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Abstract: A reagent-controlled highly stereoselective reaction between (S)-difluoromethyl phenyl
sulfoximine 1 and imines is reported, and this synthetic method provides a variety of enantiomerically
enriched α-difluoromethyl amines. The main pros of this approach include high efficiency, high
stereoselectivity, and a broad substrate scope, which is probably achieved through a non-chelating
transition state.
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1. Introduction

The difluoromethyl group (CF2H) is one of privileged fluoroalkyl groups which has
attracted increasing interest due to its unique biochemical properties [1–4]. For example, it
has strong lipophilicity and has been proven to be an isostere of OH and SH. At the same
time, the hydrogen atom in the CF2H group can serve as a hydrogen bond donor, thus
difluoromethyl analogs of the biologically active molecules have the potential to be much
more effective drugs compared to its parent molecules. Especially, difluoromethyl com-
pounds have better biological activity than their corresponding trifluoromethyl compounds
in some cases [5,6]. Given the above-mentioned properties, α-difluoromethyl amines have
been successfully used in the antagonist or inhibitor molecular design. For instance, an
NPY antagonist with high Y1 activity and high selectivity for subtype receptors [7] and a
drug candidate as a thrombin inhibitor [8] were shown in the Figure 1A.

It is of high importance to develop synthetic methods of chiral α-difluoromethyl
amines for the pharmaceutical and biological chemistry, given the fact that the potential
dangers of racemic drugs have been documented [9]. Thus, it has attracted many efforts to
attain the chiral α-difluoromethyl amines, and they can be divided into three aspects accord-
ing to the reaction type: (a) chemical resolution [10], (b) asymmetric hydrogenation [11,12],
and (c) stereoselective Mannich addition reaction [13] (shown in Figure 1B). After the com-
parison of the above methods, it was found that the stereoselective addition reaction based
on the imine starting material has several advantages: it can not only obtain higher stere-
oselectivity, but also has a wide range of substrate scope, which can be applicable to both
α-monosubstituted difluoromethyl amine and α,α-disubstituted difluoromethyl amine.
For instance, Hu group reported the stereoselective addition reaction between tert-butyl
sulfinyl protected imines and phenyl difluoromethyl sulfone or TMSCF2H to generate the
enantiomerically enriched α-difluoromethyl amine [14,15] (shown in Figure 1C(i)), which
served as an example of substrate-controlled Mannich addition. Recently, we have been de-
voted to the development of nucleophilic fluoroalkylation by using fluoroalkyl sulfoximine
reagents [16–20]. In this context, we were interested in developing a reagent-controlled
stereoselective Mannich reaction instead of a substrate-controlled version [21–23]. Herein,
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we report the first (S)-phenyl difluoromethyl sulfoximine (1)-enabled highly stereoselective
difluoromethylation of imines, affording synthetically valuable chiral α-difluoromethyl
amines (shown in Figure 1C(ii)).
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2. Results

We started our study by examining the (S)-phenyl difluoromethyl sulfoximine 1 and
imine 4a as reaction partners. After a careful variation of reaction parameters, we identified
the suitable reaction conditions in which a mixture of sulfoximine 1 (1.0 equiv.), imine
4a (1.5 equiv.), and methyl lithium (1.2 equiv.) in THF (0.05 M) afforded 5a in 38% yield
with 99/1 dr (Entry 1, Table 1). Further screening revealed that n-butyl lithium is also
feasible, which afforded 5a in 35% yield with 99/1 dr (Entry 2, Table 1). However, sodium
bis(trimethylsilyl)amide was not suitable for this reaction (Entry 3, Table 1). Various
solvents were evaluated, and THF was found to be an optimal solvent (Entries 4–6, Table 1).
However, when HMPA was added, the yield was significantly reduced but with 99/1 dr
(Entry 7, Table 1). When the ratio of 1/4a/MeLi was changed to 1/2/2.8, the yield could be
increased to 77% and dr 99/1 (Entry 8, Table 1). However, when N-Ts and N-SPh-4a were
used, the yield decreased (Entries 9 and 10, Table 1). Further optimization showed that
when the concentration and temperature decreased, it could afford the desired product in
90% yield and 99/1 dr (Entries 11 and 12, Table 1).

Table 1. The optimization of reaction conditions a.

Molecules 2022, 27, x FOR PEER REVIEW 3 of 8 
 

 

2. Results 

We started our study by examining the (S)-phenyl difluoromethyl sulfoximine 1 

and imine 4a as reaction partners. After a careful variation of reaction parameters, we 

identified the suitable reaction conditions in which a mixture of sulfoximine 1 (1.0 

equiv.), imine 4a (1.5 equiv.), and methyl lithium (1.2 equiv.) in THF (0.05 M) afforded 

5a in 38% yield with 99/1 dr (Entry 1, Table 1). Further screening revealed that n-butyl 

lithium is also feasible, which afforded 5a in 35% yield with 99/1 dr (Entry 2, Table 1). 

However, sodium bis(trimethylsilyl)amide was not suitable for this reaction (Entry 3, 

Table 1). Various solvents were evaluated, and THF was found to be an optimal solvent 

(Entries 4–6, Table 1). However, when HMPA was added, the yield was significantly 

reduced but with 99/1 dr (Entry 7, Table 1). When the ratio of 1/4a/MeLi was changed to 

1/2/2.8, the yield could be increased to 77% and dr 99/1 (Entry 8, Table 1). However, 

when N-Ts and N-SPh-4a were used, the yield decreased (Entries 9 and 10, Table 1). 

Further optimization showed that when the concentration and temperature decreased, it 

could afford the desired product in 90% yield and 99/1 dr (Entries 11 and 12, Table 1). 

Table 1. The optimization of reaction conditions a. 

 
Entry Variation from Standard Conditions Yield (%) b dr b 

1 none 38 99/1 

2 nBuLi instead of MeLi 35 99/1 

3 NaHMDS instead of MeLi 3 n.d. 

4 CH2Cl2 instead of THF 0 n.d. 

5 Toluene instead of THF 8 n.d. 

6 Et2O instead of THF <5 n.d. 

7 THF/HMPA (10/1, v/v) instead of THF 9 99/1 

8 2.0 equiv. 4a and 2.8 equiv. MeLi were used 77 99/1 

9 c N-Ts-4a was used 40 n.d. 

10 c N-SPh-4a was used <5 n.d. 

11 c 0.025 M instead of 0.05 M 84 99/1 

12 d −98 °C instead of −78 °C 90 99/1 
a Base was added slowly to the mixture of 1 (0.1 mmol) and 4a in the solvent (2 mL) at −78 °C, and 

stirred at the temperature for 0.5 h. b Yields and dr values were determined by 19F NMR using 

PhCF3 as the internal stantard. c based on the conditions of entry 8. d based on the conditions of 

entry 9. n.d. = not determined. 

Then, we examined the substrate scope of the reaction (Scheme 1). Reactions with 

various imines can afford 5a–m in high yields (64–99%) and high diastereoselectivity (dr 

95/5–99/1). The halo-substituted substrates were tested, and it can afford 5c (72% yield, 

dr 97/3) and 5d (84% yield, dr 95/5). The substituents such as methyl and isopropyl 

could be tolerated and 5e (93% yield, dr 99/1) and 5f (97% yield, dr 99/1) were obtained. 

This reaction is not sensitive to the position of the substituent on the aromatic ring, and 

5g (99% yield, dr 99/1), 5h (90% yield, dr 99/1) and 5i (88% yield, dr 99/1) were afforded. 

3,4-Disubstituted aryl ketimine was also tolerated and 5j (97% yield, dr 99/1) was ob-

tained. When an aryl ethyl ketimine was used, 5k (95% yield, dr 99/1) was generated. 

The cyclic imine 4l was also tolerated with the reaction. In addition, the heteroaromatic 

ring such as the one in the furyl group can afford the desired product 5m (81% yield, dr 

99/1). 

Entry Variation from Standard Conditions Yield (%) b dr b

1 none 38 99/1
2 nBuLi instead of MeLi 35 99/1
3 NaHMDS instead of MeLi 3 n.d.
4 CH2Cl2 instead of THF 0 n.d.
5 Toluene instead of THF 8 n.d.
6 Et2O instead of THF <5 n.d.
7 THF/HMPA (10/1, v/v) instead of THF 9 99/1
8 2.0 equiv. 4a and 2.8 equiv. MeLi were used 77 99/1

9 c N-Ts-4a was used 40 n.d.
10 c N-SPh-4a was used <5 n.d.
11 c 0.025 M instead of 0.05 M 84 99/1
12 d −98 ◦C instead of −78 ◦C 90 99/1

a Base was added slowly to the mixture of 1 (0.1 mmol) and 4a in the solvent (2 mL) at −78 ◦C, and stirred at the
temperature for 0.5 h. b Yields and dr values were determined by 19F NMR using PhCF3 as the internal stantard.
c based on the conditions of entry 8. d based on the conditions of entry 9. n.d. = not determined.

Then, we examined the substrate scope of the reaction (Scheme 1). Reactions with
various imines can afford 5a–m in high yields (64–99%) and high diastereoselectivity (dr
95/5–99/1). The halo-substituted substrates were tested, and it can afford 5c (72% yield, dr
97/3) and 5d (84% yield, dr 95/5). The substituents such as methyl and isopropyl could
be tolerated and 5e (93% yield, dr 99/1) and 5f (97% yield, dr 99/1) were obtained. This
reaction is not sensitive to the position of the substituent on the aromatic ring, and 5g
(99% yield, dr 99/1), 5h (90% yield, dr 99/1) and 5i (88% yield, dr 99/1) were afforded.
3,4-Disubstituted aryl ketimine was also tolerated and 5j (97% yield, dr 99/1) was obtained.
When an aryl ethyl ketimine was used, 5k (95% yield, dr 99/1) was generated. The cyclic
imine 4l was also tolerated with the reaction. In addition, the heteroaromatic ring such as
the one in the furyl group can afford the desired product 5m (81% yield, dr 99/1).
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Scheme 1. Substrate scope of the stereoselective difluoromethylation reaction a,b.

Although 5i, 5j and 5k were parallel with the previous preliminary results [20], the
process for the corresponding HCF2-products is vague. To obtain the difluoromethylation
products, 5b could undergo deprotection of the silyl group with aqueous acid to yield
NH-6b in full conversion. The absolute configuration of 6b was reported by our group [20],
and those of the others were assigned by analog. The process of a reductive alkyl C-S bond
cleavage with magnesium and an N-S bond cleavage with triflic acid could afford 7b in
69% overall yield (Scheme 2), which implied the products could be modified diversely, and
provided the possibility of accessing chiral amine derivatives, especially those molecules
with bioactivities.
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Scheme 2. Further transformations of the product.

On this basis, we are highly interested in what the rationalization of the high diastere-
oselectivity is. Due to the addition of HMPA not influencing the diastereoselectivity of
the difluoromethylation of 4a with (S)-1 (Entry 6, Table 1), we proposed that the cation
might not participate in the transition state. In addition, it is worth noting that it is different
from the reactions of lithiated phenyl monofluoromethyl sulfoximine and imines. Two
possible non-chelating transition states TS-1 and TS-2 were envisaged in Scheme 3a. Since
the repulsive interactions of Ph-Ph in TS-2 are much stronger than those of Ph-CH3 in TS-1,
TS-1 is the more favorable transition state. In addition, the possible kinetic interpretation
of the reaction with enamidation substrates was proposed [24,25]. The nucleophilic addi-
tion of monofluoromethyl phenyl sulfoximine to ketimines requires the preproduction of
PhSO(NTBS)CHF− [20,26], while the version of difluoromethyl phenyl sulfoximine was
achieved in high yield and stereoselectivity by in situ production of PhSO(NTBS)CF2

−

in the presence of strong bases. We analyzed the possible reaction process in the system,
and it was summarized in Scheme 3b. The production rate of PhSO(NTBS)CF2

− and its
nucleophilic addition rate to ketimine, namely k1 and k2, are rather critical. When k1 and
k2 are much larger than k3 and k4, the enamidation of ketimine and the side reaction of
methyllithium addition to ketimine could be avoided, which can ensure the high efficiency
between difluoromethyl phenyl sulfoximine and ketimines.
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3. Materials and Methods
3.1. General Information

Unless otherwise mentioned, solvents and reagents were purchased from commercial
sources and used as received. The solvents CH2Cl2, CH3CN, DMF, and HMPA were
distilled from CaH2; THF, PhCH3, and Et2O was distilled over sodium before being used.
1H, 13C and 19F NMR spectra were recorded on a 500 MHz, 400 MHz or 300 MHz NMR
spectrometer. 1H NMR chemical shifts were determined relative to internal (CH3)4Si
(TMS) at δ 0.0 or to the signal of the residual solvent peak: CHCl3 in CDCl3: δ 7.26. 13C
NMR chemical shifts were determined relative to internal TMS at δ 0.0. For the isolated
compounds, 19F NMR chemical shifts were determined relative to CFCl3 at δ 0.0. Data
for 1H, 13C and 19F NMR were recorded as follows: chemical shift (δ, ppm), multiplicity
(s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad). Coupling
constants are reported in hertz (Hz). MS (EI) was obtained on a HP5973N mass spectrometer.
HRMS (EI) were recorded on a SATURN 2000 mass spectrometer, HRMS (DART) were
obtained on an AGILENT1100 mass spectrometer (Shanghai, China), and HRMS (DART-
LTQ FTICR) were recorded on a FTMS-7 mass spectrometer (Shanghai, China).

3.2. General Procedure

Under N2 atmosphere, to a solution sulfoximine (S)-1 (0.2 mmol, 1.0 equiv.) and
4 (0.4 mmol, 2.0 equiv.) in THF (8.0 mL), MeLi was added (1.6 M in Et2O, 0.56 mmol,
2.8 equiv.) slowly at −98 ◦C. After 30 min, the reaction was quenched with aqueous satu-
rated ammonium chloride (4 mL), followed by extraction with ethyl acetate (3 × 10 mL).
The organic phase was washed with brine and then dried over anhydrous MgSO4. After
the solution was filtered and the solvent was evaporated under vacuum, the residue was
subjected to silica gel chromatography to give the major diastereoisomer 5 using petroleum
ether/ethyl acetate as eluent.

4. Conclusions

In conclusion, we reported the unprecedented stereoselective nucleophilic difluo-
romethylation of ketimines using chiral difluoromethyl phenyl sulfoximine. The reagent-
controlled highly stereoselective reaction features high efficiency and a broad substrate
scope. The reductive cleavage of alkyl C-S bond proved that it could serve as a good access
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to α-difluoromethyl amines. The possible transition states and kinetic interpretation of the
reaction were also demonstrated. Not only does our work provide a valuable synthetic tool
and new insights into the intriguing reactivity of sulfoximines, but it also serves as a basis
for the further development of chiral fluorinated amines.
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