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Abstract: Background: This study investigates the effect of tannic acid (TA) combined with pamidronate
(PAM) on a human osteoblast cell line. Methods: EC50 for TA, PAM, and different combination ratios
of TA and PAM (25:75, 50:50, 75:25) were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) assay. The combination index value was utilized to analyze the degree
of drug interaction, while trypan blue assay was applied to analyze the cells proliferation effect.
The mineralization and detection of bone BSP and Osx genes were determined via histochemical
staining and PCR test, respectively. Results: The EC50 of osteoblasts treated with TA and a 75:25
ratio of TA and PAM were more potent with lower EC50 at 0.56 µg/mL and 0.48 µg/mL, respectively.
The combination of TA and PAM (75:25) was shown to have synergistic interaction. On Day 7,
both TA and PAM groups showed significantly increased proliferation compared with control and
combination groups. On Day 7, both the TA and combination-treated groups demonstrated a higher
production of calcium deposits than the control and PAM-treated groups. Moreover, on Day 7, the
combination-treated group showed a significantly higher expression of BSP and Osx genes than both
the TA and PAM groups. Conclusion: Combination treatment of TA and PAM at 75:25 ameliorated
the highest enhancement of osteoblast proliferation and mineralization as well as caused a high
expression of BSP and Osx genes.

Keywords: bone sialoprotein; osteoblast; osterix; pamidronate; synergism; tannic acid

1. Introduction

Bone is a dynamic tissue that constantly undergoes two processes throughout life,
namely, modeling and remodeling, to grow or change shape. Bone modeling is a process
by which bones change shape or size in response to physiologic influences or mechanical
forces that are encountered by the skeleton, whereas bone remodeling takes place so that
the bone may maintain its strength and mineral homeostasis [1]. Bone remodeling is
tightly regulated by a cross-talk between bone-forming osteoblasts and bone-resorbing
osteoclasts [2]. Osteoblasts, which are bone-forming cells, secrete collagenous and non-
collagenous proteins, including osteocalcin, osteopontin, osteonectin, bone sialoprotein
(BSP), and bone morphogenetic proteins (BMPs) [3]. In vitro data suggest that BSP may
initiate hydroxyapatite crystal formation in the bone matrix [4]. In addition, an active
osteoblast secretes the earliest bone formation marker, which is osterix (Osx). This will
reduce the number of osteoblasts by converting it to osteocytes [5].

The disturbance in the bone remodeling process can lead to skeletal system disorder,
such as osteoporosis. Osteoporosis is a metabolic bone disease caused by an imbalance
between bone resorption and bone formation, where the rate of bone resorption is greater
compared with bone formation [6]. Pamidronate (PAM) is a type of bisphosphonate that is
mainly used in the treatment of osteoporosis by inhibiting bone resorption via osteoclasts
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during bone remodeling [7]. Apart from their inhibitory effect toward osteoclasts, PAM
also enhances the production of collagen type I synthesized by osteoblasts. Osteoblast
proliferation and extracellular matrix synthesis, particularly collagen type I, may have an
anabolic effect on bone. The enhanced bone density mediated by bisphosphonates appears
to be caused by the stimulation of osteoblast differentiation [8]. However, bisphosphonate
is poorly absorbed and needs to be taken separately from food [9] while demonstrating
some adverse effects [10]. In that regard, the present community has shifted their interest
to natural products, such as herbal medicines [11].

Polyphenols are examples of phytochemicals that are widely found in plants, which
have many medicinal values, such as protection against the development of cancer, cardio-
vascular diseases, diabetes, neurodegenerative diseases, and osteoporosis [12]. Polyphenols
have antioxidant properties, which can prevent osteoporosis by scavenging reactive oxygen
species (ROS), down-regulating inflammatory mediators, and help in bone formation by
up-regulating bone formation markers, such as runt-related transcription factor-2 (Runx2),
osteocalcin, Wnt signaling pathway, β-catenin, and insulin-like growth factor (IGF)-1 [13,14].
Tannic acid (TA) is a polyphenol classified from tannin group with antioxidant proper-
ties [15,16]. Antioxidants activate the differentiation of osteoblasts as well as prevent the
action of ROS directly [17]. The usage of TA in the permissible limits is able to benefit
mankind, as it possesses numerous medicinal benefits. Nevertheless, it was reported that a
high-dose consumption of TA either through ingestion or inhalation may induce moderate
toxicity such as vomiting, nausea, constipation, abdominal pain, and liver damage [18].
Thus, extensive investigation on the effect of TA is necessary to ensure the safety as well as
to maximize its medicinal benefit.

In 2012, Ko et al. [19] investigated the combination effects of a Chinese herbal medicine
called Herba epimedii, Ligustri lucidi fructus, and Psoraleae fructus (ELP) with anti-resorptive
medications (alendronate and raloxifene) in rats to prevent osteoporosis. The herbal
formula has been shown to promote osteogenic differentiation in rat mesenchymal stem
cells by elevating alkaline phosphatase (ALP) activity and matrix calcium deposition.
Drug combination studies usually aim to achieve synergistic treatment effect and toxicity
mitigation as well as to minimize or delay the induction of drug resistance [20]. The net
effects of drug combination include synergism or additive effect, antagonism or subtractive
effect, and alteration of the effect of one or more drugs [21].

In the previous study, the combination of PAM and semi-purified fractions of Quercus infectoria
(SFQI) (containing gallic acid, digallate, ellagic acid, phaseolic acid, syringic acid, and
theogallin) showed positive effects on the proliferation and differentiation of osteoblasts.
The levels of bone formation markers (Runx2, BMP-2, and Osx) were higher in the com-
bination treatment group compared with those of groups treated with each agent [22,23].
Moreover, the authors found that the treatment with synthetic TA enhances human fetal
osteoblast cell line (hFOB 1.19) proliferation, causes morphology changes, and improves
mineralization [24]. Hence, the aim of this study is to evaluate the effect of polyphenol TA
alone or in combination with PAM on proliferation, synergistic interaction, mineralization,
as well as the expression of BSP and Osx genes in hFOB 1.19 cells.

2. Results
2.1. EC50 of TA and Combination of TA with PAM on hFOB 1.19 Cells

MTT assay was done to investigate the effect of TA and different combinations of
TA and PAM toward the hFOB 1.19 cell line compared to PAM as positive control. The
cell treated with DMSO only served as negative control. The MTT assay illustrates that
the TA and combinations of TA with PAM stimulated better cellular viability compared
with PAM alone as the control drug. Figure 1 shows the percentage viability of hFOB
1.19 cells against log concentration of the treatment and control used. The EC50 for TA was
observed to be lower (0.56 µg/mL) than that of the control drug of PAM (15.27 µg/mL). In
the combination-treated group, the combination of TA with PAM at percentage ratios at
50:50, 25:75, and 75:25 showed EC50 values at 2.25 µg/mL, 3.80 µg/mL, and 0.48 µg/mL,
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respectively (Table 1). The combination of TA and PAM at a 75:25 ratio showed the lowest
EC50 compared with the other two combination treatments. The EC50 of TA, PAM, and a
combination of TA with PAM at a ratio of 75:25 were henceforth used to treat the cells in
subsequent experiments.
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Figure 1. Percentage of cell viability (%) against log concentration of tannic acid (TA) alone, pam–
dronate (PAM) alone, and percentage combination at the ratio of TA:PAM at 50:50, 25:75, and 75:25.
The viability of hFOB 1.19 cells was determined by MTT assay. The values were expressed in
mean ± SEM from three independent (n = 3) experiments.

Table 1. Value of half maximal effective concentration (EC50) for treatment and control group on
hFOB 1.19 cells.

Treatment TA PAM 50:50
(TA:PAM)

25:75
(TA:PAM)

75:25
(TA:PAM)

EC50
(µg/mL) 0.56 15.27 2.25 3.80 0.48

Log10 EC50 −0.25 1.18 0.35 0.58 −0.32

2.2. Synergistic Activity of TA and PAM

The combination effect of TA and PAM on hFOB 1.19 cells was determined by using
Compusyn software (ComboSyn, Inc., Paramus, NJ, USA). Table 2 showed the combination
index (CI) value for the combination of TA and PAM at each percentage ratio. Synergistic
activity was determined when TA and PAM were combined at the percentage ratio of 75:25
with the CI value obtained shown below 1, which is at 0.48. Meanwhile, the combination
of TA and PAM at percentage ratios of 50:50 and 25:75 showed a CI value of 2.25 and
3.80, respectively. A CI higher than 1 indicates the antagonistic interaction between TA
and PAM.

Table 2. Combination index (CI) value for the combination of tannic acid (TA) and pamidronate (PAM).

Combination Ratio (TA:PAM) Combination Index (CI) Indication

50:50 2.0826 Antagonism
25:75 1.8831 Antagonism
75:25 0.6372 Synergism
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2.3. Proliferative Activity of hFOB 1.19 Cells

The number of viable hFOB 1.19 cells in response to the treatment with TA, PAM, and
a combination of TA with PAM at the percentage ratio of 75:25 were in a time-dependent
manner. Figure 2 shows the hFOB 1.19 cell numbers in response to the treatment for Day 1,
Day 3, and Day 7. All groups in Day 7 showed significant differences when compared
to Day 1 and Day 3, except for the combination group, which only showed significant
differences when comparing between Day 1 and Day 7. On Day 7, both the treated groups
of TA alone and PAM alone showed a significant increase in cell proliferation rate than that
of the control (untreated) and combination groups.
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Figure 2. The number of live cells (×104) at Day 1, 3, and 7 in the control group (DMSO treated),
tannic acid (TA)-treated group, pamidronate (PAM)-treated group, and the combination of TA and
PAM (75:25) determined by Trypan blue exclusion assay. All data are shown as the mean (SEM) of
three independent experiments. Days that share the same letter display a significant difference within
the same group (p < 0.05), whereas * shows a significant difference among the four groups in similar
days (p < 0.05) by one-way ANOVA and Tukey’s test.

2.4. Formation of Mineralized Calcium and Phosphate Deposits

Alizarin Red S (ARS) staining was done to identify the presence of calcium deposits
in the matrix by observing the bright red appearance of the cell under an image analyzer.
On Day 1, and Day 3, the combination treatment of TA and PAM stimulated more calcium
deposition on the samples than the other three groups (Figure 3A–H). On Day 3, the TA-
treated group appeared to produce the least calcium deposition. However, on Day 7, both
the TA and combination-treated groups had more calcium deposits than the untreated and
PAM-treated groups (Figure 3I–L). Additionally, von Kossa staining was used to confirm
the presence of phosphate-containing matrix, which illustrated to be in dark brown when
viewed through an image analyzer. As demonstrated in Figure 4A–L, the combination-
treated group produced more phosphate on Day 1 due to the presence of more black stains
under the microscope. Nevertheless, on Day 3, both the untreated and TA-treated groups
produced more phosphate. Meanwhile, on Day 7, all three treated groups produced more
phosphate than the untreated group (Figure 4I–L).
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Figure 3. Alizarin red S (ARS) staining is used to evaluate calcium-rich deposits by cells in
culture (A–L). ARS staining for calcium (Ca) deposits in hFOB 1.19 cells for 1, 3, and 7 days in
the control group (DMSO treated), tannic acid (TA)-treated group, pamidronate (PAM)-treated group,
and the combination of TA and PAM (75:25) observed using an image analyzer (magnification: 22×).
ARS reveals the presence of Ca in mineralizing cells by forming a red–orange spots calcium complex.
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Figure 4. In cell culture, von Kossa staining using silver nitrate is widely used to detect
mineralization (A–L). von Kossa staining for phosphate (P) deposits in hFOB 1.19 cells for 1, 3,
and 7 days in the control group (DMSO treated), tannic acid (TA)-treated group, pamidronate
(PAM)-treated group, and the combination of TA and PAM (75:25) observed using an image analyzer
(magnification: 22×). The reaction between silver nitrate in von Kossa and P formed black spots,
which represents phosphate deposits.
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2.5. Expression of BSP and Osx Genes

To strengthen the findings of this work, the authors of this research also investigate
the gene expression of BSP and Osx by PCR. Figure 5 demonstrates that BSP was up-
regulated in hFOB1.19 cells treated with TA, PAM, and a combination of TA:PAM in a
time-dependent manner prior to treatment at Day 1, Day 3, and Day 7 except for the control
(untreated) group. On Day 7, the combination-treated group demonstrated significantly
higher expression of BSP genes than the other three groups (TA, PAM, and control groups)
(Figure 5). However, on Day 1, the BSP was downregulated to 0.60-fold and 0.75-fold for
both PAM and TA groups, respectively (p < 0.001), while it was upregulated to 1.26-fold
for the combination treatment group (p < 0.001) when compared to the control group.
While, on Day 3, compared to the control group, there was a downregulation of BSP for
PAM and the combination treatment group with 0.66-fold (p < 0.001) for both groups.
There was slight increment for the TA group compared to the control group by 1.44-fold
(p = 0.211). On Day 7, only the PAM-treated group showed a decrease in BSP expression by
0.92-fold (p = 0.111), while both TA and the combination-treated group showed enhanced
BSP expression by 1.30-fold (p < 0.001) and 1.58-fold (p < 0.001), respectively by comparing
to the control group. In the combination-treated group, the results of relative Osx gene
expression are almost aligned with the BSP gene expression. On Day 7, the combination-
treated group demonstrated a significantly higher expression of Osx genes than both TA
and PAM-treated groups. Meanwhile, for the TA-treated group, there was a significant
reduction in the expression of Osx on Day 7 compared with Day 3 (Figure 6). By comparing
to the control group, on Day 1, there was a decrease in Osx expression in all treatment
groups, with PAM showing a decrease by 0.81-fold (p = 0.001), TA by 0.58-fold (p < 0.001),
and combination group by 0.93-fold (p = 0.002). On Day 3, only the TA-treated group
showed a significant inclined of Osx expression by 1.05-fold (p = 0.035), while both PAM
and the combination group showed a decline in Osx expression by 0.80-fold (p < 0.001) and
0.68-fold (p < 0.001), respectively. Concurrently, on Day 7, only the combination-treated
group showed an upregulation of the Osx gene by 1.06-fold (p = 0.425); in contrast, the
PAM and TA-treated groups showed downregulation by 0.76-fold (p < 0.001) and 0.67-fold
(p < 0.001), respectively. In addition, Figures 5 and 6 indicate that the hFOB 1.19 cells treated
with a combination treatment of TA and PAM expressed the highest level of BSP and Osx
at Day 7 of treatment. The current study suggested that the combination of TA and PAM
is a more effective anabolic agent for promoting bone metabolism in hFOB 1.19 cells via
upregulation of the osteoclastogenic markers BSP and Osx.
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Figure 5. The gene expression of BSP relative to β-actin at Days 1, 3, and 7 in hFOB 1.19 cells ex-
pressed by control (DMSO treated), pamidronate (PAM), tannic acid (TA), and combination treatment
(TA + PAM) groups analyzed by PCR. All data are shown as the mean (SEM) of three independent
experiments. Days that share a similar letter display a significant difference within the same group
(p < 0.05), whereas * shows a significant difference among the four groups in similar day (p < 0.05) by
one-way ANOVA and Tukey’s test.
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Figure 6. The gene expression of Osx relative to β-actin at Days 1, 3, and 7 in hFOB 1.19 cells ex-
pressed by control (DMSO treated), pamidronate (PAM), tannic acid (TA), and combination treatment
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experiments. Days that share the similar letter display a significant difference within the same group
(p < 0.05), whereas * shows significant difference among the four groups in similar days (p < 0.05) by
one-way ANOVA and Tukey’s test.

3. Discussion

Tannic acid (TA) is a secondary metabolite from plants, which belongs to the polyphe-
nol family, with a chemical formula of C76H52O46, and it is composed of a central glucose
unit and hydroxyl groups that have been completely esterified by phenols—a structure that
is similar to other polyphenols [25]. It can be found in green tea, coffee, red wine, nuts, and
most plants [26]. Various studies suggest that polyphenols can be used to treat osteoporosis
by increasing the proliferation of osteoblasts due to their antioxidant properties [27]. In this
study, it was shown that TA was a more effective treatment with an EC50 of 0.56 µg/mL
compared with PAM, which had an EC50 of 15.27 µg/mL. This finding shows that the
concentration of TA needed to promote and enhance the proliferative activities of hFOB
1.19 cells is lower compared with that of PAM. Garcia-Martnez et al. [28] observed that
phenolic extracts from extra virgin olive oil promote osteoblast proliferation in vitro, which
is consistent with our finding. An in vivo study done by Tomaszewska et al. [29] found
that a diet high in TA increased bone volume in heavy metal-poisoned rats by decreasing
trabecular separation and increasing trabecular thickness. Meanwhile, bisphosphonates
can increase osteoblast proliferation at low doses but decrease it at high doses [30].

To enhance treatment efficacy while minimizing the adverse effects of PAM, this
research performed evaluation on the combined effect of TA and PAM at three different
percentage ratios of 50:50, 75:25, and 25:75. In comparison with the other two ratios, the
combination of TA and PAM at a ratio of 75:25 had the lowest EC50 (0.48 µg/mL). The
pharmacological interactions between the three combination ratios were evaluated using
the CompuSyn software program by calculating the combination index (CI) value. Based
on the findings, a combination at a percentage ratio of 75:25 exhibited a synergistic effect (CI
of 0.6372), whereas the other two ratios exhibited an antagonistic effect (CI more than 1). In
the application of combination therapy, synergistic effects were the most desired drug–drug
interactions [31]. For example, the combination of estrogen with bisphosphonate for the
treatment of postmenopausal is often given to the patient rather than a single agent, as
it is more effective in increasing bone mineral density (BMD) [32]. Thus, in subsequent
experiments, the cells were treated with TA and PAM in a 75:25 ratio, which not only
increased treatment efficacy but also reduced the side effects of PAM.

Upon undergoing any treatment, hFOB 1.19 cells were examined for matrix calcium
and phosphate deposits. Calcium and phosphate deposits were chosen for observation
because calcium phosphate (CaP) is necessary for the formation of CaP-containing vesicles,
also called matrix vesicles, during bone mineralization [33]. In addition, the presence
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of calcium ions (Ca2+) stimulates osteoblast cell differentiation and proliferation [34,35].
Mineral deposition per viable cell increased in a time-dependent manner in cells treated
with TA, PAM, or a combination of TA and PAM. The authors of this research found
that CaP both resided primarily intracellularly in mineralizing cells. From the ARS and
von Kossa stainings, both the TA and combination-treated groups consistently produced
more CaP deposits. Increased ARS and von Kossa staining intensities indicate increased
mineral content [36,37]. Later, the precipitation of CaP followed by oxidation resulted in
the formation of hydroxyapatite on crosslinked collagen fibers, which had led to bone
formation [38]. Tian et al. [39] reported that the addition of TA to hydroxyapatite composites
resulted in increased osteogenesis and angiogenesis, as indicated by immunohistochemistry
staining for osteocalcin (OCN) and vascular endothelial growth factor (VEGF). Thus,
treatment with TA alone or in combination with PAM appears to be more effective than the
control and PAM-treated groups at increasing osteoblastic mineralization

The reverse transcriptase polymerase chain reaction (RT-PCR) was used in this study,
with ribonucleic acid (RNA) as the starting template. In comparison to DNA, RNA is used
because messenger RNA (mRNA) is rapidly degraded in viable cells, with the majority
of mRNA species having half-lives measured in minutes. Therefore, it is believed that
using RT-PCR to detect mRNA is a more accurate indicator of cell viability [40]. The
beta (β)-actin gene was used as a housekeeping gene because it encodes a structural
protein of the cytoskeleton that is present in all cells [41]. The human body contains
both enzymatic and non-enzymatic antioxidant systems, which include metal chelating
proteins and endogenous antioxidant enzymes, such as catalase, glutathione peroxidase,
and superoxide dismutase. Antioxidants act as radical scavengers [42]. Macronutrients and
micronutrients, collectively referred to as natural antioxidants, can enter cells and interact
with transcription factors, thereby activating target gene expression. Certain polyphenols,
such as epigallocatechin gallate (EGCG), resveratrol, and icariin, can activate osteoblast-
related genes by regulating a transcription factor. After 48 h of treatment, EGCG (a green
tea catechin) significantly increased the expression of osterix (Osx) in murine bone marrow
mesenchymal stem cells [43,44]. Osx plays an important role in osteoblast differentiation
due to its ability to regulate bone sialoprotein (BSP) expression [45].

BSP is a glycosylated, highly sulfated, and phosphorylated protein that is expressed
in mineralizing tissue. BSP is primarily produced by mature osteoblasts, and its expres-
sion is positively correlated with bone production [46]. Conversely, Osx is a zinc-finger
transcription factor that is a member of the specificity protein (Sp) family. It is required for
the differentiation of pre-osteoblast to mature osteoblast, as Osx gene expression increases
with osteoblast differentiation [47–49]. In this study, BSP and Osx genes were expressed
throughout the entire treatment periods (Day 1, Day 3, and Day 7), demonstrating that
mineralization, a characteristic of osteoblast proliferation and differentiation, had formed
in response to TA, PAM, and combination treatments. Both BSP and Osx are involved in
the wingless-int (Wnt) pathway by participating in the differentiation of mesenchymal
cells into osteoblast progenitors [50]. Moreover, Osx has long been recognized as a critical
transcription factor for osteoblast differentiation and bone mineralization, suggesting that
it may play a role in the development of novel therapeutic strategies for bone diseases [51].

On Day 7, the results of this study demonstrate that BSP and Osx gene expression
levels are significantly higher in the combination-treated group than in the TA or PAM
alone groups. The current findings corroborate our previous biochemical findings that
hFOB 1.19 cells treated with a combination of semi-purified fractions isolated from Quercus
infectoria and PAM expressed the highest levels of bone formation markers (BMP-2 and
Runx2) on Day 7 [22]. In addition, from Day 3 to Day 7, expression of the Osx gene
increased significantly in the combination-treated group, whereas it decreased significantly
in the TA-treated group. It is believed that the synergistic effect of the combination of TA
and PAM might play a prominent role in boosting the expression of both genes.

The current study reported that the combination of TA and PAM had a synergistic
effect in osteoblasts by upregulating the expression of BSP and Osx genes. However,
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many specific and non-specific bone formation markers, such as bone alkaline phosphatase
(BALP), osteocalcin (OCN), runt-related transcription factor 2 (Runx2), bone morphogenetic-
2 (BMP-2), procollagen Type I N-terminal propeptide (PINP), procollagen Type I C-terminal
propeptide (PICP), and osteoprotegerin (OPG), are not yet included in this study. Incorpo-
rating a variety of bone formation markers at the gene and protein levels could elucidate
the molecular mechanism underlying the effect of TA and PAM in osteoblasts. Moreover,
Scanning Electron Microscopy-Energy X-ray (SEM-EDX) can be utilized to determine the
qualitative assessment of calcium and phosphate deposits in osteoblasts. Hence, it is crucial
to further investigate the expression of the related bone formation markers that play a vital
role in the regulation of osteoblast differentiation as well as bone mineralization to validate
the current findings.

4. Materials and Methods
4.1. Cell Culture
4.1.1. Cell Revival and Subculture

Human fetal osteoblast cell line hFOB 1.19 (CRL-11372) was purchased from American
Type Culture Collection (ATCC®) (Manassas, VA 20110). The hFOB 1.19 cells were cultured
in Dulbecco’s Modified Eagle Medium F-12 nutrient mixture (DMEM/F12) (Invitrogen
GmBH, Karlsruhe, Germany) supplemented with 10% fetal bovine serum (FBS) (Invitrogen
GmBH, Karlsruhe, Germany) and 1% penicillin/streptomycin serum (Invitrogen GmBH,
Karlsruhe, Germany) [22,52]. The cells were incubated at 37 ◦C in a humidified atmosphere
of 95% air and 5% CO2 (Sheldon, Cornelius, OR, USA) to provide the optimum temperature,
moisture (sterile environment), and pH. The cells were monitored closely for 24 h. All
cell culture-related works were conducted in Biosafety Cabinet (BSC) Class II to maintain
sterility conditions.

4.1.2. Preparation for Cell Treatment

Tannic acid (TA) (Chemfaces, Daejeon, Korea) and pamidronate (PAM) (Toronto Re-
search Chemical, North York, ON, Canada) were prepared by diluting in dimethyl sulfoxide
(DMSO) (Nacalai Tesque, Kyoto, Japan). The TA used is a naturally extracted compound
from fruit and seeds of Phyllanthus emblica (Indian gooseberry). In this experiment, PAM-
treated cells acted as a positive control, while cells treated with DMSO only served as a
negative control. The treatment groups comprised cells treated with TA and a combination
between TA and PAM that were combined at several percentage ratios (v:v), which are
75:25, 50:50, and 25:75. TA and PAM were prepared at a concentration of 10 mg/mL.
Both TA and PAM were combined at this concentration according to the percentage ratios
selected. Then, all of the prepared solutions were serially diluted before treating the cells
to give the final concentration at 99, 49.5, 24.8, 12.4, 6.19, 3.09, 1.55, 0.77, 0.39, 0.19, and
0.01 µg/mL.

Cells were initially seeded at 5 × 104 cells/mL in 96-well plates and incubated
overnight at 37 ◦C in 5% CO2 incubator for cellular adherence. Then, the cells were
treated with serially diluted agents that were previously prepared. The treated cells were
incubated in a 5% CO2 incubator at 37 ◦C for 24 h (Day 1), 72 h (Day 3), and 168 h (Day 7),
respectively. The tests were conducted in three independent experiments in triplicate to
ensure the reliability and acceptance of the results obtained.

4.2. MTT Assay

The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay
(Nacalai Tesque, Kyoto, Japan) was performed to determine cell viability. The protocol was
modified from Hassan et al. [53]. Cultured cell with more than 80% confluency was used; in
this test, yellow MTT was reduced to purple formazan. A stock solution of 5 mg/mL MTT
dye (Nacalai Tesque, Japan) was prepared using Dulbecco’s phosphate-buffered saline
(Thermo Fisher Scientific, Waltham, MA, USA). Then, 15 µL of freshly prepared MTT dye
was added to each well, and the plate was incubated for 4 h [54]. After the removal of the
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supernatant, 100 µL of DMSO was added to all wells to solubilize the formazan crystals
formed, and the plate was further incubated for 15 min. The optical density (OD) was
measured at 570 nm by using the ELISA microplate reader. The percentage of the viable
cell was calculated by using the following formula: % viable cells = (OD value of treated
cells/OD value of untreated cells) × 100. The dose–response curve of cell viability (%)
against the final concentration was plotted, and the half maximal effective concentration
(EC50) value was identified using GraphPad Prism software version 7 (GraphPad Software,
San Diego, CA, USA).

4.3. Analysis of Synergistic Activity

TA and PAM at the initial concentration of 10 mg/mL were combined according to
the selected ratios (75:25, 50:50, 25:75). Then, the combined agents were serially diluted
to produce concentrations of 10, 5, 2.5, 1.25, 0.625, 0.313, 0.156, 0.078, 0.039, 0.02, and
0.01 mg/mL. The percentage viabilities of the cells in response to the treatment with each
serially diluted combination agent were determined and used for combination analysis.
Synergistic interaction between TA and PAM was determined via the combination index
(CI) method that was described by Chou [55]. The CI allows for the quantitation of
multiple drug interactions based on the calculation using the CI equation. The CI value was
measured automatically with the CompuSyn program (ComboSyn Inc., Paramus, NJ, USA).
The CI value obtained specifies the degree of drug interactions, in which CI <1 indicates a
synergistic effect between the two drugs used: CI = 1, which indicates an additive effect,
and CI >1, which indicates antagonistic effects.

4.4. Trypan Blue Exclusion Assay

Proliferation assay was conducted to determine the number of hFOB 1.19 cells treated
with TA, PAM, and combination of TA:PAM at Days 1, 3, and 7 via the utilization of trypan
blue exclusion assay. The cells were plated at 5 × 103 cells/well with 100 µL culture
medium per well in a 96-well microtiter plate and left overnight prior to attachment. TA,
PAM, and a combination of TA:PAM were added into each well at different concentrations,
and the cells were incubated at 5% CO2 in a 37 ◦C humidified incubator. The cells were
trypsinized with 100 µL trypsin/EDTA and incubated for 3 min for the cells to detach.
Subsequently, the cells were viewed by using an inverted microscope to confirm that 90%
detachment had occurred. To stop the trypsinization process, 200 µL of culture medium
was added, and the cells were resuspended. Then, the cells were stained with trypan blue
exclusion dye solution for cell counting. Automated cell counting was carried out using
CountessTM Automated Cell Counter (Invitrogen, Waltham, MA, USA). The graph number
of viable cells versus time of each treatment and control group was plotted and analyzed
using the IBM SPSS Statistics 24.

4.5. Histochemical Assays for Mineralized Calcium and Phosphate Deposits

The formation of mineralized calcium and phosphate in the cells was determined
by Alizarin Red S staining for calcium deposition and von Kossa staining for phosphate
deposition and at Days 1, 3, and 7.

4.5.1. Alizarin Red S Staining

The staining protocol was slightly modified from Gregory et al. [56]. The fixed cells
were stained with 40 mM Alizarin Red (pH 4.1 to 4.3; 1 mL/well) (Sigma-Aldrich, St. Louis,
MO, USA) and were incubated for 20 min at room temperature. Alizarin Red S forms
complexes with calcium ions. Excess dye was removed by washing the samples four (4)
times with distilled water (dH2O) until the rinsed solution was clear. Calcium deposits
within cell layers appeared as spots and were stained red-orange. The representative
images were acquired using an image analyzer (Olympus, Tokyo, Japan).
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4.5.2. Von Kossa Staining

The staining protocol was slightly modified from Brauer et al. [57]. The fixed cells were
stained with 5% silver nitrate (AgNO3) solution (1 mL/well) for 30 min under ultraviolet
light. The silver ions in the reagent reacted with phosphate present in the cells. After
removing the AgNO3 solution, the cell layers were washed two (2) to three (3) times with
dH2O, and 1 mL of 5% sodium thiosulfate was added to remove excess silver salts. The
cell layers were washed 2 to 3 times with distilled water for 3 to 5 min. Phosphate deposits
within the cell layers appeared as spots and were stained black. The representative images
were acquired using an image analyzer (Olympus, Tokyo, Japan).

4.6. Gene Expression by Polymerase Chain Reaction (PCR)

RNA was isolated using commercially available kit (Total RNA Mini Kit, Geneaid).
The integrity and purity of the total RNA were verified using NanoDrop Reader. Isolated
RNA was reverse-transcribed with a Tetro cDNA synthesis kit (Bioline, London, UK)
according to the manufacturer’s protocol. Each reverse-transcription reaction contained
1 µg RNA. The amplification kit used in this research was MyTaqTM Mix (Bioline, UK).
The housekeeping gene, β-actin, was used as endogenous control to normalize calculation
by using the comparative CT method. Table 3 shows the primer sequence used in this
study. The reaction mixture was subjected to 95 ◦C for 1 min, which was followed by
35 cycles at 95 ◦C for 15 s (denaturation); 60 ◦C for 15 s (annealing); and lastly, 72 ◦C for
10 s (extension). For agarose gel electrophoresis, 10 µL of each amplified product was
analyzed by electrophoresis on 2% agarose gel in 1X Tris-acetate-EDTA (TAE) buffer at
90 volts for 45 min. Two µL of SYBR Safe DNA gel stain (Thermo Fisher Scientific, USA)
was added to gel prior to solidifying, and 2 µL of 100 bp DNA ladder was used as a DNA
size standard. Data analysis was carried out using the J Image software (LOCI, University
of Wisconsin, Madison, WI, USA) by comparing target gene bands to β-actin band before
running ANOVA using Statistical Package of Social Sciences (SPSS) Software, version 24
(IBM, Armonk, NY, USA).

Table 3. Primer sequence used in quantitative PCR analysis.

Gene Sense (5′-3′) Antisense (5′-3′)

Bone sialoprotein (BSP) AATGAAAACGAAGAAAGCGAAG ATCATAGCCATCGTAGCCTTGT
Osterix (Osx) TGCGAAGCCTTGCCATACA TCCTCCTGCGACTGCCCTAA

β-actin GGCATCGTGATGGACTCCG GCTGGAAGGTGGACAGCGA

4.7. Statistical Analysis

The data obtained were expressed in mean ± SEM (standard error mean) from three
independent experiments (n = 3). For the half-maximal effective concentration (EC50),
data were analyzed by using GraphPad Prism software, version 7 for the determination of
the EC50 value. For the proliferation assay, the data obtained were initially tested for the
normality and homogeneity of variance through the Shapiro–Wilk test. Next, statistical
comparison was conducted via the utilization of one-way ANOVA with Tukey’s Honest
Significant Difference (HSD) post hoc test. The result was considered statistically significant
if p < 0.05. Each analysis was conducted using the Statistical Package of Social Sciences
(SPSS) software, version 24.

5. Conclusions

In this current study, it is observed that TA alone and a combination treatment of TA
and PAM had the potential to promote cell proliferation, thus enhancing the mineralization
of the matrix by increasing the level of calcium and phosphate depositions as well as the
expression of BSP and Osx genes. Hence, our data demonstrated that the combination of
TA with PAM has high potential to be developed as one of the therapeutic regimens for
osteoporosis treatment with minimal adverse effects to human.
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