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Abstract: Deep machine learning is expanding the conceptual framework and capacity of computa-
tional compound design, enabling new applications through generative modeling. We have explored
the systematic design of covalent protein kinase inhibitors by learning from kinome-relevant chemical
space, followed by focusing on an exemplary kinase of interest. Covalent inhibitors experience a
renaissance in drug discovery, especially for targeting protein kinases. However, computational
design of this class of inhibitors has thus far only been little investigated. To this end, we have
devised a computational approach combining fragment-based design and deep generative modeling
augmented by three-dimensional pharmacophore screening. This approach is thought to be particu-
larly relevant for medicinal chemistry applications because it combines knowledge-based elements
with deep learning and is chemically intuitive. As an exemplary application, we report for Bruton’s
tyrosine kinase (BTK), a major drug target for the treatment of inflammatory diseases and leukemia,
the generation of novel candidate inhibitors with a specific chemically reactive group for covalent
modification, requiring only little target-specific compound information to guide the design efforts.
Newly generated compounds include known inhibitors and characteristic substructures and many
novel candidates, thus lending credence to the computational approach, which is readily applicable
to other targets.

Keywords: deep machine learning; generative modeling; kinase inhibitor design; Bruton’s tyrosine
kinase; covalent inhibitors

1. Introduction

Increasing interest in artificial intelligence methods is impacting computer-aided drug
design and widening its scope [1]. Generative modeling is among the new approaches
enabled through the application of deep neural network architectures [1–4]. It aims to
produce novel chemical entities through deep learning from existing chemical matter, either
by generally expanding biologically relevant chemical space through the generation of
novel virtual libraries or by focusing on compounds with specific biological activities [2–4].
Although generative modeling is intensely investigated at present, reports of practical
applications impacting medicinal chemistry are still rare [1]. This is typically the case
for newly introduced (computational and experimental) methodologies, which will re-
quire time until they mature and measurably contribute to the practical drug design and
medicinal chemistry programs.

So far, most drug design efforts have concentrated on generating reversible non-
covalent inhibitors of target proteins, a hallmark of small-molecule drug discovery. In
contrast, covalent inhibitors have experienced comparatively little interest, especially
in the era of molecular and structure-based approaches [5]. Most covalent inhibitors

Molecules 2022, 27, 570. https://doi.org/10.3390/molecules27020570 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27020570
https://doi.org/10.3390/molecules27020570
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-3206-5143
https://orcid.org/0000-0001-5365-505X
https://orcid.org/0000-0002-0557-5714
https://doi.org/10.3390/molecules27020570
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27020570?type=check_update&version=1


Molecules 2022, 27, 570 2 of 12

permanently disable biological targets and ultimately lead to their degradation. Hence,
covalent inhibitors are often associated with unfavorable pharmacological properties and
undesired side effects, due to the non-selective inhibition of targets. However, these views
have partly changed over the past decade as potential advantages of covalent inhibitors
have increasingly been realized if unique or only weakly conserved residues important for
the activity of given targets can be modified [5,6], leading to so-called targeted covalent
inhibitors (TCIs) [6]. Often quoted favorable properties of TCIs include, among others, a
high degree of target occupancy, long physiological half-life and ensuing high efficacy, or
potential decoupling of pharmacodynamic and pharmacokinetic effects [5,6].

For the generation of reactive groups in TCIs that form covalent bonds to side-chain
atoms of cysteine, lysine, or tyrosine residues, often termed chemical “warheads”, a variety
of chemical reactions are applicable [6]. In addition, to facilitate non-permanent inhibition
by TCIs, chemistry is also available to achieve covalent-reversible inhibition, which balances
advantages of non-covalent as well as covalent interference with given targets [6].

Protein kinase inhibition is not only one of the major focal points of contemporary
drug discovery efforts [7] but also a growth area for covalent inhibition. This is the
case because most non-covalent kinase inhibitors developed thus far target the highly
conserved ATP cofactor binding site in the catalytic kinase domain, giving rise to potential
off-target promiscuity [7,8]. Accordingly, in kinase drug discovery, covalent inhibition is
also considered as a mechanism to render the inhibitor selective for confined subsets of
kinases having free cysteine residues in the active site region that are only little conserved
across the human kinome [8].

A representative and instructive example is provided by Bruton’s tyrosine kinase
(BTK) [9], which belongs to the TEC (gene) family of non-receptor tyrosine kinases [10].
TEC kinases are expressed in hematopoietic, kidney, and liver cells and implicated in
T-helper-cell activation through participation in cytokine receptor-dependent signaling
pathways [10]. Hence, this kinase family includes therapeutic targets for the treatment of
inflammatory diseases and leukemia, with BTK being the most intensely studied member
and a major drug target [11]. For BTK, a variety of non-covalent as well as covalent
inhibitors have been reported over the years [12]. Importantly, BTK is a primary target
of the marketed covalent drug ibrutinib [13], depicted in Figure 1. Ibrutinib contains an
acrylamide warhead acting as a Michael acceptor in the formation of a covalent bond with
the thiol group of a cysteine residue in the active site of BTK (Cys481).
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Figure 1. Structure of ibrutinib. The covalent drug ibrutinib contains an acrylamide warhead, colored
magenta in (a), which forms a covalent bond to the thiol group of a Cys481 in BTK, shown in (b).

In this work, we have addressed the question of whether novel covalent inhibitors of
BTK could be designed via deep generative modeling by focusing on ibrutinib as a template
and its interactions with BTK. To our knowledge, herein, we introduce the first generative
design strategy for covalent enzyme inhibitors and report a number of new BTK candidate
compounds for follow-up investigations in medicinal chemistry.
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2. Results and Discussion
2.1. Selected Covalent BTK Inhibitors

We aimed to design covalent BTK inhibitors containing an acrylamide/Michael accep-
tor warhead, for which the drug ibrutinib served as a template [13], as shown in Figure 1a.
The warhead reacts with the SH-group of cysteine residues, forming a covalent bond
(Figure 1b). Hence, kinases having a free cysteine within or in the vicinity of the active site
(including the cofactor and substrate binding site) might be inhibited by such compounds.
However, this is only possible if the warhead can reach the thiol group of cysteine residues
and be accommodated in the binding site, which might be prevented, for example, by steric
hindrance or other chemical incompatibilities. This offers opportunities to render covalent
inhibitors target-selective by modifying the remaining non-reactive parts of their structure
to fit into a given binding site. In any event, this specific mode of covalent inhibition
principally limits potential kinase targets to a subset of kinases having a free cysteine in
the active site region. BTK contains a free cysteine in the F2 subsite (αD-1 position) in the
front region of the ATP cofactor binding site, the location of which is shared by a total of
12 human kinases (plus isoforms) [8].

2.2. Inhibitor Distribution

We searched ChEMBL [14] for covalent BTK inhibitors containing the piperidine-
based Michael acceptor warhead of ibrutinib, for which high-confidence activity data were
available, and identified a total of 34 such inhibitors, shown in Supplementary Figure S1. We
then searched ChEMBL for covalent inhibitors of other kinases having the same warhead
and identified such inhibitors for a total of 20 kinases, with 1–35 inhibitors per kinase,
as reported in Table 1. These included several kinases with a cysteine at the position
corresponding to BTK but also others with a free cysteine at a different position. Eighteen
of the 20 kinases were found to share varying numbers of inhibitors with BTK. Among
these was erbB1 with 35 inhibitors. For BTK and erbB1, most inhibitors belonging to this
class were available, with 34 and 35 compounds, respectively. BTK and erbB1 have a
free cysteine at corresponding positions in their structure, but only share one covalent
inhibitor with the piperidine-based Michael acceptor warhead (Table 1), hence indicating
the potential for selective covalent inhibition of related kinases. We also found that 7 of
the 34 BTK inhibitors were promiscuous on the basis of high-confidence activity data, i.e.,
they were active against two or more kinases. Promiscuous inhibitors included ibrutinib,
reported to be active against a total of 11 targets. The remaining 27 inhibitors were active
against BTK. Data available for ibrutinib, which represents an extensively investigated
drug, might provide a realistic estimate for the degree of selectivity that can be expected
for this class of inhibitors, although other BTK inhibitors containing this warhead might be
more selective than ibrutinib, given their steric and chemical features.

2.3. Artificial Intelligence-Assisted Inhibitor Design

New BTK candidate inhibitors were designed using the DeepSARM, which combines
the SAR matrix (SARM) data structure with deep learning and generative modeling [15].
The methodology is detailed in the Supplementary Methods. The underlying principles are
as follows: From a given compound dataset, the SARM approach extracts all structurally
related analogue series and organizes these series in matrices reminiscent of R-group tables,
as shown in Supplementary Figure S2a. This is facilitated by applying a dual-compound
fragmentation scheme yielding core structure fragments (Keys) and substituents (Values).
In the first round, compounds are fragmented, yielding a Key 1 and Value 1 fragment,
and in the second round, the Key 1 fragments from the first fragmentation, yielding
a Key 2 and Value 2 fragment. This fragmentation scheme identifies all compounds
and core structures that are only distinguished by a chemical change at a single site.
Accordingly, each qualifying Key 2 fragment represents a series of analogues with structural
modifications at a single site and each SARM contains a subset of structurally closely related
series with core fragments distinguished by a structural change at a given site. As such,
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cells in the SARM represent individual dataset compounds and empty cells represent
currently unexplored combinations of Key 1 and Value 1 fragments, providing candidate
compounds for series expansion (Supplementary Figure S2a).

Table 1. Reported are inhibitors from ChEMBL containing the piperidine-based Michael acceptor
warhead with activity against different kinases and their overlap with BTK inhibitors. Kinases with a
free cysteine residue at a position corresponding to BTK are given in bold. # stands for Number.

Protein Kinase # of Inhibitors with
Warhead

# of BTK Inhibitors
with Warhead

Epidermal growth factor receptor erbB1 35 1
Tyrosine-protein kinase BTK 34 34
Tyrosine-protein kinase JAK1 9 5

Tyrosine-protein kinase JAK3 8 6
Tyrosine-protein kinase JAK2 7 4

Receptor protein-tyrosine kinase erbB-4 4 3
Tyrosine-protein kinase ITK/TSK 4 2

Tyrosine-protein kinase TYK2 4 4
Receptor protein-tyrosine kinase erbB-2 3 2

Tyrosine-protein kinase BLK 3 3
Tyrosine-protein kinase BMX 3 2
Tyrosine-protein kinase TEC 2 1

Fibroblast growth factor receptor 1 2 0
Fibroblast growth factor receptor 2 2 1

Tyrosine-protein kinase TXK 2 2
Tyrosine-protein kinase receptor RET 1 1

Dual specificity mitogen-activated protein
kinase kinase 1 1 1

Tyrosine-protein kinase SRC 1 0
Tyrosine-protein kinase Lyn 1 1
Tyrosine-protein kinase LCK 1 1

Based upon this hierarchical decomposition scheme and the ensuing SARM data
structure, a compound design strategy can be implemented to explore combinations of
novel fragments as follows: Combinations of Key 2 and Value 2 fragments yield Key 1, i.e.,
complete core structures, of novel compounds. If the resulting core structures are combined
with newly generated Value 1 fragments, new compounds are obtained. For ibrutinib, the
corresponding ([Key 2 − Value 2] − Value 1) fragment assembly is illustrated in Figure 2a
and a candidate compound containing two novel (Key 2, Value 1) fragments in Figure 2b.
Importantly, for the design of covalent BTK inhibitors attempted herein, Value 2 fragments
completing the inhibitor core structure are required to contain the invariant warhead.

Following this general design approach, new Key 2, Value 2, and Value 1 fragments
are required to obtain new compounds. The generation of Key 2, Value 2, and Value 1 is
facilitated using DeepSARM. To further expand the close-in analogue design space pro-
vided by SARM, DeepSARM is composed of three sequence-to-sequence (Seq2Seq) models
representing an encoder–decoder framework for learning the corresponding structural
fragments and generating new ones. These Seq2Seq models represent a recurrent neural
network architecture successfully used in natural language processing to transform a se-
quence of characters into another (hence the name). The Seq2Seq models in DeepSARM are
also termed Key, Value 2, and Value 1 Generator, respectively. The DeepSARM architec-
ture is illustrated in Supplementary Figure S2b. To expand the compound design space,
DeepSARM is first pre-trained on a large set of compounds (for instance, a collection of
kinase inhibitors across the human kinome) and then fine-tuned on a smaller compound
set (such as known inhibitors of a specific kinase target). The generation of a SARM with
compounds composed of new fragments from DeepSARM is illustrated in Supplementary
Figure S2c.
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DeepSARM fragment design via Seq2Seq models is guided by cumulative log-likelihood
scores from the Seq2Seq models (see the Supplementary Methods). Given the derivation of
this scoring function, small scores close to 0 are obtained for compounds whose structural
fragments are similar to known inhibitors or identical and large scores approaching 1 for
compounds with novel fragments not contained in the training data. Hence, increasing
log-likelihood scores indicate the structural novelty of candidate compounds.

2.4. BTK Inhibitor Design

DeepSARM was pre-trained with 45,441 kinase inhibitors from the Kinase SARfari
collection of ChEMBL [14] and then fine-tuned using the 34 covalent BTK inhibitors with
the piperidine-based Michael acceptor warhead depicted in Supplementary Figure S1.
Hence, only a small set of inhibitors was used for fine-tuning of the generative model.

2.4.1. Key 2 Structures

First, Key 2 fragments were generated, representing the major substructure of the
inhibitor scaffold, and evaluated using an ibrutinib core structure-based pharmacophore
model based upon the ibrutinib-BTK X-ray complex structure (see Section 3), as illustrated
in Figure 3a. Accordingly, from 50,000 initially sampled Key 2 structures, 59 Key 2 fragments
passing the rotational bond filter and the pharmacophore filter were selected, and 18 of these
fragments were prioritized that closely matched the pharmacophore, depicted in Figure 3b.
These structures included a variety of modifications of the ibrutinib Key 2, including the
introduction or replacement of ring heteroatoms and, interestingly, tricyclic Key 2 variants.
These findings confirmed the ability of DeepSARM to generate a considerable spectrum of
scaffold modifications compared to the original core structures of BTK inhibitors used for
fine-tuning.

We then encoded only the cyclic structures of Key 2 fragments of newly designed
BTK inhibitors for substructure searching in ChEMBL or only kinase and BTK inhibitors
with available high-confidence activity data. As reported in Table 2, 6 of the 18 Key 2
fragments were not detected in ChEMBL. Moreover, 8 and 14 Key 2 fragments were novel
in all kinase inhibitors or only BTK inhibitors, respectively, while the remaining structures
were already available. These findings confirmed the ability of DeepSARM to regenerate
known inhibitory structural motifs and generate novel structures, hence providing a variety
of plausible hinge-binding motifs for covalent BTK inhibitors and lending further credence
to the design approach.
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Figure 3. Generation of new Key 2 fragments. (a) The computational workflow for generating Key 2
fragments using the Seq2Seq model (Key 2) and pharmacophore filtering. In the lower left image,
pharmacophore features including hydrogen bond donor, hydrogen bond acceptor, and aromatic
groups are shown as a green arrow, red arrow, and blue circle, respectively. (b) The structure of
18 newly generated Key 2 fragments. Below each structure, the identification number and log-
likelihood score (in parentheses) are provided.
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Table 2. Reported are the numbers of cyclic Key 2 substructures from newly designed BTK inhibitors
detected in different sets of ChEMBL compounds with high-confidence activity data. Key 2 fragments
not detected in any ChEMBL compounds are shown in bold. # stands for Number.

Key 2
Fragments

# of Covalent
BTK Inhibitors

# of All BTK
Inhibitors

# of Kinase
Inhibitors

# of All ChEMBL
Compounds

Key2-01 24 110 1021 2463
Key2-02 1 10 33 97
Key2-03 1 63 2239 2799
Key2-04 0 0 1 1
Key2-06 0 0 0 0
Key2-10 0 0 0 0
Key2-13 0 0 0 0
Key2-18 0 0 0 82
Key2-21 0 0 227 342
Key2-25 0 0 0 0
Key2-27 0 0 153 769
Key2-29 0 0 25 471
Key2-38 0 0 0 81
Key2-40 0 0 3 61
Key2-46 24 110 1021 2463
Key2-47 0 0 0 0
Key2-49 0 0 2 76
Key2-57 0 0 0 0

Σ inhibitors in
datasets 34 963 56,288 272,896

2.4.2. Value 2 and Value 1 Structures

On the basis of the Key 2-01 prioritized by pharmacophore fitting, Value 2 fragments
were generated and filtered for the presence of the invariant warhead, as illustrated in
Figure 4a. A total of 10,000 Value 2 fragments were sampled, 7 of which were found to
contain the warhead, as shown in Figure 4b. Thus, these findings confirmed the ability
of DeepSARM modeling to reproduce the desired warhead. Moreover, similar to the
observations made for Key 2 structures, these Value 2 fragments displayed modifications
of the ring moiety attached to Michael acceptor group.

The selected Key 2 and Value 2 fragments were then combined to obtain Key 1 struc-
tures used as input for the generation of Value 1 fragments according to Supplementary
Figure S2b. For each Key 1, 2000 Value 1 fragments were sampled and the top 100 Value 1
fragments with the lowest log-likelihood score (similar to known inhibitors) were selected
for the generation of candidate compounds according to Supplementary Figure S2c. Value 1
fragments generated from [Key 2-01 − Value 2] fragments are shown in Supplementary
Figure S3. Since Value 1 fragments represent substituents in newly assembled candidate
compounds, preference was given here to fragments similar to those in known BTK inhibitors.

2.4.3. Candidate Compounds

Next, we characterized the generated candidate inhibitors. For each of the 18 priori-
tized Key 2 structures, a 7 × 100 [Value 2 × Value 1] SARM-like matrix was generated in
which matrix cells represented unique ([Key 2 − Value 2] − Value 1) combinations (candi-
date compounds) color-coded by cumulative DeepSARM log-likelihood scores, as shown in
Figure 5. From the top left to the bottom right in Figure 5, matrices are arranged in the order
of increasing scores, indicating increasing structural novelty compared to compounds used
for fine-tuning (vide supra). As can be seen, for prioritized Key 2 fragments, compounds
with varying structural novelty were obtained—an interesting finding.
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The candidate inhibitors were then subjected to pharmacophore fitting using a compound-
based pharmacophore model (see the Section 3) to prioritize compounds for follow-up
analysis. Supplementary Figure S4 shows a Key 2-based matrix representation according to
Figure 5 color-coded by pharmacophore score. With the exception of compounds contain-
ing Key 2-10, all matrices revealed small subsets of candidate compounds closely fitting
the ibrutinib-BTK pharmacophore, while 34 different inhibitors were used for fine-tuning.
Importantly, the number of compounds passing the pharmacophore filter did not inversely
correlate with the structural novelty of the fragments forming the candidate compounds.
For example, compounds containing Key 2-57 displayed the overall highest structural
novelty but were also among the Key 2-based compound subsets most frequently matching
the pharmacophore. Figure 6 shows a superposition of a candidate inhibitor containing
Key 2-21 passing the pharmacophore filter onto the crystallographic binding mode of
ibrutinib, and Supplementary Figure S5 shows examples of hypothetical complexes of
BTK with candidate inhibitors obtained by pharmacophore fitting, indicating plausible
binding modes.
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Figure 6. Hypothetical complexes of candidate inhibitors from DeepSARM and BTK. (a) Super-
position of a candidate inhibitor containing Key 2-21 onto the crystallographic binding mode of
ibrutinib. Pharmacophore features including two hydrogen bond acceptors, one hydrogen bond
donor, one residue bonding point, and two optional hydrophobic features are represented as red
arrows, green arrow, and orange/yellow sphere, respectively. (b) A corresponding diagram of
candidate inhibitor–BTK interactions is shown.

These three compounds are representative candidates for further consideration. In all
three cases, the acrylamide warhead is closely aligned with the targeted Cys481 residue
(the carbonyl oxygen of the acrylamide warhead is positioned in hydrogen bonding dis-
tance to the thiol group). In addition, the differently substituted phenyl moieties in these
compounds closely fit into a hydrophobic pocket in the active site of BTK distant from
the reactive group, which further stabilizes binding. Importantly, the three candidate in-
hibitors contain different Key 2 structures, including two bicyclic cores (Key 2-21, with two
fused six-membered rings; Key 2-49, fused six- and five-membered rings) and a tricyclic
core (Key 2-04). Despite these chemically significant differences, these core fragments in
these compounds are similarly positioned, including the tricyclic core, and interact with
the same BTK residues (Glu475 and Met477). Thus, the putative binding modes closely
resemble the experimental structure of ibrutinib and are plausible. The comparison of
these candidate compounds suggests that there is a variety of opportunities for further
chemical optimization.

Finally, the set of 1491 candidate compounds from DeepSARM passing the ibrutinib-
BTK pharmacophore filter was compared to the 106 unique compounds with the piperidine-
based Michael acceptor warhead contained in the high-confidence activity data subset
of ChEMBL (Table 1). Only seven candidate compounds were contained in ChEMBL,
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revealing that the vast majority of BTK inhibitor candidates from DeepSARM represented
new compounds. Corroborating insights were obtained by principal component analy-
sis (PCA) of kinome inhibitor chemical space including DeepSARM candidate inhibitors
(see the Section 3). As shown in Supplementary Figure S6, most of the known covalent
BTK inhibitors containing the piperidine-based Michael acceptor warhead mapped to a
peripheral region of kinome inhibitor space, while other BTK inhibitors were widely dis-
tributed over this space. Newly designed candidate compounds predominantly populated
the region outlined by covalent BTK inhibitors used for fine-tuning, hence reflecting the
desired focusing effect, and also further extended the kinome inhibitor space in this region
with many new candidate compounds. Both focusing on known active compounds and
generating chemical novelties around them were central aspects of the inhibitor design
strategy reported herein.

3. Materials and Methods
3.1. DeepSARM Training

For pre-training of Seq2Seq models for Key 2, Value 2, and Value 1 generation, the
number of epochs was set to 30, 10, and 30, respectively. For fine-tuning of Seq2Seq models
for Key 2, Value 2, and Value 1, epochs were set to 50, 500, and 500, respectively. For all
3 models, the batch size was set to 64 and compound datasets were divided into training
and validation sets (9:1) for pre-training and fine-tuning. Scripts for model derivation
were written in Python and the Seq2Seq models were built using keras [16] (with 256-
dimensional latent LSTM encoding space). Details of the DeepSARM architecture are
provided as Supplementary Methods.

3.2. Fragment Generation Using DeepSARM

The Seq2Seq model (Key 2) was used to generate the Key 2 fragment, and the SMILES
string [17] representing the ibrutinib Key 2 (“Nc1ncnc2c1c([At])nn2[*:1]”) (Figure 2a) was
used as the input Key 2 fragment (where [At] and [*:1] are designated attachment points of
Value 1 and Value 2, respectively). For sampling of 50,000 Key 2 fragments, the temperature
factor was set to 2.0. Key 2 fragments without rotational bonds were selected. Value 2
fragments were generated from the Seq2Seq model (Value 2) using the ibrutinib Key 2
as the input fragment. For sampling of 10,000 Value 2 fragments, the temperature factor
was set to 2.0. Value 2 fragments found to contain the piperidine-based Michael acceptor
warhead were selected. Value 1 fragments were then generated with the Seq2Seq model
(Value 1) using Key 1 fragments (assembled from Key 2 and Value 2 fragments) as the input.
For each Key 1 fragment, 2000 Value 1 fragments were sampled, setting the temperature
factor to 1.5.

3.3. Pharmacophore Modeling

For Key 2 fragment and candidate compound selection, two pharmacophore models
were constructed from the co-crystal structure of ibrutinib bound to BTK (PDB [18] ID:
5p9j) using LigandScout 4.4 [19]. Both pharmacophore models were derived using an
ensemble of exclusion volume spheres calculated based upon the X-ray structure of the
ibrutinib-BTK complex.

To construct a pharmacophore model for Key 2 selection, three pharmacophore fea-
tures were defined for the ibrutinib Key 2 fragments: aromatic, hydrogen bond acceptor,
and hydrogen bond donor. In the X-ray structure, two hydrogen bonds were formed
between the ibrutinib Key 2 and the hinge region of BTK (involving residues Glu475
and Met477). The pharmacophore model is shown in Figure 3a. The ‘idbgen’ module
of LigandScout 4.4 was used for conformer generation of the 59 Key 2 fragments from
the Seq2Seq model (Key 2). After conformer generation with default parameter settings,
pharmacophore fitting was carried out setting the LigandScout scoring function to ‘Relative
Pharmacophore-Fit’ and the conformation match mode to ‘BEST’.
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For the selection of candidate compounds, a pharmacophore model with six phar-
macophore features was derived, including two hydrogen bond acceptors, one hydrogen
bond donor, one residue bonding point, and two optional hydrophobic features. The
pharmacophore model is shown in Figure 6a. The residue bonding point feature is located
in the vicinity of Cys481, which reacts with the warheads of covalent BTK inhibitors. Af-
ter conformer generation using the ‘idbgen’ module with ‘icon-best’ parameter settings,
pharmacophore fitting was carried out using ‘Relative Pharmacophore-Fit’ and setting the
conformation match mode to ‘BEST’.

3.4. Principal Component Analysis

The 1491 DeepSARM candidate compounds were combined with the high-confidence
kinase inhibitor data subset from ChEMBL and subjected to PCA. A total of 56,288 kinase
inhibitors were compared to DeepSARM candidates, including 34 BTK covalent inhibitors,
929 other BTK inhibitors, and 55,325 inhibitors of other human kinases. For PCA, com-
pounds were represented using extended-connectivity fingerprints [20] with bond diameter
six (ECFP6) hashed to 2048-bit vectors. The first two principal components were used for
generating a PCA plot.

4. Conclusions

In this work, we have introduced a computational approach for the design of covalent
kinase inhibitors that combines fragment- and structure-based design components with
deep generative modeling learning. As an exemplary application, the design of cova-
lent BTK inhibitors containing an invariant piperidine-based acrylamide warhead was
presented. Only limited information about specifically active known compounds was
sufficient to effectively guide the design, reproduce a desired chemical warhead, as well
as characteristic inhibitor substructures, and generate many novel candidate compounds.
On the basis of the X-ray structure of the ibrutinib-BTK complex, candidate inhibitors
were found to display meaningful chemical features and plausible binding modes. As
demonstrated herein, the fragment-based design component of DeepSARM is well-suited
for retaining chemical groups essential for covalent inhibition and embedding them into
different structural environments inferred by deep learning from structures of kinase in-
hibitors. As presented in our proof-of-concept study, the approach for covalent inhibitor
design is easily applicable to other targets and chemical warheads. For BTK, the exemplary
kinase target investigated herein, nearly 1500 candidate inhibitors were obtained meeting
the design constraints. As a part of our study, this set of candidate compounds (and the
34 BTK inhibitors used for fine-tuning) has been made freely available as an open-access
deposition on the Zenodo platform [21] as a resource for medicinal chemistry applications
on BTK and other TEC kinases.

Supplementary Materials: The following supporting information can be downloaded online. Figure S1:
Covalent BTK inhibitors with an acrylamide warhead; Figure S2: SAR matrix generation using
DeepSARM; Figure S3: Value 1 fragments from DeepSARM for BTK inhibitor design; Figure S4: Key
2-based Value 1 × Value 2 matrices color-coded on the basis of pharmacophore scores; Figure S5:
Hypothetical complexes of candidate inhibitors from DeepSARM with BTK; Figure S6: Principal
component analysis of kinome inhibitor space. Supplementary Methods.
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