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Abstract: Pleurotus eryngii (PE) is an edible mushroom with high nutritional value. Pleurotus eryngii
polysaccharides (PEPs) are one of the main active ingredients and manifest a great variety of biological
activities. This study mainly focused on the chemical characterization and biological activities of
PEPs, which were separated into two fractions (named WPS and P-1). WPS is mainly dominated
by β-glycosidic bonds and contains α-glycosidic bonds, and P-1 only contains α-glycosidic bonds.
The molecular weights of WPS and P-1 were 4.5 × 105 Da and 2.2 × 104 Da. The result of GC
indicated that two the fractions were composed of rhamnose, arabinose, xylose, mannose, glucose,
and galactose, with a ratio of 0.35:0.24:0.45:0.24:28.78:1.10 for WPS and 0.95:0.64:0.66:1.84:60.69:0.67
for P-1. The advanced structure studies indicated that the two fractions had no triple-helical structure,
where WPS had a dense structure and P-1 had a loose structure. In addition, the antioxidant activity
of WPS surpassed P-1, and the two fractions also exhibited a high hypoglycemic activity via inhibiting
α-glycosidase activities and promoting the expression of PI3K-AKT signaling pathway based on
in vitro assay and cell experiments.

Keywords: Pleurotus eryngii; polysaccharides; chemical characterization; hypoglycemic activities;
PI3K-AKT signaling pathway

1. Introduction

Diabetes is the outcome of abnormal insulin release or action in our body and is
characterized by increased blood glucose levels. According to the International Diabetes
Federation’s (IDF) 2019 estimation, 463.0 million adults are suffering from type 2 diabetes
mellitus (T2DM), which will be increased to around 700.2 million by the year 2045 [1,2].
Hence, effective clinical therapy against diabetes has become an urgent demand. The
consumption of functional foods, such as mushrooms, is a possible strategy to relieve
T2DM.

Mushrooms are rich in nutrients, such as protein, polysaccharides, vitamins, minerals,
and various functional factors, which play an important role in protecting human cells
against diseases such as diabetes, inflammation, antiviral, cancer, and heart disease [3–10].
Pleurotus eryngii, a kind of Pleurotus ostreatus, is an edible mushroom widely cultivated
in the world with high nutritional value. It contains various active ingredients such as
polysaccharides, proteins, minerals, trace elements, vitamins, terpenoids, peptides, and
other substances. Polysaccharides from P. eryngii (PEPs) are mainly manifested in biological
activities, with effects including antitumor, anti-oxidation, anti-hyperlipidemia, bacteriosta-
sis, and improvement in body immunity, and are becoming more and more popular in
Europe and Asia [11–14]. Chen et al. found that PEPs can play a role in lowering blood
sugar in mice [3]. Xu et al. suggested that PEPs had potential hepatoprotective and antiox-
idant effects on hyperlipidemia mice due to high-fat and high-cholesterol emulsion [15].
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Despite some studies that have proved that PEPs have a hypoglycemic effect, the structure–
activities relationship is still unclear, and the underlying mechanism of hypoglycemic
effects of the purified PEPs should remain to be fully identified.

Hence, we purified crude PEP into two purified fractions and followed by chemical
characterization analysis as well as in vitro and in situ hypoglycemic activities. Further-
more, the possible hypoglycemic mechanism of polysaccharides was also investigated.
The purpose of this study was to expand the production and application of PEPs. Our
data also provide a theoretical basis for exploring the structure–activity relationship of
polysaccharides.

2. Materials and Methods
2.1. Materials and Regents

PE was purchased from Xi’an Chengxin Edible Fungus Planting Co., Ltd., Xi’an,
China. DEAE cellulose, common dialysis bag (8–14 KDa), 2,2-diphenyl-1-picrylhydrazyl
(DPPH, purity ≥ 98%), 4-nitrophenyl-d-pyridyl Glucosinolate (pNPG, purity ≥ 98%), and
α-glucosidase(enzymatic activity ≥ 50 units/mg protein) were purchased from Shanghai
Yuanye Biotechnology Co., Ltd., Shanghai, China. Glucose, xylose, arabinose, mannose,
rhamnose, galactose, glucuronic acid, and standard were purchased from Hefei Bomei
Biological Technology Co., Ltd., Hefei, China. Other chemicals used in the experiment were
of analytical grade.

2.2. Extraction and Isolation of P. eryngii Polysaccharides

The PEPs were extracted by using hot water and precipitated with 95% alcohol. Briefly,
freshly smashed fruiting bodies were dried in oven under 50 ◦C until the weight of fruiting
bodies was unchangeable. Then, breaking up the dried fruit bodies into a uniform powder
is necessary in order to increase the yield of crude polysaccharides. The powder was
extracted with hot water under 40 ◦C (1:40, w/v) for 3 h before collected water extract
was precipitated with 95% alcohol (1:4, v/v) for 24 h in refrigerator. The precipitate was
separated and dissolved in 20 mL distilled water, and a Sevage method reagent (N-butanol:
chloroform = 1:4, v/v) was added three times to remove the proteins. Finally, the sample
was freeze-dried after dialyzing (8–14 KDa) in dissolved water for 2 days, which was
named P. eryngii polysaccharides (PEPs). The crude polysaccharide yield of P. eryngii was
calculated by using the following equation:

PEP yield (%) = (W2/W1) × 100%

where W2 is the weight of the crude polysaccharide and W1 is the weight of the dried PE
powder.

The crude PEP was dissolved in distilled water to 10 mg/mL and purified by DEAE
cellulose anion-exchange column chromatography. Subsequently, the column was eluted
with NaOH, HCl, and NaOH solution in order to activate it and eluted with distilled water
until pH = 7.0, followed by a stepwise elution of 0–0.5 M NaCl solubilized in deionized
water at a flow rate of 5 mL/min. A total of 10 mL was collected per tube.

Two fractions (10 mL/tube) were collected according to total carbohydrate contents
quantified by phenol-sulfuric acid method using an automatic fraction collector to trace
the elution curve. The eluates in different concentrations were combined, concentrated
in sequence, dialyzed, and freeze-dried to obtain two purified polysaccharides: distilled-
water-eluting polysaccharide (WPS) and 0.1 mol/L NaCl-eluted polysaccharide (P-1). After
dialysis, concentrated and lyophilized fractions were further purified with a Sephadex
G-100 column (2.6 cm × 60 cm) eluted with distilled water at a flow rate of 0.3 mL/min
to obtain two purified polysaccharides: distilled-water-eluting polysaccharide (WPS) and
0.1 mol/L NaCl-eluted polysaccharide (P-1).
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2.3. Physicochemical Properties of PEP

The following indexes were determined using a UV-visible spectrophotometer L9
(Shanghai Precision Scientific Instrument Co., Ltd., Shanghai, China). Determination of
total sugar content was conducted using anthrone sulfate method with D-glucose as a
standard [16]. The protein content was determined by Coomassie Brilliant Blue G-250
method using bovine serum albumin as a standard. The content of uronic acid was
measured by oxazole–sulfuric acid method using glucuronic acid as a standard [17].

2.3.1. Total Sugar Content

Total sugar concentration in dried PS samples was determined by the colorimetric
phenol–sulfuric acid method. A total of 5 mg of dried PS was dissolved in 5 mL of water,
and then 400 µL of dissolved sample and 400 µL of 5% phenol solutions (w/v) were mixed
with 2 mL of 95% H2SO4, strongly vortexed, and left at room temperature for 20 min. The
absorbance was measured at 490 nm, and all measurements were completed in duplicate.
D-(+)-Glucose was used as a standard and a calibration curve.

2.3.2. Protein Content

Using the Bradford method, the protein content was determined: 0.5 mL of a 5 mg/mL
sample was diluted with water to 1 mL, then 5 mL of Coomassie brilliant blue G-250
solution was added, agitated vigorously, and left for 10 min. The absorbance was measured
at 595 nm. BSA was utilized as the standard ingredient to generate a standard curve, and
the protein content was determined using the standard curve.

2.3.3. Uronic Acid Content

We took 0.5 mL of a sample solution with a concentration of 2 mg/mL, diluted it
with water to 1 mL, and performed the preceding steps at a low temperature. Next, we
added 6 mL of concentrated sulfuric acid and gently shook it. We placed the mixture in
an 85 ◦C water bath for 20 min. Each tube was filled with 0.2 mL of a 1 mg/mL carbazole
solution dissolved in 95% ethanol, shaken evenly, and left at room temperature for two
hours. The absorbance value was measured at 530 nm, and the standard curve containing
galacturonic acid was utilized to create the standard curve. The concentration of uronic
acid was determined using the standard curve.

2.4. Chemical Characterization of WPS and P-1
2.4.1. Ultraviolet Full-Wavelength Scan of WPS and P-1

Purified polysaccharide fractions WPS and P-1 were dissolved in distilled water to
the concentration of 10 mg/mL under magnetic stirring until completely solubilized. UV
spectrum was recorded on a UV-visible spectrophotometer L9 (Shanghai Precision Scientific
Instrument Co., Ltd., Shanghai, China). in the range of 200–400 nm every 10 nm.

2.4.2. FT-IR Analysis of WPS and P-1

The purified fractions were ground with KBr powder and pressed into pellets for
FT-IR measurement in the frequency range of 400–4000 nm−1 using an FT-IR spectrometer
(PerkinElmer, Waltham, MA, USA) [18].

2.4.3. 1D-NMR Analysis

A 50 mg/mL solution of polysaccharide was prepared with D2O as solvent. 1H
NMR and 13C NMR spectrum was recorded with AV III-600 NMR spectroscopy (Bruker,
Hamburg, Germany).

2.4.4. Analysis of Monosaccharide Composition with GC

The monosaccharide composition analysis of WPS and P-1 was achieved using sugar
nitrile acetate derivatization in GC analysis. Briefly, 20 mg of polysaccharides was hy-
drolyzed by 2 mL of 4 M Trifluoroacetic acid (TFA) at 110 ◦C for 2 h in order to release
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constitutive monosaccharides. Methanol was added to the system, followed by evaporation
to dryness in order to remove TFA and the obtained substance became a hydrolysate.
A total of 20 mg of hydroxylamine hydrochloride, 2 mg of inositol (as an internal reference),
and 1 mL of pyridine were reacted with the hydrolyzate at 90 ◦C for 30 min. Then, 1.0 mL
of acetic anhydride was added to the mixture and reacted again at 90 ◦C for 30 min after the
sample was treated by 90 ◦C water bath oscillation, which was used to process the acetyla-
tion. All standard sugars (glucose, xylose, arabinose, mannose, rhamnose, galactose, and
glucuronic acid) were converted to their acetylated derivatives according to the methods
described above. The acetylated derivatives of WPS and P-1 were analyzed by GC.

Agilent 7890B-5977 (Agilent Technologies Inc., Santa Clara, CA, USA) was used for
detection. The chromatographic conditions were: DB-5 capillary column (30 m × 0.32 nm,
0.25 µm); the inlet temperature was 250 ◦C; the injection volume was 1 µL; the split ratio
was 10:1; the carrier gas was ultra-pure nitrogen; and the temperature of the detector was
270 ◦C. Column heating procedure: initial temperature 150 ◦C, held for 0.5 min; temperature
increased to 190 ◦C at a rate of 7 ◦C/min and held for 2 min. The temperature was then
raised to 250 ◦C at a rate of 15 ◦C/min and maintained for 8 min.

2.4.5. Determination of Molecular Weight

The molecular weight of WPS and P-1 was determined by HPGPC according to
the previous study [19], which was performed on a Shimadzu LC-20AT HPLC system
(Shimadzu Co., Kyoto, Japan) with column type ShodexOHpak. Sample was eluted with
distilled water (with 0.02% NaN3) at the flow rate of 1 mL/min with 500 µL of injection
volume. T-series dextran standards were used for constructing the calibration curve.

Y = −5.3425 × e−5X3 + 1.2596 × e−2X2 − 1.0358X + 36.8901 (R2 = 0.9998)

where Y is the logarithm of saccharides, Mw; and X is the saccharide sample’s peak elution
time.

2.4.6. Morphological Analysis

The microstructure was observed using a field emission scanning electron microscope
Nano G2 (Compound Scientific Instruments Co., Ltd., Shanghai, China). An appropriate
number of purified polysaccharides WPS and P-1 was pasted on a metal stage, followed by
coated with gold powder for 30 s. Every sample was recorded under a magnification of
400, 3000, and 12,000.

2.4.7. Congo Red Experiment

The Congo red solution was added to sample at concentration of 1 mg/mL, followed
by adding NaOH solution at 0.1 mol/L, 0.2 mol/L, 0.3 mol/L, 0.4 mol/L, and 0.5 mol/L.
Then, the reaction system was scanned in the range of 400–600 nm band using an ultraviolet–
visible spectrophotometer L9 (Shanghai Precision Scientific Instrument Co., Ltd., Shanghai,
China) after 30 min. The distilled water without adding WPS and P-1 served as the control.

2.5. Determination of Antioxidant
2.5.1. DPPH Free-Radical Scavenging Activity

A total of 150 uL DPPH (0.2 mM in absolute ethanol) with 150 µL of different concen-
trations (0.05, 0.1, 0.2, 0.4, 0.8, and 1 mg/mL) and sample solution was mixed in 96-well
microtiter plates, followed by shaking the mixture and incubating for 30 min at room
temperature in the dark. Using the same concentration, VC served as a positive reference.
The absorbance of the solution was measured at 517 nm. The scavenging activity was
calculated by the following equation:

DPPH free radical scavenging rate (%) = [1 − (A1 − A2)/A0] × 100%
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where A0 is the absorbance of the control (using distilled water instead of the sample
solution), A1 is the absorbance of the sample, and A2 is the absorbance of the sample in
which the DPPH free-radical solution is replaced with absolute ethanol.

2.5.2. Hydroxyl Radical-Scavenging Activity

A total of 100 uL of FeSO4 solution (6 mM) and 100 µL of salicylic acid–ethanol solution
(6 mM) was added to sample solution at different concentrations (0.05, 0.1, 0.2, 0.4, 0.8, and
1 mg/mL). Subsequently, the reaction system was triggered by adding 25 µL H2O2, and the
mixture was incubated for 30 min at 37 ◦C. The absorbance of the mixture was measured
at 510 nm after cooling down to room temperature, with positive reference to the same
concentration of VC. The scavenging activity was calculated by the following equation:

Hydroxyl free scavenging rate (%) = [1 − (A1 − A2)/A0] × 100%

where A0 is the absorbance of the control (using distilled water instead of the sample
solution), A1 is the absorbance of the sample, and A2 is the absorbance of the sample using
distilled water instead of H2O2.

2.5.3. Superoxide Anion-Scavenging Activity

A total of 3 mL of Tris-HCl solution (pH = 8.2) was added to 1 mL of sample solution
at different concentrations (0.05, 0.1, 0.2, 0.4, 0.8, and 1 mg/mL) before 30 ◦C water baths
for 20 min. Subsequently, 3 mL pyrogallic acid solution (5 mM) was mixed into the
reaction system, followed by shaking for 3 min and the addition of 1 mL of concentrated
hydrochloric acid for termination. Using the same concentration, VC served as a positive
reference. The absorbance of the solution was measured at 320 nm.

peroxide anion scavenging rate (%) = [1 − (A1 − A2)/A0] × 100%

where A0 is the absorbance of the control (using distilled water instead of the sample
solution), A1 is the absorbance of the sample, and A2 is the absorbance of the sample using
distilled water instead of pyrogallic acid.

2.6. Determination of Hypoglycemic Activity
2.6.1. Determination of In Vitro α-Glucosidase Inhibitory Activity

A total of 40 µL of sample containing different concentrations of WPS and P-1 (0.5, 1,
2, 4, and 8 mg/mL) was mixed with 40 µL of pH 6.8 sodium phosphate buffer (0.1 mol/L)
and 20 µL of α-glucosidase solution (0.8 U), and the mixture was incubated for 15 min at
37 ◦C, followed by the addition of 20 µL of PNPG solution (10 mM) in order to catalyze the
reaction. Finally, the mixture was incubated for 20 min at 37 ◦C after shaking well. Then,
the absorbance was measured at 405 nm. Using acarbose as a reference, the inhibitory
activity was calculated by the following equation:

α-Glucosidase inhibition rate (%) = [1 − (D1 − D2)/D0] × 100%

where D0 is the absorbance of the control (using distilled water instead of the sample
solution), D1 is the absorbance of the sample, and D2 is the absorbance of the addition of
sodium–phosphate buffer without α-Glucosidase.

2.6.2. Cell Culture and IR-HepG2 Cell Model Construction

HepG2 cells were obtained from the Xi’an Medical College (Xi’an, China). Cells were
cultured in DEME medium supplemented with 10% heat-inactivated FBS and 1% mixture
of penicillin and streptomycin in a humidified incubator at 37 ◦C with 5% CO2. Cells
in the logarithmic growth phase were digested and cultured in the 96-well microplates
(1 × 105 cells/mL). A total of 200 µL of insulin mother liquor (insulin powder dissolved
in diluted hydrochloric acid diluted with distilled water until pH 2–3) in different concen-
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trations (10−5, 10−6, 10−7, 10−8, and 10−9 mmol/L) was added to wells containing cells
after incubating for 24 h. Then, 24 h, 48 h, and 72 h incubation for each concentration
was used to create insulin-resistance model; the supernatant was collected by centrifuging
for 10 min and then adding it to another new 96-well microplate. Subsequently, 300 µL
of glucose oxidase assay kit assay solution and 3 µL of the centrifuged supernatant were
added to each group in order, and the absorbance was measured by using Varioskan Flash
(Thermo Fisher, Waltham, MA, USA) at 505 nm after 15 min of incubation. In addition, the
calibration group (using calibration solution instead of supernatant) and ultrapure water
group (using ultrapure water instead of supernatant) were added for contrast.

The glucose remaining was calculated by the following equation:

Glucose remaining = Sample-Blank/Calibration-Blank × 5.55

2.6.3. Effect of PEP on IR-HepG2 Cells

The detection of glucose intake was performed following the previous methods with
sight modifications [20]. The cells were planted in the 96-well plate at a concentration
of 1 × 105 cells/mL. Control group was maintained in DMEM medium; metformin was
chosen as the positive control. In the treatment group, WPS and P-1 at a level of low,
medium, and high dose were added to the well, which contained culture medium with
suitable concentration of insulin, and incubated. Additionally, the remaining glucose
was measured.

2.6.4. Western Blot

Protein expression of insulin-related PI3K-AKT signal pathway was determined using
Western blot, as in a previous study, with minor modification [21]. Briefly, total protein
was extracted from HepG2 cells by RIPA lysis using a BCA protein assay kit (Beyotime,
Shanghai, China), followed by preparation of separation gel, concentrated gel, and pro-
tein separation. Protein was subjected to SDS-PAGE, transferred to PVDF membranes
(Millipore, Billerica, MA, USA), and washed with buffer for 4 floods. Subsequently, the
PVDF membranes were blocked with blocking buffer for 1 h at 37 ◦C. The PVDF membranes
were incubated at 4 ◦C overnight with the primary antibody solutions, including GAPDH,
PI3K, and AKT (Sangon Biotech Co., Ltd., Shanghai, China), followed by incubating with
anti-rabbit antibodies conjugated to alkaline phosphatase for 1 h at 37 ◦C. The membranes
were washed by TBS-Tween 20 four times after each incubation. Proteins were visualized
using ChemiDox gel imaging system to take pictures.

2.7. Statistical Analysis

The data of samples were calculated using Origin software 8.0. All data were presented
as means ± standard deviation (means ± SD) and calculated using one-way ANOVA of
SPSS 17.0 followed by Tukey’s multiple-range test. The statistical significance was defined
as p < 0.05 or p < 0.01.

3. Results
3.1. Separation and Purification of PEP

The yield of crude PEP extracted from the mushroom powder was approximately
5.9%. The crude PEP was then firstly purified through a cellulose DEAE anion-exchange
column. The elution curve obtained by eluting with different concentrations of NaCl is
shown in Figure 1. As a result, two fractions were collected with a stepwise concentration
(0, 0.1 mol/L) of NaCl solution, and were named WPS and P-1, respectively.
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3.2. Determination of Certain Chemical Components in PEP

The total sugar content of WPS was 87.87%, and that of P-1 was 73.88%. There were a
few proteins among WPS and P-1 (0.02% and 1.27%). The concentration of uronic acid of
WPS and P-1 was 2.11% and 6.46%, respectively.

3.3. Ultraviolet Full-Wavelength Scanning

The ultraviolet full-wavelength scanning spectra of WPS and P-1 are shown in
Figure S1. The absorption peaks of nucleic acids and proteins at 260 nm and 280 nm
of WPS and P-1 were extremely weak, indicating that the content of nucleic acids and
proteins in the sample after separation and purification was significantly decreased.

3.4. FT-IR Analysis

Through FT-IR studies, functional groups of WPS and P-1 were monitored within the
range of 500–4000 cm−1 (Figure S2). As a result, the broad absorption peaks at 3455 cm−1

were related to the O-H hydroxyl groups, with stretching vibration in the sugar ring [22].
The peaks at around 2937 cm−1 and 1415 cm−1 suggested the presence of stretching
vibration and bending vibration in the bond of C-H [23,24]. In addition, the peaks presented
at around 1642 cm−1 were assigned to C=O stretching vibration [25]. The peak near
1078 cm−1 indicated that two fractions might have a pyran ring. The absorption peak
at around 1037.96 cm−1 was caused by C-O-C stretching vibration [26]. The appearance
of the absorption band near 918 cm−1 means that two fractions’ molecules contained
β-configuration glycosidic bonds [27]. Compared with the finding reported by Ma et al.
(2014), there were three different PEPs, named PEPE-1, PEPE-2, and PEPE-3, whose peaks
signals at around 2360 and 2340 cm−1 were the characteristic absorptions of aliphatic C-H
bonds and C≡N groups, and the signal 1250 cm−1 was assigned to the stretching vibration
of C=O groups [28]; however, WPS and P-1 did not show the similar signals, indicating
that the differences in functional groups were probably due to the different sources of PE.

3.5. NMR Analysis of WPS and P-1

Figure S6 illustrates the δ5.4 ppm 1H-NMR spectra of WPS and P-1. There was no
discernible signal, indicating that both polysaccharides were pyranose. Typically, they
fall between δ4.3 ppm and δ5.6 ppm. Polysaccharides characterize glycosidic bond-type
regions. WPS contained two heterocephalic hydrogen signals between δ4.3 ppm and
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δ4.9 ppm, indicating the presence of β-glycosidic bonds, and the signal at δ4.7 ppm was
stronger than the signal at δ5.02 ppm, indicating that WPS was a polysaccharide with
β-configuration glycosidic bonds. P-1 had a significant proton signal only at δ4.7 ppm,
indicating that its glycosidic bonds were only of the β-configuration.

In the analysis of 13C-NMR of WPS, the signal of C3 and C5 between δ82 ppm and
δ88 ppm is the furan ring, whereas the signal below δ80 ppm is the pyran ring. The absence
of a heteroheaded carbon signal at δ82 pm~δ88 pm further demonstrates that the sugar
residues in polysaccharide WPS are of the pyryl type, which is consistent with the preceding
1H-NMR spectrum. C-1 is present between δ95 ppm and δ110 ppm, whereas the signal
distribution of C-1-C-2 is between δ60.36 ppm and δ72.37 ppm. At δ > 170 ppm, there was
no carbon signal, indicating that polysaccharide WPS did not include uronic acid and was
a neutral polysaccharide, consistent with the prior infrared spectrum investigation.

3.6. Analysis of Monosaccharide Composition by GC

The gas chromatograms of WPS and P-1 are shown in Figure S3. According to the
retention time and response intensity, the molar ratio of each monosaccharide was calcu-
lated by comparing it with various standard samples. The data showed that WPS was
composed of rhamnose, arabinose, xylose, mannose, glucose, and galactose, with a ratio of
0.35:0.24:0.45:0.24:28.78:1.10, and the monosaccharide composition of P-1 was the same as
WPS but with different ratio of 0.95:0.64:0.66:1.84:60.69:0.67.

3.7. Molecular Weight (Mw)

Taking different Mw dextran as the standard sample, according to their mass distribu-
tion and the spectrum shown in Figure S4, the Mw of WPS and P-1 were 4.5 × 105 Da and
2.2 × 104 Da.

3.8. Morphological Analysis

The spatial structure of polysaccharides can affect the structure–activity relationship.
Scanning electron microscopy (SEM) could be set as a characteristic to qualitatively identify
the surface morphology of polysaccharides. SEM of two polysaccharides, WPS and P-1, is
shown in Figure 2. The dense and flat micro-surface of WPS, which can be observed as a
relatively large and irregular sheet structure after magnification, suggested that the sugar
chains were tightly clustered due to their large molecular weight. The surface of P-1 was
relatively loose, with many irregular fragments under the 400× lens. As the magnification
is increased to the 12,000× lens, the loose and porous network structure can be better
observed, which resulted from a lack of tight aggregation of polysaccharide chains as well
as the lower molecular weight compared to WPS.

3.9. Congo Red Experiment

Congo red could combine with polysaccharides possessing an ordered three-dimensional
structure into a complex in the solution, and the maximum absorption wavelength in
the spectral scan would shift when adding NaOH with different concentrations to the
solution [29]. The result of the Congo red experiment is shown in Figure S5. When the
NaOH concentration was beyond 0.2 mol/L, the maximum absorption wavelength of the
polysaccharide and Congo red complex did not decrease significantly compared with the
maximum absorption wavelength of Congo red dye, showing that there was no triple helix
structure in polysaccharides due to no unwinding appearing as the NaOH concentration
increased.
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3.10. Antioxidant Activity of WPS and P-1

Free radical production and elimination in the human body is a dynamic balance.
Once the balance has been disrupted, excessive free radicals in the body can induce damage
to cells and tissues, leading to various diseases and accelerated body aging. This study
evaluated the antioxidant activities of WPS and P-1 using three different in vitro methods.
The results are shown in Figure 3A. WPS and P-1 had a certain scavenging effect on DPPH
with a dose–effect relationship in the range of certain concentrations. WPS had better
scavenging ability than P-1 in the range of certain concentrations. When the concentration
reached 1 mg/mL, the scavenging ratio of WPS, P-1, and VC were 56.21%, 40.68%, and
97.63%, respectively. This showed that WPS and P-1 had a certain scavenging effect on
DPPH but were lower than VC at the same concentration.

Figure 3B showed that the hydroxyl radical-scavenging ability of WPS and VC had
concentration dependence excluding P-1. When the concentration reached 0.8 mg/mL, the
scavenging rate exceeded VC. The scavenging effect of WPS was significantly higher than
that of P-1, probably due to the existence of α-glycoside bond in WPS, which is consistent
with the result reported by Chen et al. [30].

In this study, the superoxide anion-scavenging ability of WPS is shown in Figure 3C.
Two fractions, WPS and P-1, had a certain scavenging effect on superoxide anion free
radicals, but the two polysaccharides did not show a good dose–effect relationship within
this concentration range. When the two fractions reached a concentration of 0.1 mg/mL,
the scavenging rate for superoxide anion free radicals tended to be stable. However, the
scavenging effect was much lower than VC at the same concentration.
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3.11. Effects of WPS and P-1 on α-Glucosidase Activities

The inhibitory effects of WPS and P-1 on the activities of α-glucosidase are shown
in Figure 4. WPS and P-1 showed dose-dependent inhibitory effects on α-glucosidase
activity. Especially at the high concentration of 8 mg/mL, the highest inhibitory rates of
WPS and P-1 were 91.95% and 88.45%, and IC50 were 0.4211 mg/mL and 0.2971 mg/mL,
respectively. At each concentration point, the inhibitory activities of WPA and P-1 were
similar. As the positive control, acarbose showed a higher inhibition rate under a lower
concentration.
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3.12. Effect of WPS and P-1 on IR-HepG2 Cells

The two polysaccharide fractions had a certain promotional effect on cell growth
within a concentration of 20~640 µg/mL in a 48 h time period without obvious toxic effect
on the HepG2 cells. According to their different effect on cell viability in this experiment,
the concentrations of 40 µg/mL, 80 µg/mL, and 160 µg/mL for WPS were chosen for 48 h
as well as 160 µg/mL, 320 µg/mL, and 640 µg/mL for P-1 for 48 h.

Insulin resistance was formed due to various reasons, most likely probably because
the release of insulin cannot normally promote the uptake and utilization of glucose for
cells, so the secretion of excessive insulin occurs to maintain normal blood sugar levels,
finally resulting in the occurrence of type 2 diabetes and other metabolic syndromes [31].
In this study, the glucose consumption of HepG2 cells stimulated by insulin at different
concentrations and different time periods was tested to optimize the constructing conditions
of the IR model. The glucose consumption of HepG2 cells was reduced after stimulating
with 1 × 10−7 mol/L insulin for 48 h, showing a significant difference compared with the
control group (p < 0.01). Therefore, the final modeling conditions were selected as treatment
with 1 × 10−7 mol/L insulin concentration for 48 h.

Figure 5 indicates that WPS has a certain improvement effect on cellular insulin resis-
tance in concentrations of 40 µg/mL and 160 µg/mL, which can be reflected in promoting
the absorption of glucose, close to the Metformin group (MET), especially at a high dose of
160 µg/mL compared to the model IR group (p < 0.05). Concentrations of 160 µg/mL and
320 µg/mL of P-1 can also promote the consumption of glucose in the medium by cells,
indicating that it had a certain improvement effect on cellular insulin resistance, especially
at a medium dose, and represented a significant difference compared to model (p < 0.05).
The effect of WPS shows a dose–effect relationship, but P-1 did not.
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3.13. Effect of WPS and P-1 on the Protein Expression of PI3K-AKT Signaling Pathway in
IR-HepG2 Cells

It is widely believed that the PI3K/Akt signaling pathway plays a key role in in-
sulin signal transduction [32,33]. In a previous study, cells developed significant insulin
resistance after 48 h of high-concentration insulin stimulation. Therefore, the expression
of major proteins in the glucose transport pathway was studied to determine whether
polysaccharide treatment affected the PI3K/Akt signaling pathway in insulin-resistant cells.
As shown in Figure 6, the insulin-resistant cells treated with WPS and P-1 significantly
increased the protein-expression levels of Akt and PI3K compared with the model IR group
(p < 0.05), which confirmed that P. eryngii polysaccharides WPS and P-1 can effectively
activate the PI3K-Akt signaling pathway to alleviate insulin resistance.
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4. Discussion

Mushrooms have already been valued as edible or medicinal resources worldwide [9,34].
As an important functional compound in mushrooms, polysaccharides have been extensively
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investigated in past years [35]. However, the structure–activity relationship, as well as the
action mechanism behind the biological activity of polysaccharides, are still undetermined.

In our study, we extracted and purified two novel heteropolysaccharides, WPS and
P-1, from PE. Based on the published literature, it has been observed that the difference in
the chemical characteristics of PEPs may be due to the different procedures of preparation,
extraction, and purification, as well as the source (mycelia or fruiting bodies) [36–38]. Using
hot water extraction, branched (1→3)(1→6)-β-glucan [38], mannogalactan [39], and het-
eropolysaccharides [11] were extracted and purified from PE fruiting bodies. Zhang Bingru
et al. [40] discussed the extraction/purification, structural characterization, and pharmaco-
logical properties of polysaccharides derived from Pleurotus eryngii. The polysaccharide-
extraction procedure mentioned in their article is almost identical to the one utilized in our
investigation. First, hot water extraction, then ethanol precipitation, and finally, the Sevage
technique are used to remove proteins. Similar to our research, they felt Pleuinus eryngii
polysaccharide had a hypoglycemic impact. However, the structure and pharmacological
actions of polysaccharides have not been sufficiently examined, and require additional
research.

Mushroom-isolated polysaccharides exhibit a variety of biological functions [41]. WPS
and P-1 produced after purification in this investigation show substantial antioxidant and
α-glucosidase-inhibiting properties, making them promising biological macromolecules.
Although Rizkyana A.D. et al. [42] extracted polysaccharides using subcritical water, its
high cost precluded large-scale promotion and hampered its development. Gunasekaran
S’s team extracted the acidic polysaccharide from Pleurotus eous (Berk.) and modified it
with sulfation to improve its antioxidant, antibacterial, and anticoagulant properties [43,44].
Due to the complexity of polysaccharides, the reproducibility and safety of introducing
new groups are deserving of further study, but hot-water extraction is more secure and has
a broader range of practical applications.

The existence of uronic acid residues in polysaccharides may affect the characteris-
tics of polysaccharides and alter the solubility of associated polysaccharide conjugates.
Therefore, it is important to assay the content of uronic acids for the quantitative and
structural analysis of complex carbohydrates [45]. The contents of uronic acid in WPS and
P-1 were measured, and the results indicated that the contents of uronic acid in WPS and
P-1 were low, 2.11% and 6.46%, respectively, suggesting that WPS and P-1 may be neutral
polysaccharides.

The WPS and P-1 polysaccharides were extracted using water and eluted with water
and 0.1 mol/L NaCl, respectively. The method of extraction had an effect on the structure
of polysaccharides [46]. Ren, D. et al. extracted two polysaccharides, PEP-1 and PEP-2,
with distilled water at 80 ◦C and eluted them with distilled water and 0.05 mol/L NaCl.
The monosaccharide components of both polysaccharides were mannose, glucose, and
galactose, with glucose constituting approximately 49.21% of the polysaccharide, and the
molecular weights were 2.54 × 104 Da and 4.63 × 105 Da, respectively [11]. It is evident
that the molecular weights of the two polysaccharides are quite distinct. Consequently, it is
crucial to investigate the molecular weight of polysaccharides [47]. β-glucan may be the
active structure of polysaccharides, which has some effect on polysaccharide activity [36,48].
In this study, FT-IR analysis revealed an absorption band near 918 cm−1, which indicates
that two fractions’ molecules contained configuration glycosidic bonds, thereby indicating
that WPS and P-1 polysaccharides have beneficial physiological activities.

Data obtained from in vitro antioxidant assays demonstrated that WPS and P-1
showed different antioxidant activities in different reactive systems, probably due to
their specific structures and extraction methods. Zhang et al. (2014) applied ultrasonic
technology to extract polysaccharides from the fruiting bodies of PE and found that the
concentration of these crude polysaccharides was positively correlated with the DPPH
free-radical scavenging rate and superoxide anion-radical scavenging ability; PEPS80 had
the best antioxidant activity [49]. Li et al. (2016) also demonstrated that FDPEPS from
PE, after being treated with heat, might donate more electrons or act as a more efficient
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electron donor than other polysaccharides, probably because heat processing may cause
irreversible modifications on the original structures of polysaccharides [6]. We discovered
that WPS exhibited superior antioxidant activity to P-1. There were significant differences
in their hydroxyl radical scavenging abilities but no obvious differences in their superoxide
anion-scavenging abilities.

The inhibition of digestive enzymes such as α-glucosidase is considered to be a promis-
ing therapy to treat T2DM [50]. The effect of α-glucosidase can degrade oligosaccha-
rides into monosaccharides, resulting in an increase in blood glucose levels. Therefore,
α-glucosidase has been known as a therapeutic target for the modulation of postprandial
hyperglycemia. In this study, the inhibitory effects of WPS and P-1 on α-glucosidase were
measured, and WPS and P-1 showed certain inhibitory effects on α-glucosidase, indicat-
ing that WPS and P-1 could be a potential inhibitor for α-glucosidase used in functional
food. The inhibition rate of WPS and P-1 can reach 80%, but compared with acarbose, the
concentration of WPS and P-1 is larger, and its IC50 value is larger.

Diverse research has been focused on the antidiabetic effect of PEPs on animal models.
Ren et al. demonstrated that PEPs, a heteropolysaccharide extract from PE, are capable of
attenuating the development of insulin resistance and oxidative stress in HF-fed mice [51].
PEPs also increased the level of high-density lipoprotein cholesterol and liver glycogen in
KKAy mice [3]. Although PEPs have been demonstrated to have a hypoglycemic effect,
fewer studies have focused on their mechanism. To further elucidate the hypoglycemic
effect of WPS and P-1, glucose consumption in HepG2 cells was investigated. Insulin
resistance (IR) is a serious risk factor leading to the onset of T2DM, and ameliorating the
IR status is probably an effective approach for the treatment of T2DM [52]. HepG2 is
a good cell model to study IR pathogenesis and the mechanism of hypoglycemic drugs
in vitro because of its similar response as hepatocytes when correlated with the insulin
level and the duration of stimulation [53,54]. As a result, the IR-HepG2 cells model was
established as a cellular model to verify the hypoglycemic effect of WPS-1 and P-1 due to
its low glucose consumption, which mimics the symptoms of T2DM. Metformin has been
widely used for the therapy of T2DM, the major hypoglycemic effects of which are reduced
hepatic glucose and increased insulin-stimulated glucose uptake in skeletal muscle and
adipocytes [55]. Therefore, metformin was chosen as a positive control. The results of the
MTT assay showed that WPS and P-1 had no toxic influence on the viability of both HepG2.
After being treated with different concentrations of WPS and P-1, the two polysaccharides
can indeed increase the glucose consumption of IR- HepG2 cells, which can be achieved by
activating the activity of certain insulin protein receptors to restore the sensitivity of cells to
insulin action and increasing glucose uptake in liver, so that the effect of corresponding
concentrations of insulin can reach the level of cell metabolism as well as improve the cell’s
ability to increase glucose utilization. These results indicated that WPS and P-1 possibly
possess a remarkable hypoglycemic effect in vitro.

The PI3K-Akt signaling pathway is the main effector of insulin and is closely related to
glycogen synthesis in the liver [56], so the highly relevant PI3K-AKT insulin signaling path-
way was selected for subsequent preliminary research. The PI3K-AKT signaling pathway is
related to the regulation of cell growth and metabolism, and the down-regulation of related
proteins on the pathway may produce a pathological response in order to activate the
related proteins such as PI3K to convert phosphatidylinositol diphosphate (PIP2) to PIP3,
which has a role of gathering AKT and other kinases on the cell membrane to phosphorylate
other kinases on the membrane. After, AKT can regulate other glycogen synthesis kinases,
etc., to promote the synthesis of glycogen on the membrane by sugar transporters, thereby
regulating the transport of glucose and playing a role in reducing glucose. The results
showed that the protein level of the insulin signaling pathway PI3K-AKT in the H-WPS
group and M-P1 group with the best concentration group significantly increased, which
indicated that PEPs could improve insulin resistance by mediating the PI3K-AKT signaling
pathway.
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Generally speaking, the bioactivities of most natural polysaccharides are influenced
by their molecular weight and structural features, such as anomeric carbon configuration,
linkage patterns, monosaccharide compositions, sequence of sugar units, degrees of poly-
merization, and branching characteristics [57]. Among these factors, the molecular weight
of native polysaccharides can significantly affect the biological activities and utilization
of polysaccharides [49,57]. In general, higher molecular weights of polysaccharides were
associated with better activities because large-molecular-weight polysaccharides may have
more repetitive units in the chain, and these repetitive units may be the targets for in-
teraction with receptors [58,59]. It was reported that two heteropolysaccharides (PEP-1
and PEP-2) from PE fruiting bodies and the higher-molecular-weight PEP-2 had higher
antitumor activity on human hepatoblastoma HepG-2 cells [11]. Ma and colleagues found
that PEPE-3 from PE residue with larger molecular weights had better antitumor activities,
suggesting that the antitumor activities of these three polysaccharides were related to their
molecular weight, monosaccharide composition, and sulfate and uronic acid content [28].
Li et al. also demonstrated that a higher-molecular-weight polysaccharide (ZSP4b) with a
similar composition to a JSXZ polysaccharide (ZSP2) displayed higher antioxidant activities
than ZSP2 because its higher molecular weight allowed the spatial conformation of the JSXZ
polysaccharides to be maintained [60]. Herein, the antioxidant effect and hypoglycemic
activity of WPS, whose molecular weight is greater, were better than P-1, probably due to
their greater molecular weight. Glycosidic bonds also affect the activities of polysaccharides
in mushrooms; linear β-glycosidic bond configuration polysaccharide has better activity
than α- glycosidic bond configuration [61]. Furthermore, it was suggested that a certain re-
lationship might exist between its activity and monosaccharides’ composition [62]. Human
cells can recognize such carbohydrates through monosaccharide receptors, thus stimulating
cytokine production. The affinity binding between the polysaccharides and the receptors is
the critical step for the signaling pathway’s initiation; in other words, the triggering of the
polysaccharides’ function [63,64]. Cao et al. demonstrated that polysaccharide fractions
(TSP-1) from Toona sinensis (Juss.) M.Roem. leaves presented higher in vivo hepatopro-
tective activity, probably due to the higher contents of glucose [65]. In our study, both
WPS and P-1 have extremely complicated structures composed of six monosaccharides;
amongst them, glucose comprises the largest proportion. In conclusion, the antioxidant
and hypoglycemic activities of PEPs are affected by their molecular weight and structural
features, such as monosaccharide compositions and anomeric carbon configuration.

5. Conclusions

Two novel fractions, WPS and P-1, were successfully separated from crude PEPs; both
WPS and P-1 consist of rhamnose, arabinose, xylose, mannose, glucose, and galactose
as their monosaccharide components and may be two neutral polysaccharides with β-
glycosidic linkages and different molecular weights. WPS exhibited better antioxidant
and hypoglycemic activities than P-1, probably because of higher molecular weight and β-
glycosidic bond. Both of the two fractions could exert hypoglycemic activities by quenching
ROS, inhibiting the α-glucosidase enzyme, and activating the PI3K-AKT signaling pathway.
As a result, the possible hypoglycemic mechanisms of the two polysaccharides, WPS and
P-1, might be based on three factors: (1) the restraint of α-glycosidase enzymes; (2) the
increased glucose use of hepatic cells; (3) free-radical scavenging. Our study may facilitate
the utilization of P. eryngii as the candidate drug in clinical therapy against diabetes;
however, further study on the structure–effect of PEPs is still necessary.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27207140/s1. Figure S1. Ultraviolet full-wavelength
scanning of PEP (WPS and P-1). Figure S2. IR spectra of different PEPs (A) WPS. (B) P-1. Figure S3.
GC of PEPs (A)WPS. (B) P-1. (C) GC of mixed standard monosaccharide. 1. rhamnose; 2. arabinose;
3. xylose; 4. mannose; 5. glucose; 6 galactose; 7. internal standard. Figure S4. Gel Permeation
Chromatography (GPC) spectrum of PEPs (A) GPC spectrum of WPS. (B) GPC spectrum of P-1.
(C) GPC spectrum of glucan. Figure S5. Congo red test of PEPs (WPS and P-1).
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