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Abstract: Photocatalysis has been recognized as a feasible method in water and wastewater treatment.
Compared to other methods such as adsorption and chemical oxidation, the use of photocatalyst
in the advanced oxidation processes gives benefits such as a longer lifetime of the catalyst and less
consumable chemicals. Currently, explorations into low-cost, effective photocatalysts for organic
contaminated water are being developed. Within this scheme, an easily separated photocatalyst with
other functionality, such as high adsorption, is important. In this research, preparation of a magnetic
nanocomposite photocatalyst based on agricultural waste, palm leaves biochar impregnated nickel
nanoparticles (Ni/BC), was investigated. The nanocomposite was prepared by direct pyrolysis of
palm leaves impregnated with nickel (II) chloride precursor. Furthermore, the physicochemical
characterization of the material was performed by using an X-ray diffractometer (XRD), scanning
electron microscopy-energy dispersive X-ray fluorescence (SEM-EDX), transmission electron mi-
croscopy (TEM), gas sorption analysis, X-ray photoelectron spectroscopy (XPS) and vibrating sample
magnetometer (VSM). The photocatalytic activity of Ni/BC was evaluated for methyl violet (MV)
photocatalytic oxidation. The results from XRD, XPS and TEM analyses identified single nickel
nanoparticles dispersed on the biochar structure ranging from 30–50 nm in size. The dispersed
nickel nanoparticles increased the BET specific surface area of biochar from 3.92 m2/g to 74.12 m2/g
oxidation. High photocatalytic activity of the Ni/BC was exhibited by complete MV removal in
30 min for the concentration ranging from 10–80 mg/L. In addition, the Ni/BC showed stability in
the pH range of 4–10 and reusability without any activity change until fifth usage. The separable
photocatalyst is related to magnetism of about 13.7 emu/g. The results highlighted the role of biochar
as effective support for Ni as photoactive material.

Keywords: biochar; photocatalysis; nickel nanoparticles; dye degradation

1. Introduction

Water is the most important and valuable natural resource for all human and biotic
environments on earth, since it covers 70% of the earth’s surface. With developing anthro-
pogenic and industrial activities, water pollution is a problem which is commonly faced
today [1,2]. It is a widely recognized fact that pollution of water resources is a common
problem. Significant attention is paid to water treatments including organic compounds
and dye-contaminated water. Due to the hazardous potencies and toxicological effects
of organic-polluted water, many techniques such as chemical oxidation, ozonization and
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electrocatalytic degradation have been developed. Referring to previous works on water
and organic compound-contaminated water treatments, photocatalytic oxidation is one of
the methods needed to be applied on an industrial scale [3,4].

The performance of this method, which does not need further procedures and a long
lifetime for the photocatalyst material in the system, are the benefits, economically, com-
pared to the adsorption method, for example. In addition, low-cost photocatalytic methods
are being aggressively explored. The combination of high adsorption and easily separable
photocatalyst have influenced the development of magnetic porous material [5,6]. More-
over, utilization of naturally occurring minerals and these abundant materials exhibit their
potency for these needs. Within this scheme, biochar-based photocatalysts have proved
their potential applicability as low-cost carbonaceous materials to support photoactive
metal/metal oxide photocatalysts [7,8] The supportive adsorption mechanism of biochar
provides acceleration for photocatalysis.

Besides iron oxide magnetic materials, nickel nanoparticles (Ni NPs) are a magnetic
material with optical properties, stability and durability for catalytic and photocatalytic
applications [9–11]. In addition, the combinations of Ni NPs with other metal, metal oxides
and biochar exhibited enhanced performance in catalytic efficiency [12]. Based on these
backgrounds, in this research, a composite of magnetic Ni NPs supported on biochar was
prepared and applied as photocatalyst material. Even though NiO-based nanocomposites
have been widely reported as photocatalysts, to our knowledge the combination of Ni
NPs in the biochar composite for photocatalysis purposes has not yet been reported and,
particularly, the combination of photoactive with magnetic features could not be achieved
by NiO NPs. Considering the huge amount of palm leaf as agricultural waste from palm
plantation area in Indonesia and its carbon-rich characteristics, palm leaves were utilized
as the raw material. For the photocatalytic activity test, methyl violet (MV) was selected
as dye model due to its importance in textiles, printing, adhesive, ink, toner and other
industries [13,14].

2. Results and Discussion
2.1. Physicochemical Characterization

The XRD analysis of Ni/BC in comparison with BC is shown by the XRD pattern
presented in Figure 1.
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From the obtained diffractograms, it can be seen that different reflections appeared
in Ni/BC with respect to the BC pattern. The diffractogram of Ni/BC exhibits specific
peaks at 2θ of 27.5◦, 44.8 and 52.3◦, associated with 220, 111 and 200 reflections of a-FCC
of single nickel nanoparticles (Ni), referring to JCPDS: 03-1051 [15–17]. In addition, a
small broad peak ranging from 20◦–30◦ is also identified similar to the broad peak in BC,
implying the presence of a structure of aromatic layers (graphite 002) [18,19]. The broad
peak expresses a small dimension of crystallites perpendicular to the aromatic layers as
the characteristic of biochar structure. Particularly, the minor constituents of cristobalite
and calcite also appear at 2θ of 26◦ and 28◦, respectively. These miscellaneous inorganic
components are generally found as the main constituent of agricultural waste [20,21]. The
single nickel peakobtained, rather than another nickel oxide phase, reflected the success
of the reducing mechanism by inert nitrogen flow in a pyrolysis system to the nickel ion
precursor obtained via the impregnation method. The inert heating system procedure was
similar to the argon-atmosphere heating regarding the magnetic single nickel nanoparticles
reported in previous work [22–24]. Furthermore, the crystallite size (D) of the dispersed Ni
NPs was determined by using the Scherer Equation (Equation (1)):

D =
Kλ

β cosθ
(1)

where K is reflection constant, λ is wavelength of XRD light, β is full width and half
maximum (FWHM) of the reflections, and θ is the reflection angle. The calculated crystallite
size is 23.6 nm.

The dispersion of the Ni NPs in the Ni/BC nanocomposite is reflected by the change
of surface morphology compared to the surface profile of BC analyzed by SEM, and the
micrographs are depicted in Figure 2. BC shows a porous surface morphology which
is characteristic of biochar; furthermore, the dispersed spots and nanowires on Ni/BC
represent the dispersed Ni NPs on the surface. From previous studies, the nanowire
form of the nanoparticles is attributed to the crystallite growth controlled by temperature
and templating conditions. The pyrolytic condition of the carbon-rich material in the
pyrolytic system may be attributed as influencing the aggregation of Ni NPs [25,26]. This
is confirmed by the EDX analysis results presented in Table 1, suggesting an Ni amount
of about 31.67 wt.% in Ni/BC. The higher Ni content in the Ni/BC compared to the
set-up content of Ni (30 wt.%) could affect the weight loss of the cellulosic component
during the pyrolysis process. In addition, the identified cristobalite and calcite from XRD
analysis is in line with the obtained Si and Ca minerals as a minor component in the EDX
analysis, respectively.

Table 1. Elemental analysis of BC and Ni/BC from EDX analysis.

Element
Percentage in (wt. %)

BC Ni/BC

O 40.81 15.81

C 18.17 32.86

Al 12.42 1.82

Si 12.07 6.56

K 8.73 0.97

Fe 6.81 1.96

Ca 0.98 1.04

Ni n.d. 31.67
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Figure 2. SEM images of (a,b) BC and (c,d) Ni/BC in different magnifications.

The occurrence of the Ni NPs in the Ni/BC nanocomposite is strengthened by the
TEM and HRTEM images presented in Figure 3. Figure 3a shows the heterogeneous forms
of the particles with a highlighted nanowires-like structure, in line and associated with the
structures identified by the SEM image. In higher magnification (Figure 3b), the nanowires’
structures are clearly identified. Moreover, by HRTEM analysis, the fringes of Ni NPs are
expressed with a distance of 0.21 nm (Figure 3c). These fringes space are associated with
(111) reflections of Ni nanoparticles [27]. Based on the heterogeneous spherical particles,
particles size distribution is as presented in Figure 3d, and it can be concluded that the
particle size ranges from 30–50 nm.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 13 
 

 

Figure 2. SEM images of (a,b) BC and (c,d) Ni/BC in different magnifications. 

Table 1. Elemental analysis of BC and Ni/BC from EDX analysis. 

Element 
Percentage in (wt. %) 

BC Ni/BC 
O 40.81 15.81 
C 18.17 32.86 
Al 12.42 1.82 
Si 12.07 6.56 
K 8.73 0.97 
Fe 6.81 1.96 
Ca 0.98 1.04 
Ni n.d. 31.67 

The occurrence of the Ni NPs in the Ni/BC nanocomposite is strengthened by the 
TEM and HRTEM images presented in Figure 3. Figure 3a shows the heterogeneous forms 
of the particles with a highlighted nanowires-like structure, in line and associated with 
the structures identified by the SEM image. In higher magnification (Figure 3b), the nan-
owires’ structures are clearly identified. Moreover, by HRTEM analysis, the fringes of Ni 
NPs are expressed with a distance of 0.21 nm (Figure 3c). These fringes space are associ-
ated with (111) reflections of Ni nanoparticles [27]. Based on the heterogeneous spherical 
particles, particles size distribution is as presented in Figure 3d, and it can be concluded 
that the particle size ranges from 30–50 nm. 

 
Figure 3. (a,b) TEM images of Ni/BC; (c) HRTEM image of Ni NPs; (d) Pore size distribution. 

The dispersion of Ni NPs in Ni/BC nanocomposite affects to the surface profiles as 
identified by the adsorption/desorption profile presented in Figure 4a and, based on the 
isotherm data, the calculated Brunair-Emmet-Teller (BET) specific surface area, pore vol-
ume and pore radius are listed in Table 2.  

  

Figure 3. (a,b) TEM images of Ni/BC; (c) HRTEM image of Ni NPs; (d) Pore size distribution.



Molecules 2022, 27, 6871 5 of 13

The dispersion of Ni NPs in Ni/BC nanocomposite affects to the surface profiles as
identified by the adsorption/desorption profile presented in Figure 4a and, based on the
isotherm data, the calculated Brunair-Emmet-Teller (BET) specific surface area, pore volume
and pore radius are listed in Table 2.
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Table 2. BET specific surface area, pore volume and pore radius of BC and Ni/BC.

Parameter BC Ni/BC

Specific surface area (m2/g) 3.92 74.12

Pore volume (cc/g) 1.64 × 10−3 2.89 × 10−3

Pore radius (Å) 31.98 6.79

From the isotherm patterns, it can be implied that there is a change in the isotherm
shape from type III in BC sample into type IV in the Ni/BC sample. In addition, the
hysteresis loop of the Ni/BC sample classified as type IV indicates that the pore shape is
silt-pore [28]. This is relevant as the pore size distribution (Figure 4b) exhibits the formation
of dominant micropore size at around 6 Å, besides the predominantly microporous structure
in Ni/BC. Meanwhile, the BC expresses a microporous structure without any dominant
pore size. The pore distribution also indicates that the formation of Ni nanoparticles
aggregates on the surface, creating a surface area having the capability to adsorb the N2
adsorbate, which feature provides more of an adsorption site for enhancing the surface
mechanism in catalysis or photocatalysis. This increased specific surface area with the
presence of nickel precursor in biochar production is similar as that reported by previous
works [29,30]. The existence of nickel salt during the pyrolysis process produces higher
porosity due to the swelling capability of lignocellulosic decomposition. Moreover, the
homogeneous distribution of nickel aggregate does not block the porosity.

This confirms the influence of nickel salt, in line with the tendency towards a created
porosity by the addition of nickel.

The confirmation of Ni NPs in the nanocomposite is shown by the XPS spectrum
presented in the survey scan (Figure 5a). The survey scan spectrum revealed peaks corre-
sponding to C1s, O1s as the main component of biochar, while the presence of Ni NPs is
identified by Ni2p, Ni3s, and Ni LLM spectra. The ionic state of Ni is justified by the intense
Ni2p spectrum which exhibits two peaks at 856.5 and 873.2 eV. The deconvolution of the
Ni spectrum (Figure 5b) revealed the occurrence peak at 853.3 eV as a Ni0 peak and the
peak at 862.5 eV coming from Ni2+. The existing Ni2+ peak is aroused from the coordinated
nickel with hydroxyl or oxygen functional group as support, and the presence of Ni on the
surface site, which is also strengthened by the satellite’s peaks [31,32]. In addition, the 3s
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peak (Figure 5c) shows at 113.9 eV indicating the presence of Ni0. Further confirmation is
also expressed by the O 1s spectrum in Figure 5d. The characteristic peaks at 528.5, 532.1,
and 533.0 eV are assigned to the Ni-O, C C–O–C, and H2O, respectively [33,34].
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2.2. Photocatalytic Activity

The photocatalytic activity of Ni/BC was evaluated via photocatalytic oxidation
(photooxidation) of MV. The kinetics of photooxidation over Ni/BC in comparison with
photooxidation over BC, photolysis and the adsorption treatment of MV are presented in
Figure 6. From the kinetics plot of photooxidation over Ni/BC, it is seen that photooxidation
produces fast MV removal, in which almost 99% of DE was reached by the treatment after
15 min. In comparison with the controlled processes, DE of 62 and 20% are achieved by the
adsorption and the photolytic process in 1 h, respectively. The compared plots represent the
role of the photocatalyst along with UV light as source of photons to accelerate the oxidation
of MV. Even though there was MV removal under the presence of the photocatalyst without
light in the adsorption mechanism, the removal is still lower compared to photooxidation
and, moreover, less removal exhibited by the presence of H2O2 with UV light illumination
in the photolysis treatment. In addition, the kinetics of photooxidation over BC seems to be
similar to the kinetics of adsorption over Ni/BC. These data imply that the accelerated MV
removal occurred due to the combination of the adsorption mechanism from the provided
specific surface area and the pore volume of Ni/BC with the presence of H2O2 and a photon
source. The comparison also express that Ni NPs as the responsible photoactive sites to
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conduct the photooxidation mechanism are significantly measured by the comparison of
photooxidation by BC and Ni/BC. The degradation is tremendously expressed by Ni/BC,
but does not appear over BC. The slightly higher removal by photooxidation (BC) represents
that the removal mechanism over BC occurred due to adsorption and photolysis in the
presence of H2O2, but there is no sufficient propagation to oxidize MV.
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The rapid heating of Ni NPs while absorbing photons of the incident radiation gener-
ates electrons. Furthermore, the electrons combine with O2 and H2O as solvent to create
·OH and O2

− species. The propagation leads to the production of some radicals and
super radicals by the interaction with peroxide and dye molecule [35,36]. The degradation
mechanism is proven by the change of MV spectrum by the photooxidation and adsorp-
tion mechanism (Figure 6b,c). The adsorption leads to the reducing absorbance values
at the same wavelength (576 nm); meanwhile the photooxidation produces not only the
reducing absorbance but also the shift in peak to the smaller wavelength, along with the
increasing time of treatment (inset). This shift is identification of with the de-ethylation
mechanism [37,38]. This means that the whole process causing MV removal is clearly
photooxidation, causing the degradation of MV chemical structure rather than reducing
concentration by the adsorption mechanism.

The high effectiveness of Ni/BC for MV removal is represented by the maintained
high values of DE at varied initial MV concentrations ranging from 10–80 ppm (Figure 6d).
It is recognized that the DE reached more than 99.9% only at 15 min and a photocatalyst
dosage of 0.25/250 mL. The detailed study of the kinetics of photooxidation at varied initial
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MV concentration was performed by approaching first-order and second order kinetics
equations (Equations (2)–(4)):

ln
Ct

C0
= −k1t (2)

1
Ct

= kobst +
1

C0
(3)

where Ct and C0 are concentrations of MV at time t and at the start, k1 is first-order kinetics
constant, and k2 is second-order kinetics constant. The kinetics equation and R2 parameters
are listed in Table 3. From the R2, it is conclusively obtained that the photooxidation
reactions obey second order better than first order kinetics.

Table 3. Kinetics parameter and equation.

MV Concentration (ppm)
First-Order Kinetics Second-Order Kinetics

R2 Kinetics Equation R2 Kinetics Equation

10 0.898 ln C = 0.307 t + 0.305 0.999 1/C = 66.66 t + 0.167

20 0.901 ln C = −0.060 t + 2.324 0.974 1/C = 4.282 t + 49.639

50 0.869 ln C = −0.053 t + 3.695 0.990 1/C = 0.619 t − 4.390

70 0.861 ln C = −0.104 t + 2.635 0.955 1/C = 0.255 t − 1.534

80 0.867 ln C = −0.080 t + 3.029 0.957 1/C = 0.042 t + 0.064

These DE values are classified as highly efficient compared to other Ni-based photo-
catalyst usage in the same MV dye molecule photocatalytic oxidation reaction as presented
in Table 4. The comparison demonstrated the excellent activity obtained by Ni/BC in
this work as other Ni and NiO-based photocatalysts such as Ni-Ag bimetal, Ni/zeolite Y,
Ni/SiO2, NiO NPs and Ni NPs expressed the DE at the range of 20–90% using longer time
of treatment.

Table 4. Comparison on activity of Ni and NiO-based photocatalyst in MV photooxidation.

Photocatalyst DE Remark

NiO NPs 28 Photocatalysis reaction obeys pseudo-first order kinetics [39]

NiO-Ag bimetal 32 Photocatalysis reaction obeys pseudo-first order kinetics at MV
concentration of 1 × 10−3 M at neutral pH [39]

Activated carbon-supported NiS/CoS 60–70 Degradation efficiency is ranging at 56–78% depending on Ni
and Co composition at degradation time of 90 min [40]

Ni NPs 45 Ni NPs was synthesized using polyvinyl pyrrolidone (PVP),
stabilizer, the reaction was conducted under UV light for 40 min [41]

Ni/Zeolite Y 94 Photocatalysis reaction was conducted for 240 min [42]
NiO/SiO2 20 Photooxidation was conducted for 21 min [43]

NiO 50 Photooxidation was conducted for 21 min [43]

Ni/BC >99.5 Photooxidation efficiency was obtained for MV initial
concentration of 10–80 ppm conducted for 30 min This work

2.3. Effect of pH

As in the mechanism in which the surface interaction between target molecule and
photocatalyst is involved, it has been discussed that pH crucially influences the process’s
and efficiency. Figure 7a shows the effect of pH on DE. From the plot, it can be concluded
that the DE remains high (>99%) at all tested pH (4–10). The values suggest that, meanwhile
and in particular, the adsorption of cationic species is extremely dependent on the pH of the
solution and the oxidative mechanism conducted by the photoactive material plays a more
important role. This means that Ni/BC is stable at all ranges of pH condition. However, in
more detail, the DE at pH 7 is the highest value (99.80%) compared to other pH variations.
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This implies that the neutral surface facilitates the more intensive interaction between MV
as molecule target with Ni/BC surface. The DE at pH 4 (96.88%) is the smallest value,
representing that, in the acidic environment, less interaction of MV with Ni/BC occurred.
This may be attributed to the competition of MV with H+ from the acidic environment
causing less affinity of the surface for adsorption and undergoing of a photocatalysis
reaction [6].
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2.4. Reusability and Magnetic Susceptibility

Reusability of a photocatalyst is one of the important features regarding applicability
at the industrial scale. The evaluation of Ni/BC reusability as photocatalyst is examined
for five cycles of photooxidation experiments and the results are presented as a chart in
Figure 7b. It is seen that, overall, for 1–5th cycle, DE values are maintained at above
99% without any significant change. This represents that the capability of Ni NPs as
photoactive material in Ni/BC nanocomposite remains stable. The reusability of Ni/BC is
also related to the easiness in separation after use, as expressed by Figure 7c. The magnetic
attractivity of Ni/BC is confirmed by VSM plot in Figure 7d. The plot shows that Ni/BC
expressed superparamagnetic characteristics with a saturation magnetization value (Ms) of
approximately 13.7 emu g−1. Ni/BC can be easily attracted by a magnetic field, suggesting
easy separation and collection from the reaction system by using an external magnet.

The stability of Ni/BC is confirmed by XRD pattern before and after use presented
in Figure 8. As can be seen from the peaks, there is no change of Ni peaks observed,
suggesting that there is no oxidation/reduction influencing the phase of Ni nanoparticles
on the surface.

In summary, from the characterization and photoactivity data of Ni/BC, it is reported
that Ni/BC nanocomposite exhibited supportive physicochemical characters for photo-
catalysis mechanism. The high DE at a wide range of MV concentrations, as well as the
reusability, are potential features for further development at a larger scale and for other
organic compounds removal over photocatalytic oxidation.
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3. Materials and Methods
3.1. Materials

Nickel (II) chloride, H2O2 and methyl violet were purchased from Merck (Darmstadt,
Germany). Palm leaves were obtained from West Kalimantan palm agricultural area. Gas
N2 at ultra-high purity was supplied from PT Samator, Indonesia.

3.2. Preparation Magnetic Ni NPs/Biochar (Ni/BC)

The Ni/BC sample was prepared by previously mixing the chopped palm leaves with
NiCl2 solution at the set Ni concentration of 20 wt.% in the composite. The mixture was
dried in the oven prior to pyrolysis at a temperature of 500 ◦C for 1 h under N2 gas flow.
Figure 9 presents the scheme of Ni/BC preparation.
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3.3. Physicochemical Characterization

Relevant physicochemical characterizations consisting of XRD, SEM-EDX, TEM and
VSM analyses were performed. A Bruker D8 DISCOVER diffractometer (Billerica, MA,
USA) with Ni-filtered- Cu Kα radiation (40 kV and 30 mA) was utilized for XRD analysis.
A JEM-7401 SEM instrument was employed for surface micrographic analysis; meanwhile,
a Phenom-X instrument was utilized for EDX analysis. For TEM analysis, JEOL 2010F
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Field Emission instrument was used. TEM was operated at the applied voltage of 200 kV,
along with monochromatic Al Kα radiation with a photon energy of 1486.6 ± 0.2 eV. The
degassing of the sample prior analysis was at the pressure below 10−8 Pa for 4 h. The surface
parameters consisting of specific surface area, pore volume, and pore radius determination
were carried out on a NOVA 1200 gas sorption analyzer. X-ray photoelectron spectroscopy
(XPS) analysis was conducted by using V.G. Scientific ESKALAB MKI microscope (Tokyo,
Japan). For magnetism analysis, a vibration sample magnetometer (VSM)-BHV-5 (Tokyo,
Japan) was employed.

3.4. Photocatalytic Activity Test

The photocatalytic activity of Ni/BC was carried out in the MV photocatalytic oxida-
tion. For each experiment, about 0.25 g of Ni/BC powder was added into 250 mL of MV
solution. The mixture was placed in a batch photocatalytic reactor equipped with a UV
lamp. The reactor consists of 500 mL water-jacketed flask in a flask, and the center of the
glass chamber, a Philips UV lamp (20 watt) with a wavelength of 296 nm and light intensity
of 39.99 MW/Cm2 is placed. The sampling was performed sequentially by pipetting the
of treated solution over a period of time. The effectivity of photocatalytic treatment was
measured as the degradation efficiency (DE) which was calculated by using the following
equation (Equation (4)):

DE(%) =
RhB0 − RhBt

RhB0
× 100 (4)

RhB0 and RhBt are the RhB initial concentration and concentration at time of t.
In order to evaluate the significantly different mechanisms of degradation, the ex-

periments for adsorption and photolysis were also performed. In detail, the adsorption
experiment was a similar procedure but without H2O2 addition and light exposure, while
for the photolysis treatment the system is without a photocatalyst. For photocatalytic oxida-
tion treatment, 3% of H2O2 solution was added into the mixture followed by UV exposure.

4. Conclusions

In this study, the magnetic nanocomposite of Ni/BC has been successfully prepared
by using palm leaves biochar. From the XRD, SEM, TEM, HRTEM analyses, it is found
that a single Ni NPs dispersed onto biochar with nanowires structure is expressed by the
nanocomposite. The increased specific surface area resulted from the dispersion along with
magnetism of 13.7 emu/g and band gap energy of 2.7 eV. The nanocomposite was found
to have strong activity as photocatalyst in MV photocatalytic oxidation. The obtained DE
values are above 99% for the MV range of 10–80 ppm of treatment for 30 min. In addition,
reusability of Ni/BC is expressed by the maintained DE values until fifth cycle of usage.
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