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Abstract: The present study aimed at preparing novel free-radical scavenging and water-soluble
compounds derived from gelatin. Specifically, gelatin–syringaldehyde, gelatin–anisaldehyde, and
gelatin–vanillin were synthesized and thoroughly studied for their physicochemical properties. In
particular, the compounds were characterized by UV-Vis spectroscopy, Fourier-transform infrared
spectroscopy, and scanning electron microscopy. Notably, as demonstrated by thermogravimetry
and differential scanning calorimetry, all three derivatives exhibited higher thermal stability than
gelatin itself. Free-radical scavenging activities of the examined compounds were explored by (i) a
standard spectrophotometric ABTS assay and (ii) an assay of oxidative degradation of hyaluronic
acid monitored by rotational viscometry. We found that gelatin and gelatin–syringaldehyde demon-
strated the highest efficacy in scavenging •OH radicals, whereas gelatin–anisaldehyde was the least
effective. The efficacy of scavenging alkyloxy- and alkylperoxy-type free radicals via hydrogen-atom-
transferring property was in the following order: gelatin > gelatin–vanillin > gelatin–syringaldehyde
> gelatin–anisaldehyde. Electron-donor properties determined using the ABTS assay revealed the fol-
lowing order in one-electron reduction of ABTS•+: gelatin > gelatin–anisaldehyde > gelatin–vanillin
> gelatin–syringaldehyde.

Keywords: FT-IR spectroscopy; gelatin functionalization; rotational viscometry; scanning electron
microscopy; UV-Vis spectrometry; thermoanalytical methods

1. Introduction

Collagen is a water-insoluble protein presented in animals’ connective tissues such
as tendons, cartilage, and bones [1]. Gelatin types A and B (Figure 1) are produced by the
thermal denaturation of collagen under acidic or alkaline conditions, respectively [2,3]. The
strength and stiffness of gelatin are determined by the bloom value [4].
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Figure 1. Chemical structure of gelatin.
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Gelatin is a low-cost, commercially available material [5]. Compared to collagen,
gelatin was found to possess low immunogenicity [3] and high solubility in aqueous envi-
ronments [6]. It has film-forming, non-toxic, biodegradable, biocompatible, and hemostatic
properties [7]. Currently, gelatin has been used in medicine as a wound-dressing material,
drug carrier, and biomaterial for reconstructing blood vessels [8–10]. Gelatin forms a 3D
porous structure when interacting with positively charged polymers, such as chitosan, and
with •OH groups in polyvinyl alcohol [11,12]. Furthermore, gelatin is rich in domains that
readily interact with cell-surface receptors and other proteins of the extracellular matrix
(ECM), such as fibronectin [2].

There are various ways to modify native gelatin, including modifications by phenolic
aldehydes, among others, and those performed with p-anisaldehyde, syringaldehyde, or
vanillin. The modification reaction is based on the immobilization of the reactant to the
matrix of biopolymers by combining the phenolic aldehyde group with free –NH2 groups
of gelatin. These modifications resulted in an improvement in the antibacterial properties
of the given gelatin derivatives [3,9,13].

p-Anisaldehyde (4-methoxybenzaldehyde), one of the isomers of anisaldehyde, is an
organic compound commonly found in synthetic and natural fragrances [14]. It is a major
essential oil compound extracted from the seeds of Pimpinella anisum [15]; commercially, it
is produced by the oxidation of methoxytoluene [16]. Due to its antibacterial and antifungal
properties, p-anisaldehyde has many applications in medicine and pharmacology [16,17].

Syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde), belonging to the group of
flavonoids, is a naturally occurring compound with various bioactive characteristics. Major
natural sources of syringaldehyde are lignin and the cell wall of such plants as Manihot
esculenta and Magnolia officinalis [2,18]. Syringaldehyde has a strong anti-inflammatory
activity via inhibiting cyclooxygenase 2, as demonstrated, e.g., in a mouse macrophage cell
line [19].

Vanillin, a natural phenolic compound extracted from the pods of Vanilla planifolia
orchid, is one of the most extensively used flavoring agents in the food, beverage, and
cosmetics industries [10]. Importantly, vanillin has been recognized as an essential bioactive
compound possessing antioxidant, antimicrobial, antifungal, nephroprotective, antiviral,
cardioprotective, and antitumor properties. It serves as a treating agent for a variety
of diseases ranging from skin wounds to sickle cell anemia [20]. Furthermore, vanillin
and its synthetic counterparts have been found to control gene expression, inhibit the
excessive production of pro-inflammatory mediators and free radicals, and facilitate tissue
regeneration [11,12,21].

Hyaluronan or hyaluronic acid (HA) is a prominent high-molar-mass linear gly-
cosaminoglycan found in ECM, reaching a size of up to 8 MDa. The adult human body
contains about 12–15 g of HA, most of which occurs in connective tissue, including skin, the
vitreous body of the eye, synovial fluid of articular joints, intervertebral disks, embryonic
mesenchymal tissues, and umbilical cord. Hyaluronan is involved in a number of processes,
including skin wound healing, tissue repair and regeneration, organization of ECM, joint
lubrication, regulation of cell adhesion and motility through receptors that interact with
the cytoskeleton, angiogenesis via promoting cell proliferation, cell differentiation, and
cell migration. HA also possesses immunomodulatory, anticancer, and antiproliferative
properties [22].

Both gelatin and HA are appropriate candidates for pharmaceutical and medical
applications, including tissue engineering and regenerative medicine. Their ability to
mimic the architecture of ECM has been reported for respective hybrid hydrogels of gelatin
and HA. Scaffolds consisting of both polymers were prepared and used for culturing
a variety of cells, including vascular endothelial cells, myoblasts, osteoblasts, and stem
cells [23].

The aim of the present study was: (i) to synthesize derivatives of gelatin by coupling
it with naturally occurring aldehyde compounds, namely, p-anisaldehyde, vanillin, and
syringaldehyde, and (ii) to investigate their properties in scavenging reactive oxygen species
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such as •OH, alkyloxy- and, alkylperoxy-type radicals using the so-called hydrogen-atom-
transferring (HAT) assay and free-electron donating assay via quenching the ABTS•+ probe.

2. Results and Discussion

The results of FT-IR depicted in Figure 2 showed that the absorption peaks observed
at 3439 cm−1 for gelatin and 3282 cm−1 for the new gelatin derivatives correspond to the
intermolecular hydrogen-bonded –OH stretching and –NH stretching in secondary amides
(gelatin amide A) [24]. For pure gelatin, the peak obtained near 1635 cm−1 confirmed
the presence of –C=O stretching in amides (amide I band). Further, distinct absorption
bands obtained around 1430 cm−1 in the range of 1560–1335 cm−1 corresponded to the
N–H bending in secondary amides (amide II bands) [25]. For the new gelatin derivatives,
there was a significant peak generated as a result of the substitution of new functional
groups. The peak near 1635 cm−1 was shifted to 1630 cm−1, and a new peak for –C=N
formation was generated due to the interaction of amino groups with aldehyde groups of
vanillin (at 1527 cm−1), p-anisaldehyde (1526 cm−1), or syringaldehyde (1527 cm−1). In
particular, characteristic aromatic bands C=C were observed in the range of 1400–1440 cm−1

in combination with the N–H bending in secondary amides (amide II bands). In addition,
the stretching vibration of =C–H in the aromatic ring was observed at 3062 cm−1 for gelatin–
anisaldehyde, at 3075 cm−1 for gelatin–syringaldehyde, and at 3080 and 3059 cm−1 for
gelatin–vanillin. The bands in the range of 1240–670 cm−1 were attributed to the amide
III region of gelatin [25,26]. The FT-IR results thus demonstrated the chemical reaction
between gelatin and the aldehydes, and the respective peaks confirmed the formation
of new imine linkages of Schiff bases in the range of 1630–1530 cm−1 for all derivatives.
Furthermore, the peaks around 1440 cm−1 confirmed the formation of the gelatin Schiff
base [27,28].
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Figure 2. FT-IR of gelatin (panel A), gelatin–anisaldehyde (panel B), gelatin–syringaldehyde (panel 

C), and gelatin–vanillin (panel D). 

Figure 2. FT-IR of gelatin (A), gelatin–anisaldehyde (B), gelatin–syringaldehyde (C), and gelatin–
vanillin (D).

The UV-visible spectra of gelatin (Figure 3A) and three selected representants of
gelatin derivatives are depicted in Figure 3B–D. It was shown that bovine skin gelatin
and modified gelatin gave a characteristic peak at 223 nm that reflected the percentages of
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specific amino acids in their content, namely, glycine (25.96%), proline (15.14%), arginine
(11.30%), glutamic acid (8.17%), alanine (7.93%), phenylalanine (6.49%), tyrosine (6.25%),
and other amino acids (18.75%) [29]. By substitution, free amine groups were coupled
with conjugated phenyl groups that donated nitrogen with the stream of electrons through
conjugated double bonds. As a result, the intensity of the peak increased, and its position
shifted to a higher wavelength, as demonstrated by three gelatin derivatives, namely,
gelatin–anisaldehyde (Figure 3B), gelatin–syringaldehyde (Figure 3C), and gelatin–vanillin
(Figure 3D). Coupling gelatin amine groups with aromatic aldehydes immobilized a new
nucleus along the gelatin backbone. The rise in the peak could be explained by the increased
donor ability to stabilize the excited state. In addition, one new peak appeared at 360 nm
for gelatin–anisaldehyde; two new peaks at 319 and 356 nm for gelatin–syringaldehyde;
and three peaks at 280, 315, and 339 nm for gelatin–vanillin. This result was explained
as the result of the generation of a new transition n–π*, forming a Schiff base bond –C=N
between the amine of the gelatin and the carbonyl of the aromatic aldehyde [26,30].
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Figure 3. UV-Vis spectra of gelatin (A), gelatin–anisaldehyde (B), gelatin–syringaldehyde (C), and
gelatin–vanillin (D).

Figure 4 shows the microstructure of gelatin, gelatin–anisaldehyde, and gelatin–
syringaldehyde surfaces. There are visible porosity and cavities of pores on the surface
created by coupling amine groups with the aromatic aldehyde. The smooth structure of
gelatin may be attributed to the intermolecular bonds between its amino acid functional
groups. The substitution of the macromolecules with aromatic Schiff bases allows them to
re-esterify those bonds and build new intermolecular bonds. Microstructure alterations
may be associated with the distortion of chain alignment and/or solvent evaporation
during processing. Notably, the topography of biomaterials’ surfaces at the micro- and
nano-scale influences the expression of the genes responsible for cell alignment, migration,
differentiation, and proliferation [31–33]. It has been reported that when using various
biomaterials as tissue scaffolds, the biomaterials’ porousness was an important factor in
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modulating tissue regeneration and wound healing, as demonstrated by the facilitation of
dermal fibroblast adhesion and skin integration [34].
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Figure 4. SEM of gelatin and gelatin derivatives.

The thermal stability of gelatin and three selected gelatin derivatives, characterized in
detail by SEM (cf. Figure 4), was specifically assessed by thermal gravimetry analysis (TGA),
as depicted in Figure 5A. The parent compound and its two derivatives underwent three
main stages of weight loss. The first stage of weight loss, matching the loss of free and bound
water, appeared in the range of 40–50 ◦C up to approximately 150 ◦C. The moisture loss was
10.28% for gelatin, 9.50% for gelatin–anisaldehyde, 11.21% for gelatin–syringaldehyde, and
10.15% for gelatin–vanillin. In contrast to gelatin, a decrease in binding water by gelatin–
anisaldehyde might be attributed to an increased hydrophobic character after coupling
gelatin with anisaldehyde. On the other hand, compared to gelatin, a significant increase in
the moisture content in gelatin–syringaldehyde was found. This increase may be explained
by the pseudohydrophilic character of the derivative responsible for increasing the pore
size of the sample, causing it to reduce moisture in the environment during the preparation
process. The second stage of weight loss, associated with the loss of lower-molecular-weight
proteins, was observed at the temperature range of 280–380 ◦C. Gelatin’s derivatives were
observed to have increased thermal stability relative to gelatin. The third stage of weight
loss (at a temperature > 400 ◦C) reflected the thermal decomposition of gelatin chains.

Differential scanning calorimetry (DSC, Figure 5B) analysis of gelatin revealed an
endothermic peak band around 100 ◦C, which was attributed to the evaporation of wa-
ter molecules trapped by its hydrophilic groups (i.e., amine, carboxylic, and hydroxyl
groups) [35,36]. A decrease in moisture content was observed in gelatin–anisaldehyde. The
endothermic peak at a temperature of 216 ◦C is related to the thermal unfolding of the par-
tial helical structure of gelatin. These bands were shifted and disappeared by replacement
with cinnamyl groups. Gelatin decomposed at 230 ◦C—the point at which the exothermic
peak was observed. A shift in the exothermic decomposition peak was attributed to the
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phenolic nucleus attached to gelatin and indicated the thermal stabilities of the formed
Schiff bases.
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A 1H NMR analysis of gelatin, gelatin–anisaldehyde, gelatin–syringaldehyde, and
gelatin–vanillin was performed Figure 6). Most of the proton signals could be assigned to
the corresponding proton of the gelatin amino acids. In detail, the signal at δ 1.3–1.4 ppm
was a β methylene group in (Ala); the signal at δ 1.5–1.6 ppm referred to γ methylene
proton in (Arg); and multiple signals δ 1.8–2.6 ppm were a combination of a proton of
β(CH2) Arg at δ 1.79 ppm, δCH2 (Arg) at δ 2.65 ppm, βCH2 Glut at δ 2.06 ppm, γCH2 (Glu)
at δ 2.33 ppm, and γCH2 (Pro) at δ 2.2–2.3 ppm. Hydroxyl protons, αCH2 (Ala) and δCH
(Pro), were at δ 3.5–3.7 ppm. The signal at δ 4.09 referred to αCH2 (Gly). The signal at δ
4.4 ppm referred to αCH2 (Pro) [37]. The coupling of gelatin and formation of aromatic
Schiff base derivatives demonstrated a clear signal at δ7.5–8 ppm referring to aromatic
protons and a signal δ 9.5–10 ppm referring to Schiff base proton –CH=N– [38,39].

Results in Figure 7, left panel (black curve), showed rapid •OH radical-induced HA
degradation. The decrease in dynamic viscosity of the HA solution was 5.2 mPa · s within
5 h. When the gelatin solution was added in the volume of 100 µL, minimal prevention
of HA oxidative degradation was seen (red curve). The addition of 1000 µL of the gelatin
solution (green curve) resulted in a more significant inhibition of HA degradation. The
dynamic viscosity of the HA solution dropped by only 2.22 mPa · s. Similar results are
shown in Figure 7, right panel, where the propagation of the HA degradation was mediated
by alkyloxy- and/or alkylperoxy-type radicals. The addition of gelatin in volumes of
100 (red curve) and 1000 µL (green curve) dose-dependently reduced the rate of HA
degradation, whereas the decreases in the dynamic viscosity of the HA solution were
2.7 and 1.35 mPa · s, respectively.

Table 1 summarizes the percentage of scavenging potency towards the reactive oxygen
species of gelatin and its three derivatives. Concerning the elimination of •OH radicals,
gelatin and gelatin–syringaldehyde were shown to be the most potent: they scavenged
57% of these radicals. A slightly weaker effect was shown for the derivatives gelatin–
vanillin (52%) and gelatin–anisaldehyde (45%). As for the scavenging of alkyloxy- and
alkylperoxy-type radicals, the most potent of these was gelatin, followed by gelatin–vanillin,
gelatin–syringaldehyde, and gelatin–anisaldehyde. These results indicate that gelatin and
its derivatives exerted their H-atom-transferring properties.

As depicted in Figure 8, gelatin (panel A) and gelatin–anisaldehyde (panel B) showed
poor electron-donor properties. The nonreduced ABTS•+ percentages were 64.7% and
63.3%, respectively, when gelatin and gelatin–anisaldehyde were added at their highest
concentration, i.e., 20 mg/mL. In comparison, gelatin–syringaldehyde (panel C) revealed a
higher potency for scavenging ABTS•+. The amounts of unscavenged ABTS•+ were 68%,
50%, and 40% when adding this compound at concentrations of 5, 10, and 20 mg/mL,
respectively. Finally, gelatin–vanillin was found to be the most effective derivative for
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scavenging ABTS•+ (panel D); the amounts of unscavenged ABTS•+ were the lowest among
the examined compounds. Thus, gelatin–vanillin was revealed to be the most effective
electron donor compound of all the tested compounds in the study.
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Figure 7. Time-dependent changes in dynamic viscosity of high-molar-mass HA solutions exposed to
Cu(II) ions (1 µM) and ascorbate (100 µM) (black curve) and after the addition of gelatin (10 mg/mL)
in volume 100 µL (red curve) and 1000 µL (green curve). Gelatin was added either before HA
degradation began (left panel) or 1 h later (right panel).



Molecules 2022, 27, 7003 8 of 13

Table 1. Reactive oxygen species scavenging activity of gelatin and its derivatives when added into
the reaction vessel at volume of 1000 µL.

Sample
•OH Radical
Scavenging
Activity (%)

Alkyloxy- and/or
Alkylperoxy-Type

Radical-Scavenging Activity (%)

Gelatin 57 67

Gelatin–anisaldehyde 45 45

Gelatin–syringaldehyde 57 50

Gelatin–vanillin 52 55
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Figure 8. Time-dependent changes in the kinetics of the reduction of ABTS•+ by gelatin (A), gelatin–
anisaldehyde (B), gelatin–syringaldehyde (C), and gelatin–vanillin (D), all added at concentrations
of 5 (green), 10 (red), and 20 mg/mL (black). The measurements were performed in triplicate by
spectrophotometry at 734 nm within 15 min. The time dependencies of the percentage of nonreduced
ABTS•+ pass through the means of the measurements; as a result, the SEMs are indicated by the
standard method.

The novelty of the present study is the design, preparation, and essential physicochem-
ical characterization of the novel gelatin-based aldehydes. Along with spectrophotometric
methods (FT-IR, UV/Vis, 1H NMR, thermoanalytical methods), thermogravimetry, dif-
ferential scanning calorimetry, and the microscopic method (SEM), an original rotational
viscometric method has been employed to examine the free-radical properties of all four
compounds. The latter method has been applied to compare free-radical inhibition proper-
ties between native gelatin and novel gelatin–aldehyde derivatives.

The results of the present study demonstrated that gelatin and its derivatives were
effective at given concentrations in inhibiting reactive-oxygen-species-mediated HA degra-
dation. Few papers report the efficacy of gelatin for scavenging •OH radicals. He et al.
(2002) [40] and Xiao et al. (2007) [41], using electron paramagnetic resonance analysis,
showed that type I collagen in the concentration range of 10–150 µg/mL dose-dependently
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inhibited •OH generation in Fe2+-mediated Fenton reaction. In contrast, gelatin in the same
concentration range hardly inhibited formed •OH radicals. He et al. (2002) [40] showed
that type I collagen at a concentration of 150 µg/mL inhibited •OH-induced apoptosis of
HeLa cells more effectively than gelatin.

3. Materials and Methods
3.1. Materials

High-molar-mass hyaluronan (Mw = 1.69 MDa, Mw/Mn = 1.63) was purchased from
Lifecore Biomedical Inc., Chaska, MN, USA. Gelatin powder (type B; bovine skin; 300
bloom) was purchased from Fluka, Buchs, Switzerland. Syringaldehyde (98%), vanillin
(98%), and p-anisaldehyde (98%) were supplied from Chemical Engineering Co., Beijing,
China. CuCl2·H2O p.a., NaCl p.a., ethanol p.a. (96%), and acetone p.a. were purchased
from Slavus Ltd., Košice, Slovakia. Ascorbic acid was from Merck KGaA, Germany. 2,2′-
Azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) diammonium salt was obtained
from Sigma-Aldrich Chemie GmbH, Steinheim, Germany. Deionized high-purity-grade
water, with a conductivity of ≤0.055 µS/cm, was made using the TKA water purification
system (Water Purification Systems GmbH, Berlin, Germany).

3.2. Methods
3.2.1. Synthesis of Gelatin Derivatives Anisaldehyde–, Vanillin– and
Syringaldehyde–Gelatin

Bovine type B gelatin was modified by coupling its free amine groups with p-anisaldehyde,
vanillin, or syringaldehyde as follows:

One gram of gelatin was dissolved in 20 mL distilled water and stirred at 50 ◦C until
forming a colorless homogenous solution. Then, 10 mL of ethanol was added dropwise
to the solution during mixing (to avoid the quick gelation of the polymer during the
reaction). Further, 0.3 g of the given aldehyde was dissolved in 10 mL of ethanol at ambient
temperature, followed by dropwise addition to gelatin solution under stirring. The mixture
was heated to 70 ◦C and stirred for 6 h, and the solution converted from colorless or faintly
yellow to yellow due to the formation of a Schiff base. Finally, acetone was added to
form a precipitate that was subsequently isolated from the reaction mixture by filtration.
The final product was washed several times with ethanol to remove the excess aldehyde
reagents and was then dried at 60 ◦C in an oven. The product yields ranged from 94%
to 99%. Figure 9 represents the synthesis of gelatin–vanillin, gelatin–anisaldehyde, and
gelatin–syringaldehyde Schiff base derivatives.

3.2.2. Fourier-Transform Infrared Spectrophotometry (FT-IR)

A Fourier-transform infrared spectrophotometer (Shimadzu FTIR–8400 S, Shimadzu
Scientific Instruments Inc., Kyoto, Japan) was used to analyze gelatin and its novel deriva-
tives. All samples were freeze-dried using liquid nitrogen, crushed to a fine powder (KBr:
sample = 140:2 mg/mg), and pressed into a transparent disk with a diameter of 13 mm
by applying a 105 N force. The FT-IR spectra were obtained by recording 64 scans from
4000 to 400 cm−1 with a resolution of 2 cm−1 in absorbance mode.

3.2.3. UV-Vis Spectroscopic Analysis

The UV-Vis spectra of the gelatin and Schiff base derivatives were determined using
a spectrophotometer (Model Ultrospec 2000, Pharmacia Biotech, Uppsala, Sweden). The
samples of gelatin and gelatin derivatives (0.05 g) were dissolved in 10 mL of distilled
water under heating. Absorbances of the solutions in a quartz cell were scanned from 200 to
600 nm.

3.2.4. Scanning Electron Microscopy Analysis

Scanning electron microscopy (SEM) was applied to examine gelatin, gelatin–anisaldehyde,
and gelatin–syringaldehyde after coating them with a thin layer of gold under vacuum.
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Morphological changes of the sample’s surface were followed using a secondary electron
detector of SEM (Joel Jsm 6360LA, Jeol Ltd, Tokyo, Japan.

Molecules 2022, 27, x FOR PEER REVIEW 10 of 14 
 

 

p.a., ethanol p.a. (96%), and acetone p.a. were purchased from Slavus Ltd., Slovakia. 

Ascorbic acid was from Merck KGaA, Germany. 2,2’-Azinobis-(3-ethylbenzothiazoline)-

6-sulfonic acid (ABTS) diammonium salt was obtained from Sigma-Aldrich Chemie 

GmbH, Steinheim, Germany. Deionized high-purity-grade water, with a conductivity of 

≤0.055 µS/cm, was made using the TKA water purification system (Water Purification Sys-

tems GmbH, Germany). 

3.2. Methods 

3.2.1. Synthesis of Gelatin Derivatives Anisaldehyde–, Vanillin– and Syringaldehyde–

Gelatin 

Bovine type B gelatin was modified by coupling its free amine groups with p-anisal-

dehyde, vanillin, or syringaldehyde as follows:  

One gram of gelatin was dissolved in 20 mL distilled water and stirred at 50 C until 

forming a colorless homogenous solution. Then, 10 mL of ethanol was added dropwise to 

the solution during mixing (to avoid the quick gelation of the polymer during the reac-

tion). Further, 0.3 g of the given aldehyde was dissolved in 10 mL of ethanol at ambient 

temperature, followed by dropwise addition to gelatin solution under stirring. The mix-

ture was heated to 70 C and stirred for 6 h, and the solution converted from colorless or 

faintly yellow to yellow due to the formation of a Schiff base. Finally, acetone was added 

to form a precipitate that was subsequently isolated from the reaction mixture by filtra-

tion. The final product was washed several times with ethanol to remove the excess alde-

hyde reagents and was then dried at 60 C in an oven. The product yields ranged from 

94% to 99%. Figure 9 represents the synthesis of gelatin–vanillin, gelatin–anisaldehyde, 

and gelatin–syringaldehyde Schiff base derivatives. 

 

Figure 9. The preparation of the gelatin–vanillin, gelatin–anisaldehyde, and gelatin–syringaldehyde 

derivatives. 

3.2.2. Fourier-Transform Infrared Spectrophotometry (FT-IR) 

A Fourier-transform infrared spectrophotometer (Shimadzu FTIR–8400 S, Shimadzu 

Scientific Instruments Inc., Kyoto, Japan) was used to analyze gelatin and its novel deriv-

atives. All samples were freeze-dried using liquid nitrogen, crushed to a fine powder 

Figure 9. The preparation of the gelatin–vanillin, gelatin–anisaldehyde, and gelatin–syringaldehyde
derivatives.

3.2.5. Thermal Gravimetric Analysis

Thermal stability of gelatin and its derivatives (~6 mg) was carried out using a ther-
mogravimetric analyzer device (Shimadzu TGA –50/50H, Shimadzu, Tokyo, Japan) at a
temperature range of 25–500 ◦C with a heating rate of 10 ◦C/min under nitrogen flow
(20 mL/min).

3.2.6. Differential Scanning Calorimetry

Differential scanning calorimetric analysis of gelatin and its derivatives (~5 mg in a
sealed aluminum pan) was carried out using a differential scanning calorimeter device
(Shimadzu DSC–60A, Shimadzu, Tokyo, Japan) at a temperature range of 25–400 ◦C with a
heating rate of 10 ◦C/min under nitrogen flow (30 mL/min).

3.2.7. 1H NMR Analysis

The 1H NMR spectra of gelatin and novel gelatin derivative molecules were obtained
using 500 MH Jeol (Jeol Ltd, Tokyo, Japan). 1H NMR spectra were also obtained separately
in 0.5 wt. % D2O to characterize the structure of the molecules.

3.2.8. Effects on Free-Radical-Mediated Degradation of Hyaluronan

Hyaluronan (HA) was dissolved overnight in 0.15 M aqueous NaCl as follows: First,
4.0 mL of solvent was added to HA (16 mg). Then, after 6 h, an additional 3.9, 3.8, or
2.9 mL of 0.15 M NaCl was added. Stock solutions of ascorbic acid (16 mM) and cupric
chloride (160 µM) were prepared in 0.15 M NaCl. To prepare stock solutions of gelatin and
its derivatives, the compounds (0.1 g) were dissolved in 10 mL of deionized water under
heating at 50 ◦C.
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HA degradation was induced by the oxidative system consisting of CuCl2 (1 µM) and
ascorbic acid (100 µM). The procedure was as follows: CuCl2 stock solution (50 µL) was
added to the HA solution (7.90 mL) and stirred for 30 s. After 7.5 min without stirring
the reaction mixture, the stock solution of ascorbic acid (50 µL) was added to the HA
solution, stirred for 30 s, and the mixture was immediately transferred into the viscometer
Teflon® vessel.

Procedures to explore gelatin and its derivatives as inhibitors of HA degradation were
as follows:

(a) In the first set of experiments, the stock solution of CuCl2 (50 µL) was added to
the HA solution (7.8 or 6.9 mL) and stirred for 30 s. After 7.5 min without stirring,
100 or 1000 µL of gelatin or its derivatives was added and stirred for 30 s. Finally, the
stock solution of ascorbic acid (50 µL) was added, stirred for 30 s, and the reaction
mixture was immediately transferred into the viscometer Teflon® vessel. Under these
conditions, the compounds were examined for their ability to inhibit the initiation
phase of HA degradation.

(b) In the second set of experiments, a similar procedure as described in (a) was applied.
However, after 7.5 min, 50 µL of stock solution of ascorbic acid was added, followed
by stirring the HA mixture for 1 h. Then, 50 µL of the stock solution of gelatin or
its derivatives was added and stirred for 30 s. The HA solution was immediately
transferred into the viscometer Teflon® vessel. Under these conditions, the compounds
were tested for their ability to inhibit the propagation phase of HA degradation.

The changes in the dynamic viscosity value were monitored for 5 h. The parameters of
the measurements were 180 rpm, a shear rate of 237 s−1, and a temperature of 25 ◦C. The
data were recorded in 3 min intervals using a rotational viscometer (Brookfield Engineering
Labs, Inc., Middleboro, MA, USA).

3.2.9. ABTS Assay

ABTS•+ probe was prepared at room temperature 24 h before the measurements as
follows: ABTS aqueous stock solution (7 mM) was mixed with K2S2O8 aqueous solution
(2.45 mM) in the equivolume ratio. On the next day, 1 mL of the generated ABTS•+ solution
was diluted with deionized high-purity grade water to the volume of 60 mL [42,43].

Gelatin and its derivatives were dissolved in water yielding the stock concentrations
of 20 mg/mL. These solutions were diluted with water to reduced concentrations of 10 and
5 mg/mL. For the measurements, 2 mL of the ABTS•+ solution was mixed with 50 µL of the
stock and working solutions of gelatin and its derivatives (20, 10, and 5 mg/mL). The light
absorbance was recorded in triplicate within 15 min at the wavelength of 734 nm using
UV-Vis 1800 spectrophotometer (Shimadzu, Tokyo, Japan).
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