessened the enhanced proliferation of VSMC which is a complication of persistent
hypertension [125].

5.1.4. Salt-sensitive Hypertension Models

Few studies have evaluated the effects of resveratrol in salt-sensitive models. Using a
Dahl salt-sensitive hypertensive rat model, Rimbaud et al. observed a significant improve-
ment in fraction shortening and systolic, diastolic, and aortic endothelial functions were
preserved without any changes in blood pressure following resveratrol treatment [127].
In a DOCA salt induced hypertension model, attenuation of systolic blood pressure has
been observed in a few studies [128–130]. In addition to improved acetylcholine-induced
endothelium-dependent relaxation and antioxidant status, Han et al. reported that resver-
atrol modified histone 3 lysine 27 methylation in the aorta and renal artery of DOCA
rats [129]. This result suggests that resveratrol may improve cardiac function through epige-
netic modification. Sun et al. evaluated the effects of resveratrol treatment in AMPKα2−/−

DOCA mice. The results of the study determined that the loss of AMPKα2 function reversed
the vasodilatory effects of resveratrol, suggesting that resveratrol’s anti-hypertensive effects
rely heavily on its activation of AMPK [130]. In another study, cardiac parameters such as
left ventricular wet weight, left ventricular wall thickness, diastolic stiffness constant and
cardiac contractility were improved in DOCA rats treated with resveratrol. In addition,
resveratrol decreased inflammatory cell infiltration and cardiac fibrosis as well as improved
cardiac and vascular function [128]. Though more studies are needed to determine the
effects of resveratrol treatment in the case of salt-sensitive hypertension.

5.2. Clinical Trials

Resveratrol can control blood pressure, oxidative stress, cell adhesion, oxidative stress,
and endothelial function [131]. Numerous human interventional studies have examined
the significant benefits of resveratrol on the blood pressure of hypertensive individuals to
date. In one double-blind, randomized, placebo-controlled trial, the effects of resveratrol in
type 2 diabetic patients were examined [132]. Participants were overweight, with a BMI
which ranged between 28.2 and 29.5 kg/m2. A total of 192 men and women aged 40 years
or older were included in this 6-month study with SBP between 131.8 and 134.1 mm Hg,
and DBP between 80.9 and 81.4 mm Hg. There were three groups for this study: the first
group received 500 mg of resveratrol a day, while the second group received 40 mg of
resveratrol per day, and the last group received the placebo. There were no significant
changes to blood pressure in either of the three groups. The authors speculate that this
might be due to the study’s limited sample size, which might have prevented resveratrol
from having its full potential [132].

In the second study, a prospective, open label, randomized, controlled trial was
done on 62 men and women aged between 30 to 70 years with type 2 diabetes [133].
Participants in the intervention group had a SBP of 139.71 ± 16.10 mm Hg and a DBP
of 81.42 ± 9.58 mm Hg; these individuals had a BMI of 24.66 ± 3.62 kg/m2. Participants
received 250 mg of resveratrol per day with oral hypoglycemic agents, while the control
group received only oral hypoglycemic agents for 3 months, respectively. The results
showed that there were significant reductions in SBP and DBP in the individuals who
consumed resveratrol daily. This favorable effect was linked to a reduction in LDL-C and
an improvement in glycemic index [133].
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Another randomized, double-blind, placebo-controlled clinical study observed how
resveratrol affects the blood pressure of individuals who are overweight/obese and have
non-alcoholic fatty liver disease [134]. The study was conducted on 50 males and females
aged between 20 and 60 years with a BMI between 25 and 35 kg/m2. SBP ranged between
131.61 ± 17.97 mm Hg, and DBP ranged between 85.30 ± 13.70 mm Hg. Individuals in the
placebo group received corn starch capsules, while participants in the intervention group
received 600 mg of resveratrol daily for 12 weeks. There were no significant results on SBP
or DBP. The authors state that the number of clinical disturbances before the administration
of resveratrol may have affected the blood pressure results [134].

A randomized, double-blinded, placebo-controlled, parallel-group trial was conducted
to observe the effects of resveratrol in 24 obese men ages 18 to 70 years for 4 weeks [135].
Individuals had a SBP of 124.3 ± 2.9 mm Hg and a DBP of 75.6 ± 2.1 mm Hg; these men
had a BMI greater than 30 kg/m2 and received 500 mg of trans-resveratrol per day. The
results proved that there were no significant effects on SBP or DBP of the participants.
According to the authors, this may be attributed to the study’s short duration or the baseline
characteristics of those who participated in this trial [135].

In a similar study, Marques et al. evaluated the effects that acute trans-resveratrol had
on individuals with endothelial dysfunction in a randomized, cross-over, double-blind,
placebo-controlled trial [136]. There were 24 participants between the ages of 45 and 65,
which included both males and females. BMI of these individuals was 30 ± 1 kg/m2. SBP
ranged between 139 ± 2 and 142 ± 2 mm Hg, and DBP was 87 ± 2 mm Hg. Patients in the
intervention group received 300 mg/day. According to the results, there were no changes
to SBP and DBP in the intervention group, which may be due to the small sample size they
used in this study [136].

The effect of resveratrol in 11 obese men aged 52.5 ± 2.1 years were observed in a
randomized double-blind crossover study [137]. SBP ranged between 132 ± 3.0 mm Hg,
and DBP ranged between 83 ± 2.6 mm Hg. BMI was between 31.45 ± 0.82 kg/m2. For
30 days, individuals in the intervention group consumed 150 mg of resveratrol per day,
while the others received the placebo treatment. There were significant reductions in SBP
for those who consumed the resveratrol capsules. Reduced glucose levels, triglyceride
levels, and inflammation markers were linked to this positive effect [137].

Kjær et al., studied how resveratrol affects patients with metabolic syndrome in a
randomized, placebo-controlled, double-blind, parallel-group clinical trial [138]. There
were 74 men aged between 30 and 60 years included in this study. SBP ranged between
140 ± 2.34 and 150 ± 3.44 mm Hg, and DBP between 86.9 ± 1.54 and 91.3 ± 2.10 mm Hg.
Participants were obese, with a BMI between 33.4 ± 0.858 and 34.1 ± 0.770 kg/m2. For
16 weeks, participants either received a high dose of resveratrol (1000 mg/day), a low dose
of resveratrol (150 mg/day), or a placebo treatment. There were no significant changes to
SBP or DBP in either group. The study’s design, including the dosages administered, the
duration of the study, and the criteria for participants to be included in this study, lead the
authors to speculate that there was no effect on blood pressure [138].

Another study observed the effects of resveratrol in 41 overweight/obese men and
women in a parallel-group, double-blind clinical trial [139]. Participants were aged 40
to 70 years with a BMI between 27 and 35 kg/m2. SBP ranged between 132 ± 2.2 and
135 ± 3.5 mm Hg and DBP ranged between 83 ± 1.7 and 88 ± 2.2 mm Hg. For six months,
individuals consumed 150 mg/d of resveratrol, or the placebo treatment. There were no
significant effects on SBP or DBP. According to the authors, there are no known mechanisms
linking resveratrol to changes in blood pressure [139].

There are conflicting findings in the human studies that examined how resveratrol
affects hypertensive patients. Despite the fact that some trials had no impact on blood
pressure, many of them showed a reduction in SBP and DBP. The anti-hypertensive effects
that this bioactive provides are anticipated to have more favorable results with further
human trials that have wider inclusion criteria and populations, as well as higher doses of
resveratrol when conducting the study.
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6. Coenzyme Q10

Coenzyme Q10 (CoQ10) is a 1,4-benzoquinone, also known as ubiquinone [45]; it is
a lipid-soluble compound mainly found in organ meats such as pork and beef liver, oily
fish including salmon and tuna, whole grains, fruits and vegetables such as spinach and
broccoli, blackcurrants and strawberries, and yogurt and cheese [140,141]; it is particularly
known to aid in the prevention of inflammation and cardiovascular disease due to its
antioxidant properties [142]. Additionally, it may help in the prevention of hypertension,
obesity, AIDS, diabetes, kidney failure, gastric ulcers, Parkinson’s disease, headaches, aging,
and mitochondrial disorders [141]. CoQ10 is also essential for the production of cellular
energy and is known to play a role in immune function [140,143]. Using an SHR/cp model,
which is commonly used as a model for metabolic syndrome, CoQ10 treatment prevented a
rise in blood pressure and serum insulin levels and improved endothelial dysfunction in
mesenteric arteries. In addition, oxidative and nitrative stress markers and inflammatory
markers were improved in a dose-dependent manner [144]. In stroke-prone SHRs, CoQ10
attenuated a rise in blood pressure and prevented renal membranous phospholipid degra-
dation; it also enhanced phospholipase A activity. This suggests that CoQ10 may have a
protective effect against structural and functional dysfunction in renal cells, which may
also protect against the development of renovascular hypertension [145]. Analogues of
CoQ10 such as decylubiquinone and MitoQ10, a mitochondria-targeted ubiquinone, have
proven to be effective as a therapeutic intervention in stroke-prone SHRs, as they both
effectively reduced systolic blood pressure. In addition, decylubiquinone significantly im-
proved plasma MDA levels and markers of lipid metabolism [146]. MitoQ10 was reported
to attenuate aortic superoxide production, improve NO bioavailability, and significantly
reduce cardiac hypertrophy compared to the control. As most conventional antioxidants
cannot penetrate the mitochondria, MitoQ10 may provide a novel therapeutic approach to
target oxidative stress specifically generated by mitochondria [144]. In a 2K1C model, a
poly(lactide-co-gylcolide) nanoparticulate formulation of CoQ10 was reported to consider-
ably improve the efficacy of the antioxidant. Systolic and diastolic blood pressure and MDA
were significantly improved in 2K1C rats [147]. Ubiquinol, the reduced form of CoQ10 was
shown to also lower blood pressure, improve renal superoxide production and decrease
urinary albumin levels salt-induced hypertension rat model [148]. More pre-clinical trials
are needed to determine the anti-hypertensive effects and mechanistic actions of CoQ10.

6.1. Clinical Trials

Coenzyme Q10 is an antioxidant that is well-known for fighting free radicals and
the harm they cause, particularly to the cardiovascular system [141]. There has been a
significant number of human trials that investigated the effects of CoQ10 in hypertensive
individuals. One study observed the effects of CoQ10on 109 Caucasian/African American
men and women aged 27 to 89 [149]. Participants had a SBP of 159 mm Hg, and DBP of
94 mm Hg. For 13 months, participants consumed 225 mg of CoQ10 or a placebo daily.
For those who consumed coenzyme Q10, both SBP and DBP decreased significantly, and
diastolic heart function was improved.

The impact of CoQ10 was assessed in 64 males with coronary artery disease in a
different randomized, double-blind trial [150]. Participants were aged 48.3 ± 7.2 years in
the CoQ10 group, with a BMI of 23.9 ± 1.2 kg/m2. SBP was 168 ± 9.6 mm Hg and DBP
was 106 ± 4.6 mm Hg. Participants received 120 mg/d of coenzyme Q10 or a placebo for
8 weeks. The results indicated that there were significant reductions in SBP and DBP for
those who consumed the CoQ10 treatment; these beneficial effects were associated with
reductions in oxidative stress, triglycerides, and insulin, and an increase in HDL-C [150].

Another randomized, double-blind, placebo-controlled 12-week crossover trial studied
how CoQ10 affects individuals with metabolic syndrome [151]. Participants included
30 obese men and women aged 25 to 75 years with a BMI of 32.1 ± 0.9 kg/m2. SBP was
147.8 ± 2.1 mm Hg, and DBP was 77.4 ± 2.2 mm Hg. For 12 weeks, participants received
200 mg/day of coenzyme Q10 or a placebo. There were no changes in SBP or DBP. The
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authors suggest that patients with higher baseline BP may have needed to be included in
this study in order to see significant changes in BP [151].

One study examined the impact of CoQ10 on 74 men and women with dyslipi-
demia and type 2 diabetes [152]. Participants were aged 31 to 75 years, with a BMI
less than 40 kg/m2. Patients in the CoQ10 group had a SBP of 127.1 mm Hg, and a DBP of
75.5 mm Hg. For 12 weeks, patients received a daily dose of 200 mg of CoQ10 or a placebo
in this randomized double-blind, placebo-controlled intervention. CoQ10 significantly
lowered SBP and DBP; this decrease in blood pressure was linked with improved long-term
glycaemic control in type 2 diabetes patients [152].

The last study examined how CoQ10 affects type 2 diabetic patients [153]. 74 over-
weight patients aged 40 to 79 years were included in this randomized, double-blind
trial, with a BMI of 28.7 ± 3.4 kg/m2. SBP was 132.8 ± 17.3 mm Hg, and DBP was
74.1 ± 9.2 mm Hg. For 6 months, participants either received 160 mg of fenofibrate, 200 mg
of CoQ10, 160 mg of fenofibrate and 200 mg of CoQ10, or a placebo. Fenofibrate and CoQ10
independently decreased DBP and, in combination, also significantly reduced SBP [153].

Overall, the research to date has shown promising findings that support the anti-
hypertensive properties of CoQ10. We may draw the conclusion that CoQ10 can most likely
function as an anti-hypertensive bioactive for patients with high blood pressure based on
the human trials that are currently available.

7. DHA and EPA

DHA is a long chain n-3 polyunsaturated fatty acid (PUFA), abundantly found in
fish oil [154]. Additionally, it is present in eggs, meat, poultry, marine algae, and breast
milk [155,156]. DHA is essential for optimal fetal development and a healthy cardiovas-
cular system [157]. DHA consumption provides vasoprotective, antioxidant, and anti-
inflammatory effects (Figure 3) [158].

Eicosapentaenoic acid is also long chain n-3 PUFA [159]; it mainly derives from fish
and fish oil [157,160]. Foods with high omega-3 content include nuts, cold-water fatty
fish, seeds, leafy vegetables, and vegetable oil [161,162]. As an n-3 fatty acid, EPA has
been proven to have anti-inflammatory, anti-hypertensive, antithrombotic, and triglyceride-
lowering effects [157,163,164] (Figure 3). There is significant evidence that EPA aids in the
management of dementia, coronary heart disease, depression, and rheumatoid arthritis [159].

7.1. Preclinical Studies
7.1.1. Pulmonary Hypertension Models

The protective effects of DHA and EPA have been evaluated in different models of
pulmonary hypertension. In MCT-induced PAH rat models, DHA decreased mPAP and
reduced pulmonary vascular remodeling and RV hypertrophy; it also improved lung
inflammation and suppressed the accumulation of macrophages and T lymphocytes in
lung and pulmonary arteries. Additionally, DHA may provide anti-proliferative effects
by arresting the cell cycle of PASMCs through the inhibition nuclear factor of activated T
cells-1 [165]. In another study, DHA decreased NF-κB and p38 MAPK activation, which
led to a reduction in vascular endothelial growth factor and biomarkers of PAH, MMP-2,
MMP-9 [166]. Using a hypoxic pulmonary hypertension rat model, DHA is reported to
reduce right ventricular systolic pressure and improve right ventricular hypertrophy [167];
it also prevents proliferation, migration and phenotype switching of PASMCs induced by
hypoxia [167].

In MCT-induced PAH rats, EPA is reported to lower systolic pulmonary arterial
pressure, provide anti-inflammatory effects by improving pulmonary GPR120 mRNA
expression and inhibit PASMC proliferation stimulated with TGF-β or FGF2 [168]. In
addition, EPA was shown to ameliorate vascular remodeling and vasoconstriction and
suppress vasoconstriction, probably by the downregulation of SRC family kinases in
the same model [169]. EPA treatment may also be able to prevent pulmonary edema
by decreasing arachidonic acid content and LTB4 generation and plasma thromboxane
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B2 in rats with endotoxin-induced lung injury [170]. In sheep pulmonary arteries, EPA
supplementation stimulated NO release and improved endothelium-dependent and -
independent relaxations, possibly through modulation of Ca2+ influx through L-type
calcium channels [171].

7.1.2. SHR Model

A handful of studies have assessed the anti-hypertensive and cardio-protective effects
of DHA supplementation (not in combination with other essential fatty acids) in an SHR
model. DHA supplementation alone can effectively prevent a rise in blood pressure in
SHR [172–175].

In addition, it has been reported to reduce vascular wall thicknesses in the coro-
nary, thoracic, and abdominal aorta. DHA was able to induce relaxant effects in both
norepinephrine and high-K+-induced contracted SHR aortic rings but not improve aortic
contractile or relaxant responses to acetylcholine or nitroprusside, which suggests that the
vasorelaxant effects of DHA are associated with intracellular Ca2+ release and modulation
of L-type Ca2+ channels in VSMC and are independent of endothelium-derived nitric
oxide [175,176]. A couple of studies have observed blood pressure lowering effects from
DHA, but not EPA supplementation in SHR [173,174] In addition, Rousseau-Ralliard et al.
reported an improvement in the electrocardiographic parameter QT, most likely by pref-
erential incorporation of DHA into cardiac tissues and by influencing beta-adrenergic
function [174]. Other studies have reported that DHA supplementation altered hepatic
DHA, EPA, and n−6 fatty acid content, decreased hepatic delta-9-desaturase activity, re-
duced aldosterone and corticosterone levels as well as modulated lipid metabolism in
SHR [172,177,178]

Past studies have shown that EPA supplementation can provide anti-hypertensive
effects in SHR. A couple of studies found EPA treatment reduced systolic blood pressure
in this model [179,180], while others found no improvements [173,174,181,182]. EPA treat-
ment was found to reduce serum thromboxane B2 levels, induce endothelium dependent
relaxations in norepinephrine-contracted aortic rings [182] and improve those induced by
acetylcholine but not endothelium-independent relaxations to sodium nitroprusside [181].
EPA prevented exaggerated growth in SHR VSMC cells by suppressingTGF-β expression,
reduced CDK2 activity and inhibiting basal DNA synthesis [183]; these results suggest that
EPA is able to improve vascular reactivity and inhibit exaggerated cell proliferation which
may prevent the development of hypertension in SHR.

7.2. DHA Clinical Trials

There has been sufficient evidence to suggest that DHA contributes to many functions
of the body, particularly cardiovascular function. Currently, there are only three studies
that have assessed the effects of DHA on blood pressure in hypertensive individuals. In a
study by Sagara et al., 156 Scottish men aged 45 to 59 who were overweight, hypertensive,
and hypercholesteremic were included [184]. Participants in the DHA group had a SBP of
141.4 ± 13.5 mm Hg, a DBP of 86.7 ± 10.4 mm Hg, and a BMI of 26.4 ± 3.3 kg/m2. For five
weeks, men in the DHA group consumed 2 g of DHA per day, while the placebo group
received 1 g of olive oil per day. The outcomes showed significant reductions in the SBP
and DBP of the participants in the DHA intervention group when compared to the placebo
group. The beneficial effect of DHA could be associated with a lowering of LDL-C and an
increase in HDL-C [184].

The second study was a double-blind, placebo-controlled trial of parallel design
done on 39 participants, which included men and postmenopausal women ages 40 to
75 years [185]. This study examined the effects of both DHA and EPA on treated hyper-
tensive individuals with type 2 diabetes. Participants were categorized as overweight to
obese according to their BMI, which ranged from 27.9 to 30.6 kg/m2. SBP ranged between
115 to 180 mm Hg, and DBP was less than 110 mm Hg. There were three groups: the
placebo group, the DHA group, and the EPA group. Each participant consumed 4 g per
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day in their respective group for 6 weeks. The findings revealed that neither DHA nor
EPA had any significant effects on blood pressure. The authors have suggested a number
of potential explanations for why there were no changes in blood pressure, including the
use of other pharmaceutical treatments, adequacy of glycemic control, higher variability in
blood pressure in diabetes patients, insufficient statistical power, and the use of olive oil as
a placebo [185].

The last study looked at how DHA and EPA impacted the blood pressure in 59 mildly
hyperlipidemic, overweight men. Participants were ages 20 to 65 years old with a BMI
between 25 to 30 kg/m2 [186]. SBP was between 119.1 and 124.2 mm Hg, and DBP between
71.4 and 75.2 mm Hg. In this double-blind, placebo-controlled trial of parallel design,
participants received 4 g/d of placebo, EPA, or DHA for 6 weeks. The results showed that
individuals in the DHA group had their SBP and DBP lowered significantly. There were no
significant changes to BP for those in the EPA group [186].

Overall, the number of human studies that have assessed the direct effects of DHA
on hypertension is very limited. Two out of the three human trials show that DHA
independently lowers SBP and DBP. More human trials need to be conducted in order to
affirm these effects in hypertensive patients.

7.3. EPA Clinical Trials

EPA has often been a recommended source to prevent cardiovascular disease, and
all complications related to the cardiovascular system [159]. There are a limited number
of human trials done on the anti-hypertensive effects of EPA on hypertensive patients.
The effectiveness of EPA was studied in untreated patients with hyperlipidemia [187].
Participants included 24 men and women aged 58 ± 6 years. For those in the EPA group,
BMI was 21.2 ± 2.3 kg/m2. SBP was 141.2 ± 11.1 mm Hg, and DBP was 86.8 ± 6.4 mm
Hg. For 3 months, patients either received 1800 mg/d of EPA or 10 mg/d of pravastatin.
SBP and DBP significantly decreased in the EPA group; this beneficial effect was associated
with a reduction of total cholesterol [187].

Another study looked at how EPA affects the blood pressure of mild to moderate
essential hypertensive patients [188]. There were 17 participants, and those in the EPA
group had a SBP of 152.9 ± 17.3 mm Hg and a DBP of 99.1 ± 13.8 mm Hg. For 8 weeks,
participants either consumed 2.7 g/day of EPA or placebo. SBP significantly decreased
for participants who consumed EPA. The beneficial effect of EPA was associated with a
reduction in the intracellular concentration of sodium in erythrocytes. There was no effect
on DBP. The authors speculate that the reason there was no effect on DBP may be due to
the low dosage of EPA administered and the small population included in this study.

In a similar study, a double-blind, placebo-controlled trial of parallel design was done
on 39 postmenopausal women and men to study the effect of EPA and DHA on blood
pressure [185]. Participants were aged 40 to 75 with a SBP between 128 and 133 mm Hg,
and a DBP between 70 to 73 mm Hg. Participants had type-2 diabetes and were over-
weight/obese with a BMI between 27.9 and 30.6 kg/m2. Individuals consumed 4g of EPA,
DHA, or a placebo for 6 weeks. There were no significant changes to the SBP or DBP of the
participants. The use of supplemental drugs for treatment, adequate glycemic control, the
higher changes in blood pressure in diabetes patients, using olive oil as a placebo and a
lack of statistical power are possible explanations put forth by the authors as to why there
were no changes in blood pressure [185].

Overall, the studies so far show mixed results about the role that EPA plays in lowering
blood pressure for hypertensive patients. More robust studies with increased sample sizes,
higher EPA doses, and broader population criteria are needed to validate the clinical
benefits of EPA.
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8. Safety and Adverse Effects of the Compounds
8.1. Quercetin

Purified quercetin is available as a dietary supplement in doses of up to 1000 mg/day [189].
According to findings from human intervention trials, supplemental quercetin intake is
well-tolerated, and the Incidence of adverse effects is very low [189]. Studies that evaluated
the safety of quercetin administration in humans included a wide range of doses, ranging
from 150–2000 mg/day [84,89,190,191]. Quercetin was safe and well-tolerated at all levels.
It is worth noting that only the effect of short-term Quercetin intake (a maximum duration
of 12 weeks) was reported in these studies. Furthermore, only a few studies reported
detailed information on the safety of quercetin in different disease conditions [189].

8.2. Resveratrol

Resveratrol is generally well-tolerated; however, gastrointestinal, and nephrotoxic
adverse effects have been documented in humans [135,192,193]. The safety of different
doses of resveratrol was evaluated in human trials. Resveratrol was reported to be safe for
a 60-kg individual when administered at a dose of 450 mg/d. Higher doses of resveratrol
(>1000 mg/d) were reported to inhibit cytochrome P450 isoenzymes; therefore, interact-
ing with many other medications [193,194]. At a dosage of 1000 mg/d, resveratrol was
reported to elevate CVD biomarkers such as oxidized low-density lipoprotein, total plas-
minogen activator inhibitor, and soluble vascular cell adhesion molecule-1 in overweight
subjects [195].

8.3. Coenzyme Q10

Data from clinical trials indicate that coenzyme Q10 has a very good safety profile; it
does not accumulate in plasma or tissues after the termination of supplementation [196]. In
healthy adults, coenzyme Q10 administration for 4 weeks at 300, 600, and 900 mg/d was
reported to be safe and well-tolerated [196]. In addition, no serious adverse effects were
reported when coenzyme Q10 was taken by patients with Parkinson’s disease at 1200 and
2400 mg/d [197]. Common adverse effects associated with coenzyme Q10 intake include
gastrointestinal adverse effects and common cold symptoms [196].

8.4. EPA and DHA

The safety and tolerability of prescription omega-3 fatty acid products (EPA and DHA)
was evaluated in a meta-analysis of 21 randomized controlled trials [198]. There was
no serious adverse effects associated with EPA and DHA intake (n = 12,750 participants)
compared with the control group (n = 11,710 participants). Treatment with omega-3 fatty
acids was associated with dygeusia, gastrointestinal disorders, and skin abnormalities
(eczema, itching, and eruption). In addition, some adverse effects such as gastrointestinal
disturbance and low-density lipoprotein cholesterol elevation were more pronounced with
EPA/DHA combination products [198].

9. Conclusions and Future Directions

In summary, all the bioactive compounds discussed in this review have shown strong
evidence of blood pressure-lowering effects in animal and human studies. The perceived
anti-hypertensive effects can range from antioxidant effects to modifying signal transduction
in vascular physiology. Nevertheless, certain limitations of the current review need to be
considered as these studies show some level of heterogeneity, making it difficult to draw
concrete conclusions in relation to types of subjects, dosage, form of analyzed product or
interactions with other disease conditions. Future studies must try to avoid the risk of potential
bias associated with other confounding factors such as other dietary or lifestyle factors.

The knowledge of the anti-hypertensive effects, bio-availability and the most effective
dosage of these compounds may be useful information for (1) Plant breeders to create new
cultivars with high levels of these compounds using conventional breeding in conjunction
with emerging molecular biology techniques (2) primary processors to develop pre and
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post harvesting strategies to optimize the levels of these compounds (3) Food technologists
to enhance the levels of these compounds through processing technologies to deliver
required quantities in appropriate servings. The information provided in this review is a
step towards the goal of finding a dietary solution for preventing or managing hypertension
and its complications

Future clinical studies should focus on the study design to eliminate the risk of bias
related to potential confounding variables such as other underlying conditions or lifestyle
factors. Moreover, the dosages, source, length of intervention and frequency of consumption
should be considered. In order to take these molecules into mainstream clinical usage, it
is necessary to carry out better quality RCTs (crossover design, double-blinded, long-term,
placebo/controlled) with advanced and accurate outcome measures (such as ambulatory
blood pressure monitoring). Further interventional trials are necessary to determine the
clinical value of supplementation and to identify possible drug interactions between these
bioactive molecules and standard anti-hypertensive medications. For instance, there have
been studies showing that quercetin can be metabolized by the cytochrome P450 system [199].

Overall evidence from a large body of preclinical and human studies suggests that
the bioactive compounds discussed in this review (DHA, EPA, resveratrol, quercetin, and
coenzyme Q10) could have important and clinically relevant anti-hypertensive effects.
However, well-designed clinical trials are still required to o widen our understanding
towards the underlying mechanisms of action and to narrow the knowledge gap between
preclinical findings and human trial data.
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Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral
tissues of two-kidney, one-clip hypertensive rats. J. Pharm. Pharmacol. 2010, 62, 1784–1793. [CrossRef]

113. Grujic-Milanovic, J.; Miloradovic, Z.; Jovovic, D.; Jacevic, V.; Milosavljevic, I.; Milanovic, S.D.; Mihailovic-Stanojevic, N. The
red wine polyphenol, resveratrol improves hemodynamics, oxidative defence and aortal structure in essential and malignant
hypertension. J. Funct. Foods 2017, 34, 266–276. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/30684340
http://doi.org/10.1021/jf0112973
http://doi.org/10.1002/fsn3.855
http://doi.org/10.1155/2015/837042
http://doi.org/10.3390/biomedicines6030091
http://doi.org/10.1002/med.21565
http://doi.org/10.1161/HYPERTENSIONAHA.109.133397
http://doi.org/10.1111/j.1440-1681.2009.05231.x
http://www.ncbi.nlm.nih.gov/pubmed/19566840
http://doi.org/10.1016/j.vph.2011.11.002
http://www.ncbi.nlm.nih.gov/pubmed/22146233
http://doi.org/10.1096/fasebj.22.1_supplement.1209.3
http://doi.org/10.7150/ijms.16810
http://doi.org/10.1152/ajplung.00285.2013
http://doi.org/10.1016/j.lfs.2018.08.071
http://doi.org/10.1016/j.pathophys.2016.05.004
http://doi.org/10.1155/2020/1841527
http://doi.org/10.1016/j.mvr.2020.103988
http://doi.org/10.3892/mmr.2017.6814
http://doi.org/10.4236/ojmc.2014.42004
http://doi.org/10.4236/ojmc.2012.23008
http://doi.org/10.1016/j.carpath.2015.11.003
http://doi.org/10.1111/j.2042-7158.2010.01197.x
http://doi.org/10.1016/j.jff.2017.04.035


Molecules 2022, 27, 7222 27 of 30

114. Dolinsky, V.W.; Chakrabarti, S.; Pereira, T.J.; Oka, T.; Levasseur, J.; Beker, D.; Zordoky, B.N.; Morton, J.S.; Nagendran, J.; Lopaschuk,
G.D.; et al. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochim. Biophys. Acta
(BBA) Mol. Basis Dis. 2013, 1832, 1723–1733. [CrossRef]

115. Li, X.; Dai, Y.; Yan, S.; Shi, Y.; Li, J.; Liu, J.; Cha, L.; Mu, J. Resveratrol lowers blood pressure in spontaneously hypertensive rats
via calcium-dependent endothelial NO production. Clin. Exp. Hypertens. 2016, 38, 287–293. [CrossRef]

116. Javkhedkar, A.A.; Banday, A.A. Antioxidant resveratrol restores renal sodium transport regulation in SHR. Physiol. Rep. 2015, 3, e12618.
[CrossRef]

117. Bhatt, S.R.; Lokhandwala, M.F.; Banday, A.A. Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates
development of hypertension in spontaneously hypertensive rats. Eur. J. Pharmacol. 2011, 667, 258–264. [CrossRef]

118. Vella, R.; Bowen, C.; Fenning, A. Prevention of Cardiovascular Damage in Hypertensive Rats by Resveratrol. Heart Lung Circ.
2008, 17, S232–S233. [CrossRef]

119. Rush, J.W.E.; Quadrilatero, J.; Levy, A.S.; Ford, R.J. Chronic Resveratrol Enhances Endothelium-Dependent Relaxation but Does
Not Alter eNOS Levels in Aorta of Spontaneously Hypertensive Rats. Exp. Biol. Med. 2007, 232, 814–822.

120. Thandapilly, S.J.; Louis, X.L.; Behbahani, J.; Movahed, A.; Yu, L.; Fandrich, R.; Zhang, S.; Kardami, E.; Anderson, H.D.; Netticadan,
T. Reduced hemodynamic load aids low-dose resveratrol in reversing cardiovascular defects in hypertensive rats. Hypertens. Res.
2013, 36, 866–872. [CrossRef] [PubMed]

121. Behbahani, J.; Thandapilly, S.J.; Louis, X.L.; Huang, Y.; Shao, Z.; Kopilas, M.A.; Wojciechowski, P.; Netticadan, T.; Anderson, H.D.
Resveratrol and Small Artery Compliance and Remodeling in the Spontaneously Hypertensive Rat. Am. J. Hypertens. 2010, 23, 1273–1278.
[CrossRef] [PubMed]

122. Thandapilly, S.J.; Wojciechowski, P.; Behbahani, J.; Louis, X.L.; Yu, L.; Juric, D.; Kopilas, M.A.; Anderson, H.D.; Netticadan, T.
Resveratrol Prevents the Development of Pathological Cardiac Hypertrophy and Contractile Dysfunction in the SHR Without
Lowering Blood Pressure. Am. J. Hypertens. 2010, 23, 192–196. [CrossRef]

123. Gordish, K.L.; Beierwaltes, W.H. Resveratrol induces acute endothelium-dependent renal vasodilation mediated through nitric
oxide and reactive oxygen species scavenging. Am. J. Physiol. Ren. Physiol. 2014, 306, F542–F550. [CrossRef]

124. Thandapilly, S.J.; Louis, X.L.; Yang, T.; Stringer, D.M.; Yu, L.; Zhang, S.; Wigle, J.; Kardami, E.; Zahradka, P.; Taylor, C.; et al.
Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating NO-AMPK pathway. Eur. J.
Pharmacol. 2011, 668, 217–224. [CrossRef]

125. Almajdoob, S.; Hossain, E.; Anand-Srivastava, M.B. Resveratrol attenuates hyperproliferation of vascular smooth muscle cells
from spontaneously hypertensive rats: Role of ROS and ROS-mediated cell signaling. Vasc. Pharmacol. 2018, 101, 48–56. [CrossRef]

126. Movahed, A.; Yu, L.; Thandapilly, S.J.; Louis, X.L.; Netticadan, T. Resveratrol protects adult cardiomyocytes against oxidative
stress mediated cell injury. Arch. Biochem. Biophys. 2012, 527, 74–80. [CrossRef]

127. Rimbaud, S.; Ruiz, M.; Piquereau, J.; Mateo, P.; Fortin, D.; Veksler, V.; Garnier, A.; Ventura-Clapier, R. Resveratrol Improves
Survival, Hemodynamics and Energetics in a Rat Model of Hypertension Leading to Heart Failure. PLoS ONE 2011, 6, e26391.
[CrossRef] [PubMed]

128. Chan, V.; Fenning, A.; Iyer, A.; Hoey, A.; Brown, L. Resveratrol improves cardiovascular function in DOCA-salt hypertensive rats.
Curr. Pharm. Biotechnol. 2011, 12, 429–436. [CrossRef] [PubMed]

129. Han, S.; Uludag, M.O.; Usanmaz, S.E.; Ayaloglu-Butun, F.; Akcali, K.C.; Demirel-Yilmaz, E. Resveratrol affects histone 3 lysine 27
methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Mol. Biol. Rep. 2015, 42, 35–42. [CrossRef]
[PubMed]

130. Sun, G.-Q.; Li, Y.-B.; Du, B.; Meng, Y. Resveratrol via activation of AMPK lowers blood pressure in DOCA-salt hypertensive mice.
Clin. Exp. Hypertens. 2015, 37, 616–621. [CrossRef] [PubMed]

131. Parsamanesh, N.; Asghari, A.; Sardari, S.; Tasbandi, A.; Jamialahmadi, T.; Xu, S.; Sahebkar, A. Resveratrol and endothelial
function: A literature review. Pharmacol. Res. 2021, 170, 105725. [CrossRef]

132. Bo, S.; Ponzo, V.; Ciccone, G.; Evangelista, A.; Saba, F.; Goitre, I.; Procopio, M.; Pagano, G.F.; Cassader, M.; Gambino, R. Six
months of resveratrol supplementation has no measurable effect in type 2 diabetic patients. A randomized, double blind,
placebo-controlled trial. Pharmacol. Res. 2016, 111, 896–905. [CrossRef]

133. Bhatt, J.K.; Thomas, S.; Nanjan, M.J. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr.
Res. 2012, 32, 537–541. [CrossRef]

134. Farzin, L.; Asghari, S.; Rafraf, M.; Asghari-Jafarabadi, M.; Shirmohammadi, M. No beneficial effects of resveratrol supplementation
on atherogenic risk factors in patients with nonalcoholic fatty liver disease. Int. J. Vitam. Nutr. Res. 2020, 9, 279–289. [CrossRef]

135. Poulsen, M.M.; Vestergaard, P.F.; Clasen, B.F.; Radko, Y.; Christensen, L.P.; Stødkilde-Jørgensen, H.; Møller, N.; Jessen, N.;
Pedersen, S.B.; Jørgensen, J.O. High-dose resveratrol supplementation in obese men: An investigator-initiated, randomized,
placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 2013, 62, 1186–1195.
[CrossRef]

136. Marques, B.; Trindade, M.; Aquino, J.C.F.; Cunha, A.R.; Gismondi, R.O.; Neves, M.F.; Oigman, W. Beneficial effects of acute trans-
resveratrol supplementation in treated hypertensive patients with endothelial dysfunction. Clin. Exp. Hypertens. 2018, 40, 218–223.
[CrossRef]

http://doi.org/10.1016/j.bbadis.2013.05.018
http://doi.org/10.3109/10641963.2015.1089882
http://doi.org/10.14814/phy2.12618
http://doi.org/10.1016/j.ejphar.2011.05.026
http://doi.org/10.1016/j.hlc.2008.05.581
http://doi.org/10.1038/hr.2013.55
http://www.ncbi.nlm.nih.gov/pubmed/23784505
http://doi.org/10.1038/ajh.2010.161
http://www.ncbi.nlm.nih.gov/pubmed/20671721
http://doi.org/10.1038/ajh.2009.228
http://doi.org/10.1152/ajprenal.00437.2013
http://doi.org/10.1016/j.ejphar.2011.06.042
http://doi.org/10.1016/j.vph.2017.12.064
http://doi.org/10.1016/j.abb.2012.05.002
http://doi.org/10.1371/journal.pone.0026391
http://www.ncbi.nlm.nih.gov/pubmed/22028869
http://doi.org/10.2174/138920111794480552
http://www.ncbi.nlm.nih.gov/pubmed/20874677
http://doi.org/10.1007/s11033-014-3737-x
http://www.ncbi.nlm.nih.gov/pubmed/25234650
http://doi.org/10.3109/10641963.2015.1036060
http://www.ncbi.nlm.nih.gov/pubmed/26114354
http://doi.org/10.1016/j.phrs.2021.105725
http://doi.org/10.1016/j.phrs.2016.08.010
http://doi.org/10.1016/j.nutres.2012.06.003
http://doi.org/10.1024/0300-9831/a000528
http://doi.org/10.2337/db12-0975
http://doi.org/10.1080/10641963.2017.1288741


Molecules 2022, 27, 7222 28 of 30

137. Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; van de Weijer, T.; Goossens, G.H.; Hoeks, J.; van der Krieken, S.; Ryu, D.;
Kersten, S.; et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic
profile in obese humans. Cell Metab. 2011, 14, 612–622. [CrossRef]

138. Kjær, T.N.; Ornstrup, M.J.; Poulsen, M.M.; Stødkilde-Jørgensen, H.; Jessen, N.; Jørgensen, J.O.L.; Richelsen, B.; Pedersen, S.B. No
Beneficial Effects of Resveratrol on the Metabolic Syndrome: A Randomized Placebo-Controlled Clinical Trial. J. Clin. Endocrinol.
Metab. 2017, 102, 1642–1651. [CrossRef] [PubMed]

139. de Ligt, M.; Bergman, M.; Fuentes, R.M.; Essers, H.; Moonen-Kornips, E.; Havekes, B.; Schrauwen-Hinderling, V.B.; Schrauwen, P.
No effect of resveratrol supplementation after 6 months on insulin sensitivity in overweight adults: A randomized trial. Am. J.
Clin. Nutr. 2020, 112, 1029–1038. [CrossRef] [PubMed]

140. Boreková, M.; Hojerová, J.; Koprda, V.; Bauerova, K. Nourishing and Health Benefits of Coenzyme Q—A review. Czech J. Food Sci.
2008, 26, 229–241. [CrossRef]

141. Saini, R. Coenzyme Q10: The essential nutrient. J. Pharm. Bioallied Sci. 2011, 3, 466–467. [CrossRef] [PubMed]
142. Hernández-Camacho, J.D.; Bernier, M.; López-Lluch, G.; Navas, P. Coenzyme Q(10) Supplementation in Aging and Disease.

Front. Physiol. 2018, 9, 44. [CrossRef] [PubMed]
143. Lakomkin, V.L.; Konovalova, G.G.; Kalenikova, E.I.; Zabbarova, I.V.; Tsyplenkova, V.G.; Tikhaze, A.K.; Lankin, V.Z.; Ruuge,

E.K.; Kapel’ko, V.I. Effect of ubiquinone on contractile function and antioxidant status of the myocardium in spontaneously
hypertensive rats. Kardiologiia 2006, 46, 54–62. [PubMed]

144. Graham, D.; Huynh, N.N.; Hamilton, C.A.; Beattie, E.; Smith, R.A.J.; Cochemé, H.M.; Murphy, M.P.; Dominiczak,
A.F. Mitochondria-Targeted Antioxidant MitoQ10 Improves Endothelial Function and Attenuates Cardiac Hypertrophy.
Hypertension 2009, 54, 322–328. [CrossRef]

145. Okamoto, H.; Kawaguchi, H.; Togashi, H.; Minami, M.; Saito, H.; Yasuda, H. Effect of coenzyme Q10 on structural alterations in
the renal membrane of stroke-prone spontaneously hypertensive rats. Biochem. Med. Metab. Biol. 1991, 45, 216–226. [CrossRef]

146. Murad, L.B.; Guimarães, M.R.M.; Vianna, U.M. Effects of decylubiquinone (coenzyme Q10 analog) supplementation on SHRSP.
BioFactors 2007, 30, 13–18. [CrossRef]

147. Ankola, D.D.; Viswanad, B.; Bhardwaj, V.; Ramarao, P.; Kumar, M.N.V.R. Development of potent oral nanoparticulate formulation
of coenzyme Q10 for treatment of hypertension: Can the simple nutritional supplements be used as first line therapeutic agents
for prophylaxis/therapy? Eur. J. Pharm. Biopharm. 2007, 67, 361–369. [CrossRef] [PubMed]

148. Ishikawa, A.; Kawarazaki, H.; Ando, K.; Fujita, M.; Fujita, T.; Homma, Y. Renal preservation effect of ubiquinol, the reduced form
of coenzyme Q10. Clin. Exp. Nephrol. 2011, 15, 30–33. [CrossRef] [PubMed]

149. Langsjoen, P.; Langsjoen, P.; Willis, R.; Folkers, K. Treatment of essential hypertension with coenzyme Q10. Mol. Asp. Med.
1994, 15, 265–272. [CrossRef]

150. Singh, R.B.; Niaz, M.A.; Rastogi, S.S.; Shukla, P.K.; Thakur, A.S. Effect of hydrosoluble coenzyme Q10 on blood pressures and
insulin resistance in hypertensive patients with coronary artery disease. J. Hum. Hypertens. 1999, 13, 203–208. [CrossRef]
[PubMed]

151. Young, J.M.; Florkowski, C.M.; Molyneux, S.L.; McEwan, R.G.; Frampton, C.M.; Nicholls, M.G.; Scott, R.S.; George, P.M. A
randomized, double-blind, placebo-controlled crossover study of coenzyme Q10 therapy in hypertensive patients with the
metabolic syndrome. Am. J. Hypertens. 2012, 25, 261–270. [CrossRef] [PubMed]

152. Hodgson, J.M.; Watts, G.F.; Playford, D.A.; Burke, V.; Croft, K.D. Coenzyme Q10 improves blood pressure and glycaemic control:
A controlled trial in subjects with type 2 diabetes. Eur. J. Clin. Nutr. 2002, 56, 1137–1142. [CrossRef] [PubMed]

153. Chew, G.T.; Watts, G.F.; Davis, T.M.; Stuckey, B.G.; Beilin, L.J.; Thompson, P.L.; Burke, V.; Currie, P.J. Hemodynamic effects of fenofibrate
and coenzyme Q10 in type 2 diabetic subjects with left ventricular diastolic dysfunction. Diabetes Care 2008, 31, 1502–1509. [CrossRef]
[PubMed]

154. Muthuraman, A.; Shaikh, S.A.; Ramesh, M.; Sikarwar, M.S. Chapter 6—The structure-activity relationship of marine products for
neuroinflammatory disorders. In Studies in Natural Products Chemistry; Attaur, R., Ed.; Elsevier: Amsterdam, The Netherlands,
2021; Volume 70, pp. 151–194.

155. Rahmawaty, S.; Charlton, K.; Lyons-Wall, P.; Meyer, B.J. Dietary Intake and Food Sources of EPA, DPA and DHA in Australian
Children. Lipids 2013, 48, 869–877. [CrossRef]

156. Brenna, J.T.; Varamini, B.; Jensen, R.G.; Diersen-Schade, D.A.; Boettcher, J.A.; Arterburn, L.M. Docosahexaenoic and arachidonic
acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 2007, 85, 1457–1464. [CrossRef]

157. Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7.
[CrossRef]

158. Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Caterina Zito, M.; Guarnieri,
L.; et al. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines
2020, 8, 306. [CrossRef] [PubMed]

159. Russell, F.D.; Bürgin-Maunder, C.S. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar. Drugs
2012, 10, 2535–2559. [CrossRef] [PubMed]

160. PubChem Eicosapentaenoic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Eicosapentaenoic-acid
(accessed on 23 August 2022).

http://doi.org/10.1016/j.cmet.2011.10.002
http://doi.org/10.1210/jc.2016-2160
http://www.ncbi.nlm.nih.gov/pubmed/28182820
http://doi.org/10.1093/ajcn/nqaa125
http://www.ncbi.nlm.nih.gov/pubmed/32492138
http://doi.org/10.17221/1122-CJFS
http://doi.org/10.4103/0975-7406.84471
http://www.ncbi.nlm.nih.gov/pubmed/21966175
http://doi.org/10.3389/fphys.2018.00044
http://www.ncbi.nlm.nih.gov/pubmed/29459830
http://www.ncbi.nlm.nih.gov/pubmed/16858356
http://doi.org/10.1161/HYPERTENSIONAHA.109.130351
http://doi.org/10.1016/0885-4505(91)90024-F
http://doi.org/10.1002/biof.5520300102
http://doi.org/10.1016/j.ejpb.2007.03.010
http://www.ncbi.nlm.nih.gov/pubmed/17452099
http://doi.org/10.1007/s10157-010-0350-8
http://www.ncbi.nlm.nih.gov/pubmed/20878200
http://doi.org/10.1016/0098-2997(94)90037-X
http://doi.org/10.1038/sj.jhh.1000778
http://www.ncbi.nlm.nih.gov/pubmed/10204818
http://doi.org/10.1038/ajh.2011.209
http://www.ncbi.nlm.nih.gov/pubmed/22113168
http://doi.org/10.1038/sj.ejcn.1601464
http://www.ncbi.nlm.nih.gov/pubmed/12428181
http://doi.org/10.2337/dc08-0118
http://www.ncbi.nlm.nih.gov/pubmed/18487480
http://doi.org/10.1007/s11745-013-3812-4
http://doi.org/10.1093/ajcn/85.6.1457
http://doi.org/10.3945/an.111.000893
http://doi.org/10.3390/biomedicines8090306
http://www.ncbi.nlm.nih.gov/pubmed/32854210
http://doi.org/10.3390/md10112535
http://www.ncbi.nlm.nih.gov/pubmed/23203276
https://pubchem.ncbi.nlm.nih.gov/compound/Eicosapentaenoic-acid


Molecules 2022, 27, 7222 29 of 30

161. Harvard, T.H. Chan Omega-3 Fatty Acids: An Essential Contribution. The Nutrition Source. Available online: https://www.hsph.
harvard.edu/nutritionsource/what-should-you-eat/fats-and-cholesterol/types-of-fat/omega-3-fats/ (accessed on 23 August 2022).

162. National Institutes of Health. Omega-3 Fatty Acids. Available online: https://ods.od.nih.gov/factsheets/Omega3FattyAcids-
Consumer/ (accessed on 23 August 2022).

163. Deckelbaum, R.J.; Torrejon, C. The Omega-3 Fatty Acid Nutritional Landscape: Health Benefits and Sources. J. Nutr. 2012, 142, S587–S591.
[CrossRef] [PubMed]

164. Sudheendran, S.; Chang, C.C.; Deckelbaum, R.J. N-3 vs. saturated fatty acids: Effects on the arterial wall. Prostaglandins Leukot.
Essent. Fat. Acids 2010, 82, 205–209. [CrossRef] [PubMed]

165. Chen, R.; Zhong, W.; Shao, C.; Liu, P.; Wang, C.; Wang, Z.; Jiang, M.; Lu, Y.; Yan, J. Docosahexaenoic acid inhibits monocrotaline-
induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation. Am. J. Physiol. Lung Cell. Mol.
Physiol. 2017, 314, L243–L255. [CrossRef]

166. Morin, C.; Hiram, R.; Rousseau, E.; Blier, P.U.; Fortin, S. Docosapentaenoic acid monoacylglyceride reduces inflammation
and vascular remodeling in experimental pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H574–H586.
[CrossRef]

167. Yan, J.; Chen, R.; Liu, P.; Gu, Y. Docosahexaenoic acid inhibits development of hypoxic pulmonary hypertension: In vitro and
in vivo studies. Int. J. Cardiol. 2013, 168, 4111–4116. [CrossRef]

168. Ishii, T.; Haraguchi, G.; Hosokawa, S.; Doi, S.; Isobe, M. Abstract 15404: Eicosapentaenoic Acid Ameliorates Pulmonary
Hypertension via G Protein-Coupled Receptor 120 Pathway in Rats. Circulation 2013, 128 (Suppl. S22), A15404.

169. Kurahara, L.H.; Hiraishi, K.; Yamamura, A.; Zhang, Y.; Abe, K.; Yahiro, E.; Aoki, M.; Koga, K.; Yokomise, H.; Go, T.; et al. Eicos-
apentaenoic acid ameliorates pulmonary hypertension via inhibition of tyrosine kinase Fyn. J. Mol. Cell. Cardiol. 2020, 148, 50–62.
[CrossRef]

170. Sane, S.; Baba, M.; Kusano, C.; Shirao, K.; Andoh, T.; Kamada, T.; Aikou, T. Eicosapentaenoic Acid Reduces Pulmonary Edema in
Endotoxemic Rats. J. Surg. Res. 2000, 93, 21–27. [CrossRef]

171. Singh, T.U.; Kathirvel, K.; Choudhury, S.; Garg, S.K.; Mishra, S.K. Eicosapentaenoic acid-induced endothelium-dependent and
-independent relaxation of sheep pulmonary artery. Eur. J. Pharmacol. 2010, 636, 108–113. [CrossRef] [PubMed]

172. Engler, M.M.; Engler, M.B.; Goodfriend, T.L.; Ball, D.L.; Yu, Z.; Su, P.; Kroetz, D.L. Docosahexaenoic Acid is an Antihypertensive
Nutrient That Affects Aldosterone Production in SHR. In Proceedings of the Society for Experimental Biology and Medicine,
Washington, DC, USA, 18 April 1999; Volume 221, pp. 32–39.

173. Rousseau, D.; Raederstorff, D.; Grynberg, A. Influence of n-3 PolyUnsaturated Fatty Acid in several etiologies of hypertension
in rats. In Proceedings of the 6th Meeting France—New CEE Members New Frontiers in Basic Cardiovascular Research, La
Grande-Motte, France, 24–27 September 2004.

174. Rousseau-Ralliard, D.; Moreau, D.; Guilland, J.-C.; Raederstorff, D.; Grynberg, A. Docosahexaenoic acid, but not eicosapentaenoic
acid, lowers ambulatory blood pressure and shortens interval QT in spontaneously hypertensive rats in vivo. Prostaglandins
Leukot. Essent. Fat. Acids 2009, 80, 269–277. [CrossRef] [PubMed]

175. Engler, M.M.; Engler, M.B.; Pierson, D.M.; Molteni, L.B.; Molteni, A. Effects of Docosahexaenoic Acid on Vascular Pathology and
Reactivity in Hypertension. Exp. Biol. Med. 2003, 228, 299–307. [CrossRef] [PubMed]

176. Engler, M.B.; Engler, M.M. Docosahexaenoic Acid-Induced Vasorelaxation in Hypertensive Rats: Mechanisms of Action. Biol. Res.
Nurs. 2000, 2, 85–95. [CrossRef] [PubMed]

177. Engler, M.M.; Bellenger-Germain, S.H.; Engler, M.B.; Narce, M.M.; Poisson, J.-P.G. Dietary docosahexaenoic acid affects stearic
acid desaturation in spontaneously hypertensive rats. Lipids 2000, 35, 1011–1015. [CrossRef]

178. Engler, M.M.; Engler, M.B.; Kroetz, D.L.; Boswell, K.D.B.; Neeley, E.; Krassner, S.M. The effects of a diet rich in docosahexaenoic
acid on organ and vascular fatty acid composition in spontaneously hypertensive rats. Prostaglandins Leukot. Essent. Fat. Acids
1999, 61, 289–295. [CrossRef]

179. Bayorh, M.A.; McGee, L.; Feuerstein, G. Acute and chronic effects of eicosapentaenoic acid (EPA) on the cardiovascular system.
Res. Commun. Chem. Pathol. Pharmacol. 1989, 66, 355–374.

180. Kasuya, Y.; Utsunomiya, N.; Matsuki, N. Attenuation OF the Development of Hypertension in Spontaneously Hypertensive Rats
by Chronic Oral Administration of Eicosapentaenoic Acid. J. Pharm. Dyn. 1986, 9, 239–243. [CrossRef]

181. Yin, K.; Croft, K.D.; Beilin, L.J. Effect of pure eicosapentaenoic acid feeding on blood pressure and vascular reactivity in
spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 1988, 15, 275–280. [CrossRef]

182. Engler, M.B.; Ma, Y.-H.; Engler, M.M. Calcium-mediated mechanisms of eicosapentaenoic acid-induced relaxation in hypertensive
rat aorta*. Am. J. Hypertens. 1999, 12, 1225–1235. [CrossRef]

183. Nakayama, M.; Fukuda, N.; Watanabe, Y.; Soma, M.; Hu, W.; Kishioka, H.; Satoh, C.; Kubo, A.; Kanmatsuse, K. Low dose of
eicosapentaenoic acid inhibits the exaggerated growth of vascular smooth muscle cells from spontaneously hypertensive rats
through suppression of transforming growth factor-β. J. Hypertens. 1999, 17, 1421–1430. [CrossRef] [PubMed]

184. Sagara, M.; Njelekela, M.; Teramoto, T.; Taguchi, T.; Mori, M.; Armitage, L.; Birt, N.; Birt, C.; Yamori, Y. Effects of docosahexaenoic
Acid supplementation on blood pressure, heart rate, and serum lipids in Scottish men with hypertension and hypercholesterolemia.
Int. J. Hypertens. 2011, 2011, 809198. [CrossRef] [PubMed]

https://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/fats-and-cholesterol/types-of-fat/omega-3-fats/
https://www.hsph.harvard.edu/nutritionsource/what-should-you-eat/fats-and-cholesterol/types-of-fat/omega-3-fats/
https://ods.od.nih.gov/factsheets/Omega3FattyAcids-Consumer/
https://ods.od.nih.gov/factsheets/Omega3FattyAcids-Consumer/
http://doi.org/10.3945/jn.111.148080
http://www.ncbi.nlm.nih.gov/pubmed/22323763
http://doi.org/10.1016/j.plefa.2010.02.020
http://www.ncbi.nlm.nih.gov/pubmed/20207121
http://doi.org/10.1152/ajplung.00046.2017
http://doi.org/10.1152/ajpheart.00814.2013
http://doi.org/10.1016/j.ijcard.2013.07.073
http://doi.org/10.1016/j.yjmcc.2020.08.013
http://doi.org/10.1006/jsre.2000.5960
http://doi.org/10.1016/j.ejphar.2010.02.041
http://www.ncbi.nlm.nih.gov/pubmed/20347779
http://doi.org/10.1016/j.plefa.2009.03.003
http://www.ncbi.nlm.nih.gov/pubmed/19428232
http://doi.org/10.1177/153537020322800309
http://www.ncbi.nlm.nih.gov/pubmed/12626775
http://doi.org/10.1177/109980040000200202
http://www.ncbi.nlm.nih.gov/pubmed/11337819
http://doi.org/10.1007/s11745-000-0612-0
http://doi.org/10.1054/plef.1999.0102
http://doi.org/10.1248/bpb1978.9.239
http://doi.org/10.1111/j.1440-1681.1988.tb01072.x
http://doi.org/10.1016/S0895-7061(99)90060-2
http://doi.org/10.1097/00004872-199917100-00009
http://www.ncbi.nlm.nih.gov/pubmed/10526902
http://doi.org/10.4061/2011/809198
http://www.ncbi.nlm.nih.gov/pubmed/21423683


Molecules 2022, 27, 7222 30 of 30

185. Woodman, R.J.; Mori, T.A.; Burke, V.; Puddey, I.B.; Watts, G.F.; Beilin, L.J. Effects of purified eicosapentaenoic and docosahexaenoic
acids on glycemic control, blood pressure, and serum lipids in type 2 diabetic patients with treated hypertension. Am. J. Clin.
Nutr. 2002, 76, 1007–1015. [CrossRef] [PubMed]

186. Mori, T.A.; Watts, G.F.; Burke, V.; Hilme, E.; Puddey, I.B.; Beilin, L.J. Differential effects of eicosapentaenoic acid and docosahexaenoic
acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation 2000, 102, 1264–1269.
[CrossRef]

187. Iketani, T.; Takazawa, K.; Yamashina, A. Effect of eicosapentaenoic acid on central systolic blood pressure. Prostaglandins Leukot.
Essent. Fat. Acids 2013, 88, 191–195. [CrossRef]

188. Miyajima, T.; Tsujino, T.; Saito, K.; Yokoyama, M. Effects of eicosapentaenoic acid on blood pressure, cell membrane fatty acids,
and intracellular sodium concentration in essential hypertension. Hypertens. Res. 2001, 24, 537–542. [CrossRef] [PubMed]

189. Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety Aspects of the Use of
Quercetin as a Dietary Supplement. Mol. Nutr. Food Res. 2018, 62, 1700447. [CrossRef]

190. Javadi, F.; Ahmadzadeh, A.; Eghtesadi, S.; Aryaeian, N.; Zabihiyeganeh, M.; Rahimi Foroushani, A.; Jazayeri, S. The Effect of
Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized
Controlled Trial. J. Am. Coll. Nutr. 2017, 36, 9–15. [CrossRef]

191. Lu, N.T.; Crespi, C.M.; Liu, N.M.; Vu, J.Q.; Ahmadieh, Y.; Wu, S.; Lin, S.; McClune, A.; Durazo, F.; Saab, S.; et al. A Phase I Dose
Escalation Study Demonstrates Quercetin Safety and Explores Potential for Bioflavonoid Antivirals in Patients with Chronic
Hepatitis C. Phytother. Res. 2016, 30, 160–168. [CrossRef]

192. Howells, L.M.; Berry, D.P.; Elliott, P.J.; Jacobson, E.W.; Hoffmann, E.; Hegarty, B.; Brown, K.; Steward, W.P.; Gescher, A.J.
Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases—safety,
pharmacokinetics, and pharmacodynamics. Cancer Prev. Res. 2011, 4, 1419–1425. [CrossRef]

193. Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.;
Nasrallah, G.K.; et al. Potential Adverse Effects of Resveratrol: A Literature Review. Int. J. Mol. Sci. 2020, 21, 2084. [CrossRef]
[PubMed]

194. Detampel, P.; Beck, M.; Krähenbühl, S.; Huwyler, J. Drug interaction potential of resveratrol. Drug Metab. Rev. 2012, 44, 253–265.
[CrossRef]

195. Mankowski, R.T.; You, L.; Buford, T.W.; Leeuwenburgh, C.; Manini, T.M.; Schneider, S.; Qiu, P.; Anton, S.D. Higher dose of
resveratrol elevated cardiovascular disease risk biomarker levels in overweight older adults—A pilot study. Exp. Gerontol.
2020, 131, 110821. [CrossRef] [PubMed]

196. Arenas-Jal, M.; Suñé-Negre, J.M.; García-Montoya, E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges.
Compr. Rev. Food Sci. Food Saf. 2020, 19, 574–594. [CrossRef] [PubMed]

197. Zhu, Z.G.; Sun, M.X.; Zhang, W.L.; Wang, W.W.; Jin, Y.M.; Xie, C.L. The efficacy and safety of coenzyme Q10 in Parkinson’s
disease: A meta-analysis of randomized controlled trials. Neurol. Sci. 2017, 38, 215–224. [CrossRef] [PubMed]

198. Chang, C.H.; Tseng, P.T.; Chen, N.Y.; Lin, P.C.; Lin, P.Y.; Chang, J.P.; Kuo, F.Y.; Lin, J.; Wu, M.C.; Su, K.P. Safety and tolerability of
prescription omega-3 fatty acids: A systematic review and meta-analysis of randomized controlled trials. Prostaglandins Leukot.
Essent. Fat. Acids 2018, 129, 1–12. [CrossRef]

199. Chen, Y.; Xiao, P.; Ou-Yang, D.S.; Fan, L.; Guo, D.; Wang, Y.N.; Han, Y.; Tu, J.H.; Zhou, G.; Huang, Y.F.; et al. Simultaneous action
of the flavonoid quercetin on cytochrome P450 (CYP) 1A2, CYP2A6, N-acetyltransferase and xanthine oxidase activity in healthy
volunteers. Clin. Exp. Pharmacol. Physiol. 2009, 36, 828–833. [CrossRef]

http://doi.org/10.1093/ajcn/76.5.1007
http://www.ncbi.nlm.nih.gov/pubmed/12399272
http://doi.org/10.1161/01.CIR.102.11.1264
http://doi.org/10.1016/j.plefa.2012.11.008
http://doi.org/10.1291/hypres.24.537
http://www.ncbi.nlm.nih.gov/pubmed/11675948
http://doi.org/10.1002/mnfr.201700447
http://doi.org/10.1080/07315724.2016.1140093
http://doi.org/10.1002/ptr.5518
http://doi.org/10.1158/1940-6207.CAPR-11-0148
http://doi.org/10.3390/ijms21062084
http://www.ncbi.nlm.nih.gov/pubmed/32197410
http://doi.org/10.3109/03602532.2012.700715
http://doi.org/10.1016/j.exger.2019.110821
http://www.ncbi.nlm.nih.gov/pubmed/31891746
http://doi.org/10.1111/1541-4337.12539
http://www.ncbi.nlm.nih.gov/pubmed/33325173
http://doi.org/10.1007/s10072-016-2757-9
http://www.ncbi.nlm.nih.gov/pubmed/27830343
http://doi.org/10.1016/j.plefa.2018.01.001
http://doi.org/10.1111/j.1440-1681.2009.05158.x

	Introduction 
	Literature Search 
	Hypertension 
	Regulation of Blood Pressure 
	Sympathetic Nervous System 
	Renin-Angiotensin-Aldosterone System 
	Endothelium 

	Hypertensive Heart Disease 
	Left Ventricular Hypertrophy 

	Food-Derived Bioactive Compounds for Management of Hypertension 

	Quercetin 
	Preclinical Trials 
	Pulmonary Hypertension Models 
	Renovascular Hypertension Model 
	SHR Model 
	Salt Sensitive Hypertension Models 

	Clinical Trials 

	Resveratrol 
	Preclinical Studies 
	Pulmonary Hypertension Models 
	Renovascular Hypertension Model 
	SHR Models 
	Salt-sensitive Hypertension Models 

	Clinical Trials 

	Coenzyme Q10 
	Clinical Trials 

	DHA and EPA 
	Preclinical Studies 
	Pulmonary Hypertension Models 
	SHR Model 

	DHA Clinical Trials 
	EPA Clinical Trials 

	Safety and Adverse Effects of the Compounds 
	Quercetin 
	Resveratrol 
	Coenzyme Q10 
	EPA and DHA 

	Conclusions and Future Directions 
	References

