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Abstract: Exhaled volatile organic compounds (VOCs) are of interest due to their minimally invasive
sampling procedure. Previous studies have investigated the impact of exercise, with evidence
suggesting that breath VOCs reflect exercise-induced metabolic activity. However, these studies
have yet to investigate the impact of maximal exercise to exhaustion on breath VOCs, which was
the main aim of this study. Two-litre breath samples were collected onto thermal desorption tubes
using a portable breath collection unit. Samples were collected pre-exercise, and at 10 and 60 min
following a maximal exercise test (VO2MAX). Breath VOCs were analysed by thermal desorption-gas
chromatography-mass spectrometry using a non-targeted approach. Data showed a tendency for
reduced isoprene in samples at 10 min post-exercise, with a return to baseline by 60 min. However,
inter-individual variation meant differences between baseline and 10 min could not be confirmed,
although the 10 and 60 min timepoints were different (p = 0.041). In addition, baseline samples
showed a tendency for both acetone and isoprene to be reduced in those with higher absolute
VO2MAX scores (mL(O2)/min), although with restricted statistical power. Baseline samples could not
differentiate between relative VO2MAX scores (mL(O2)/kg/min). In conclusion, these data support
that isoprene levels are dynamic in response to exercise.

Keywords: exhaled breath; VOCs; exercise; metabolomics; mass spectrometry

1. Introduction

Metabolomics has emerged to become a powerful tool within the bioanalytical locker
through its capacity to provide information on the small-molecule metabolites that are
present within the biological system and linked to physiological state [1]. These technolo-
gies have allowed researchers to expand the scope in which a biochemical profile can be
constructed, with applications across a wide variety of topics including clinical and medical
science [2], forensic investigations [3], food and nutrition [4] and sports science [1].

One subsection of metabolomics includes the measurement of volatile organic com-
pounds (VOCs) present within exhaled breath gases [5]. These compounds, which are a
major contributor to the total human volatilome [6], have been studied for their capacity to
provide biochemical information from the human system using a none or minimally inva-
sive collection protocol [7]. This approach has garnered particular interest within medical
research owing to the potential for out-of-clinic collection, with a recent and topical interest
shown in the capacity to diagnose COVID-19 disease through a single breath collection [8].

Although exhaled VOCs have been investigated within the sport and exercise remit, at
present these studies remain limited and have predominantly reflected changes following
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low to medium intensity exercise, limiting their capacity to be translated to more competi-
tive sporting scenarios [9]. It is, therefore, of interest to scientists in this area to understand
if the data seen at low-grade exercise are translatable to higher intensities, and whether the
exhaled VOC profile of individuals could be altered by physical fitness.

This exercise testing approach could be of further interest to the metabolomics com-
munity as many studies look to employ a ‘control’ group of participants. These participants
are considered as fit, healthy, and free from disease. The consideration of the term ‘fit’,
however, has an entirely different connotation when applied to the level of physical fitness
of an individual. For example, a person could be described as fit and healthy by a physician,
but in an exercise context their physical fitness could be markedly low. Consequently,
this individual would not be considered as ‘fit’ by a sports scientist. For this reason, an
improved understanding into the variability within a control group of participants would
provide further insight into the applicability of its use within a clinical study, for example.

In this study, the collection of exhaled VOCs prior to and following exhaustive ex-
ercise was performed. The data were investigated for profile differences across these
timepoints, as well as considering whether baseline (i.e., at rest) samples were able to
identify differences in physical performance capabilities.

2. Results
2.1. Changes in Exhaled VOCs Following Exercise

To assess changes in VOCs caused by the maximal exercise protocol, multivariate
analysis was performed across the three exercise stages. Initial analysis performed by
OPLS-DA showed no separation in the 2D score plot. However, samples relating to the
10 min timepoint showed a partial separation from the pre and 60 min post-exercise
timepoints. On analysis of the corresponding S-plot, only one VOC was observed to be
providing a strong influence on the computed model (Figure 1). An investigation into the
retention index (RI) and database searching (NIST Mass Spectral Database) indicated that
the identified compound was 2-methyl-1,3-butadiene (isoprene). A Kruskal–Wallis H test
indicated that there was not an equal distribution of ranks across the three timepoints and
pairwise comparisons indicated an increase in exhaled isoprene between the 10 and 60 min
post-exercise timepoints (p = 0.041). A reduced trend was observed for isoprene at 10 min
post-exercise when compared to baseline levels, but statistical confidence was not reached.
Similarly, no differences were observed between baseline values and 60 min post-exercise
(p ≥ 0.269, Figure 2). Exhaled isoprene data were not available for all participants at all
timepoints due to an overloading of the GC column with exhaled vapour/solvent in a
small number of samples (see Figure 3); this may account in some way for the lack of power
in this experiment.

2.2. Comparison of Upper and Lower Tertiles of Maximal Oxygen Uptake

OPLS-DA analysis reported no identifiable differences in exhaled VOC profiles when
comparing the upper and lower tertiles of relative VO2MAX values. Therefore, investigations
for this factor were not continued further.

OPLS-DA analysis performed on high vs. low absolute VO2MAX groups reported a
complete separation of groups within the score plot (Figure 4A). The accompanying S-plot
for the computed model was analysed and three upregulated regulated compounds were
selected for further investigation (Figure 4B). The three upregulated compounds were
evaluated against the VO2MAX scores for the two stratified groups. Two features, when
examined more closely, were identified as the same compound with altered ion statistics
across samples (i.e., most abundant ion and secondary ion reversed). This information
was used to combine these features. An investigation into the RI and database searching
indicated that the two identified compounds were propan-2-one (acetone) and isoprene.
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Figure 4. (A) Orthogonal partial least squares-discriminative analysis two-dimensional score plot
constructed for breath samples for those falling into low (black triangles) and high (grey circles)
absolute maximal oxygen uptake groups. (B) S-plot for modelled variables with candidate biomarkers
highlighted in red ovals.

Targeted inspection of the data from analytical peaks relating to acetone and isoprene
showed the tendency for reduced levels of both compounds within the upper tertile group-
ing of absolute VO2MAX scores (Figure 5); however, the large intra-group variation seen
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amongst participants meant that confident differences could not be confirmed (p = 0.247
and 0.190 for acetone and isoprene, respectively).
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Figure 5. Plot to show the distribution of acetone (top) and isoprene (bottom) in low and high
absolute VO2MAX groups in a pre-exercise exhaled breath sample. Horizontal line is shown at
the median with errors bars indicating the interquartile range. Note: IR = relative intensity;
IS = internal standard.

3. Discussion

Non-targeted metabolomics-wide analysis of exhaled breath in physically fit individ-
uals prior to an exercise capacity test was able to provide some indication of differences
based on absolute maximal oxygen uptake figures. Breath metabolites of acetone and
isoprene showed an observed reduction for individuals with elevated absolute maximal
oxygen uptake (measured in L/min O2 consumption). However, a small sample size
and high inter-individual variability did not allow for differences to be confirmed. No
differences between groups were observed when a relative maximal oxygen uptake was
assessed (normalised to body weight), and therefore the test did not show the capacity to
predict the fitness of an individual from a breath test alone. The process of creating a test
value relative to body mass may have led to the normalisation of metabolite values across
the cohort.

Exhaled breath collections analysed prior to and in stages for up to one h post-exercise
showed a fluctuation in exhaled isoprene levels. A reducing trend post-exercise was
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observed and returned to baseline values by one h, with the 10 and 60 min post-exercise
timepoints reporting statistical differences. These data conform to previous on-line breath
analysis which identified a rise in exhaled isoprene at the onset of exercise, followed by a
reduction during the exercising period [10]. This was theorised to be due to the removal of
an ‘isoprene store’ in the working muscles. When multiple exercise bouts were performed,
a blunted increase in isoprene was seen at exercise onset without adequate recovery, and
therefore supporting the idea that these stores were not rapidly replenished. The data
presented in this study support this theory as a tendency for levels to be reduced was seen
after a bout of intense physical activity, with a return to baseline following a sufficient
rest time of one h. It is important to note that in this study, the impact of the exercise
can be considered to be substantially higher than the previous study by King et al. [10].
This previous study used a low-grade cycling exercise of 75 W for 15 min. In comparison,
the present study had an average exercise period of 19 min, similar to the previous work;
however, the average final workload for the exercise was 276 W. This may account for the
tendency for further reduced isoprene below baseline levels; however, further follow up
studies are required to confirm these preliminary data.

Previous efforts into exercise-based research have generally included low-intensity
and/or short duration, e.g., 75 W for 15 min [10] or have provided inadequate descriptions
of the exercise protocol [11]. However, one study investigated the changes in exhaled
breath content after a 1-h cycling time-trial, noting that 44 VOCs showed dynamic changes
from pre- to post-exercise sample timepoints [12]. The increased number of discriminant
VOCs seen in this previous study compared to the current investigation may be related
to the duration of exercise performed. The authors were not able to confidently identify
many of these ion traces, although increased levels of isoprene and acetone were observed
post-exercise. Acetone and isoprene are perhaps the most extensively studied VOCs in
exhaled breath. Acetone is produced endogenously via the decarboxylation of acetoacetate
(a derivative of lipolysis) [13], with isoprene a metabolic by-product from the mevalonate
pathway of cholesterol biosynthesis [14]. The reason for the potential reduction in these
compounds in the high absolute VO2MAX group is not known, with the increased BMI in
this group perhaps suggesting the opposite might have been expected. One potential reason
for this observation could be due to the format of exercise commonly completed within
this group. The upper tertile showed an increased mean value for weekly vigorous exercise
(p = 0.052) and decreased low intensity exercise (i.e., walking, p = 0.002). These differences
in regular exercise intensities may cause alterations in acetone and isoprene production
and/or storage. However, these exercise data are via a self-reported questionnaire and so
should be considered carefully with the need for a more focussed interventional experiment
required for confirmation.

The use of a control group is a necessity in many metabolomics-based experiments.
Interestingly this cohort identified as fit, young, and healthy male participants would be
considered a suitable control group. However, these data begin to highlight that within
a relatively homogenous group, differences in exhaled profiles due to maximal oxygen
uptake may be observed. In addition to this, the data suggest that changes in the routinely
identified biomarker isoprene could be observed following exhaustive exercise. Whilst the
exercise performed in this experiment is designed to push the participants to volitional
fatigue, it must be considered in future that diseased patients may be working at high
physical output levels during everyday activities (e.g., climbing stairs), and so these factors
must be taking into consideration should these biomarkers be proposed for use in the clinic
or for health monitoring.

In conclusion, the current study identified the potential for differences in exhaled VOC
profiles within a homogenous group of young, fit and healthy men. These differences could
not be confidently confirmed due to inter-person variability and therefore a larger study
group is required. The test was not able to provide identification of physical fitness via a
single exhaled breath sample at rest. Finally, the data support the previous identification
that isoprene levels are dynamic in response to exercise, and the first time this has been
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completed for sorbent-captured VOC exhaled breath sampling using a high-intensity,
maximal exercise protocol.

4. Materials and Methods
4.1. Ethical Clearance

This study was approved in its entirety by the Loughborough University Ethical
(Human Participants) Sub-Committee. All participants took part voluntarily and were
informed of the experimental procedures by issue of a participant information sheet prior
to consenting. All participants gave written and informed consent and were free to ex-
clude themselves and their data from the experiment at any time without reason. Once
consented, participant information and samples were anonymised and assigned a unique
identifier code.

4.2. Participant Information

Thirty-three healthy males (mean ± standard deviation: age 23 ± 3 years, height
180 ± 6 cm, body mass 82.2 ± 10.3 kg, body mass index (BMI) 25.3 ± 2.4 kg/m2) were
recruited and completed the research protocol. All the participants reported active engage-
ment in sporting behaviours at either an individual or team level. All participants were
free from injury.

4.3. Experimental Design

Participants arrived at the laboratory at approximately 830 h following an overnight
fast, with only water intake permitted after waking and until the cessation of the study
visit. On arrival, each participant was asked to sit quietly for five min before the test
protocol started. The test protocol consisted of providing a resting exhaled breath sample,
completing a graded maximal oxygen uptake (VO2MAX) test, with two further exhaled
breath sample collections at 10 and 60 min post-exercise. A schematic diagram to visualise
the experimental design is shown in Figure 6.
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4.4. Exercise Protocol

An incremental, steady state, exercise protocol was performed using an electromag-
netically braked cycle ergometer (Lode Excalibur Sport, Lode B.V., Groningen, The Nether-
lands). Exercise intensity began with a work output of 95 W, increasing in 35 W steps every
3 min. No prior warm up was performed as the low intensity exercise in the principal
three stages was deemed light enough to suitably prepare the lower limb muscles for the
more intense stages. Total exhaled gases were collected in an evacuated Douglas bag in the
final min of each 3 min stage and later analysed for O2 and CO2 content. The participants
were also asked to rate their perceived level of exertion during each breath collection
by pointing to a value on the Borg RPE scale [15]. The participants were instructed to
inform the researcher when they had one min of effort remaining and a final exhaled gas
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collection was performed and used to calculate VO2MAX as both a relative (normalised to
body weight) and absolute value.

4.5. Exercise Testing

All participants completed the exercise test to volitional fatigue. The common protocol for
the successful attainment of maximal oxygen uptake (VO2MAX) include a measurement of heart
rate (HR) within 10 beats/min of predicted maximum (HR(max) = 220 − age in years) and a
respiratory exchange ratio (RER) of ≥1.1 [16]. It is expected that participants would report
a rating of perceived exhaustion (RPE) [15] of ≥19 within the final min of exercise. Fifteen
of the 33 participants satisfied these criteria, with the remainder of participants satisfying
at least one criterion.

Two participants were subsequently excluded from the data analysis when their pre-
exercise exhaled breath samples were discovered to contain levels of solvent molecules
high enough to disrupt chromatographic behaviour.

An average relative (i.e., normalised to body mass) VO2MAX score of 46.5 mL(O2)/kg/min
was obtained with a range of 35.3–58.9 mL/kg/min. Group differences stratified by upper
and lower tertiles (n = 10) of relative and absolute (i.e., without normalisation) VO2MAX
are displayed in Table 1. The high relative VO2MAX group had decreased mass, height and
BMI (≤0.023). No differences were seen between relative VO2MAX groups and exercise
test duration. The high absolute group had increased mass and BMI and performed less
self-reported min of walking per week (p ≤ 0.005). The high absolute group were able
to complete a longer period of exercise (p < 0.0005) during the maximal exercise test. No
differences were seen for laboratory exercise conditions.

Table 1. Baseline and exercise characteristics of participants and environmental conditions grouped
by upper and lower tertiles for relative and absolute maximal oxygen uptake (VO2MAX).

Relative VO2MAX Absolute VO2MAX

High Low p Value High Low p Value

Age (years) 23 (3) 22 (3) 0.247 24 (4) 22 (2) 0.796
Mass (kg) 72.6 (6.2) 89.3 (9.1) <0.0005 90.2 (9.6) 75.7 (9.2) 0.005

Height (cm) 176 (7) 183 (5) 0.023 184 (6) 177 (7) 0.075
BMI (kg/m2

) 23.5 (1.4) 26.6 (2.4) 0.004 26.7 (2.0) 24 (1.5) 0.004

Weekly activity

Vigorous (min) 325 (196) 230 (113) 0.353 374 (173) 228 (152) 0.052
Moderate (min) 89 (112) 144 (103) 0.143 174 (155) 168 (325) 0.218
Walking (min) 225 (99) 292 (179) 0.280 133 (84) 331 (145) 0.002

Relative VO2MAX (mL(O2)/kg/min) 51.9 (2.6) 40.9 (2.8) <0.0005 47.3 (5.9) 45.0 (5.6) 0.481
Absolute VO2MAX (L(O2)/min) 3.8 (0.4) 3.6 (0.4) 0.481 4.2 (0.2) 3.4 (0.1) <0.0005

Final stage heart rate (beats/min) 191 (7) 186 (9) 0.277 185 (10) 192 (5) 0.063
Room temperature (◦C) 21.1 (1.0) 21.4 (0.8) 0.247 21.1 (0.9) 21.2 (1.1) 0.796
Total exercise time (min) 19 (3) 18 (2) 0.387 20 (2) 17 (2) <0.0005
Room pressure (mmHg) 764 (7) 760 (6) 0.218 762 (14) 764 (6) 0.353

FIO2 (%) 21.0 (0.1) 20.9 (0.1) 0.165 21.0 (0.1) 21.0 (0.1) 0.631
FICO2 (%) 0.05 (0.01) 0.04 (0.01) 0.739 0.04 (0.01) 0.04 (0.01) 0.971

Note: BMI = body mass index; CO2 = carbon dioxide; O2 = oxygen; FI = fractional inhaled. All data are expressed
as the mean (standard deviation); n = 10 for both groups.

4.6. Exhaled Breath Sampling and Analysis

Exhaled breath VOCs were collected using a previously described portable breath
collection unit [17]. Two litres of breath were sampled and VOCs retained onto an adsor-
bent bed packed into thermal desorption tubes (Markes International, Llantrisant, UK).
Samples were analysed for VOC content by thermal desorption-gas chromatography-mass
spectrometry (TD–GC–MS) using a Unity TD Unit (Markes International, Llantrisant, UK)
coupled to Varian 3800 GC and Varian 4000 ion trap MS instrument (now Agilent Tech-
nologies, Stockport, UK). Detailed information on the analytical protocol can be found
elsewhere [17,18].
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4.7. Statistical Analyses

GC–MS data were exported from the Varian operating system and peak deconvolution
was performed by AnalyzerPro (SpectralWorks, Runcorn, UK). Each VOC peak identified
from deconvoluted data was assigned a unique identifier, and peak integration parameters
were optimized for each candidate compound enabling peak integration data to be exported
to an exhaled VOC breath matrix identified by retention index and main diagnostic ions.
This information was used to produce a search function that prospected all samples,
with 373 distinct peaks isolated, integrated and normalised to a post-loaded toluene-d8
internal standard.

Sample group or timepoint pairings were analysed by orthogonal partial least squares-
discriminant analysis (OPLS-DA) to prospect for discriminating factors between groupings.
S-plots were analysed for contributor variables. Discriminant components were assessed
as potential biomarkers of exercise response by comparing whole group changes across
timepoints, or biomarkers of fitness by comparing groupings of the upper and lower tertiles
of VO2MAX scores.

Further data analyses were performed using IBM SPSS Statistics (v 22.0, IBM Corp.,
Endicott, NY, USA). Differences observed for isolated biomarkers of high and low groupings
of VO2MAX were assessed using the Mann–Whitney U test for independent samples. The
distribution of exhaled VOC values observed across time were assessed using the Kruskal–
Wallis H test for related samples. An alpha value (p) of <0.05 was deemed as statistically
significant and, where appropriate, is reported as its Bonferroni-adjusted value.

Author Contributions: Conceptualization, L.M.H., M.R.L. and C.L.P.T.; Methodology, L.M.H., S.K.,
M.A.T., M.R.L. and C.L.P.T.; Formal Analysis, L.M.H.; Investigation, L.M.H.; Resources, M.R.L. and
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