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Abstract: There is increasing interest in the use of natural compounds with beneficial pharmacological
effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against
some cancers through its ability to regulate signaling pathways and protein expression in cancer
development and progression. Unfortunately, its use is limited due to its hydrophobicity, low
bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are
drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug
targeting to cancer cells via different mechanisms and formulation techniques. In this review, we
have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers.
Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well
as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on
their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical
and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma
half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have
promising anticancer activity; however, clinical reports on them are limited. We believe that clinical
trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.

Keywords: curcumin; cancer; nanoparticles; drug delivery; chemotherapy; bioavailability

1. Introduction

According to Global Cancer Incidence, Mortality and Prevalence (GLOBOCAN) 2020,
over 19.3 million new cancer cases were diagnosed globally in 2020, with nearly 10.0 million
deaths attributed to this statistic [1]. Specifically, lung cancer is the prominent cause of
death from cancer in men, while breast and cervical cancers are the primary causes of
cancer death in women. Cancer originates when cells in the body start to grow out of
control and typically develop slowly over several years. Thus, cells in almost any part of
the body can potentially develop into a cancer and can spread to other areas of the body.

The prognosis and treatment options for cancer mainly depend on the stage of the can-
cer, tumor recurrence, and the patient’s general health. The four prevalent cancer treatment
procedures are surgery, chemotherapy, radiotherapy, and targeted therapy [2]. Surgery is
the first therapeutic approach and primary procedure. Usually, surgery is combined with
chemotherapy and/or radiation therapy to avoid residual tumor recurrence. In radiother-
apy, energy and X-rays produced by a linear accelerator are employed to destroy cellular
DNA and inhibit cell proliferation [3]. On the other hand, chemotherapy relies on cytotoxic
drugs to inhibit the growth of cancer cells and kill them [4]. Chemotherapy is either admin-
istered before surgery to shrink tumors, or after surgery as adjuvant chemotherapy. Due to
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the limited efficacy of non-selective chemotherapeutic drugs, targeted therapy has evolved
as a rational option. In targeted therapy, drugs are targeted to specific receptors present on
cancer cells or in structures related to cancer growth, such as blood vessels. Additionally,
cancer cell proliferation and metastasis are blocked via the inhibition of specific media-
tors such as epidermal growth factors (EGFs) [5]. However, the effectiveness of targeted
therapy depends on the release of the therapeutic agent at the cancer target site, as well as
minimizing off-target side effects to normal tissues [6].

Regardless of the advanced innovations in cancer therapy, treatment remains arduous.
For instance, surgery is affiliated with detrimental harm to adjacent organs and tissues,
discomfort, infections, and relapse [7–9]. While chemotherapy, the typical cancer treatment
option, whether administered as a neoadjuvant, adjuvant, or sole therapy, demonstrates
severe side effects, involving fatigue, sores in the mouth and throat, nausea, vomiting, and
blood disorders [10–12]. Radiation therapy also manifests a wide range of side effects akin
to skin changes, fatigue, and diarrhea, among others, that disturb the well-being of the
patients. Even though targeted therapy has emerged as an approach to conquer the lack of
specificity in conventional chemotherapy, there are potential risks and challenges associated
with this novel strategy. For example, some cancer cell types develop resistance to drugs
over the treatment course, thereby rendering the targeted therapy ineffective by driving the
drug out of the cancer cells and decreasing intracellular drug concentration [13]. Therefore,
in most cases, targeted therapy is used in combination with chemotherapy; however, this
strategy does not reduce the toxicity experienced with chemotherapeutic drugs.

To overcome the aforementioned constraints, chemotherapeutic agents from plants are
becoming serious contenders as chemotherapeutic alternatives due to their manifestation
of reduced toxicity to adjoining cells [14] while still providing potent anticancer effects
in some cases. One such chemotherapeutic agent is curcumin (CUR), a major chemical
constituent in turmeric, which has received much attention in the past decades because
of its use in Indian and Chinese traditional medicine for centuries to treat a variety of
conditions including infections, inflammation, and depression. It is also used as a spice.
Thus, CUR is widely accepted by the public as it is derived from natural sources, all of
which gives the perception that it is safe to use and likely to manifest fewer side effects
when used therapeutically [15]. However, the systemic bioavailability following the oral
administration of free CUR is poor due to the low solubility and rapid metabolism as stated
earlier [16]. Aptly, extensive research has elaborated on the therapeutic potential of CUR
against a range of cancers [17], but only through formulation intervention.

2. Curcumin (CUR)
2.1. General Background Information

CUR is a hydrophobic, orange-yellow, crystalline phytochemical derived from the
rhizomes of turmeric (Curcuma longa), a plant which grows in the Indian subcontinent and
tropical countries in South East Asia [13]. From ancient times, turmeric was therapeutically
used to treat various respiratory conditions, liver disorders, abdominal pain, and many
other ailments [18,19].

Later in the 13th century, turmeric was introduced to Europe as Indian saffron by Arab
merchants and used as a colorant in foods, cosmetics, and textiles [20].

The primary source of turmeric is India, where about 80% of global turmeric is con-
sumed [21]. Epidemiological studies attribute the low incidence of colon cancer in the
Indian subcontinent to the chemo-preventive properties of diets rich in CUR [22].

The presence of a cluster of sesquiterpenes, such as (S)-ar-turmerone, zingiberene,
β-turmerone, and curlone, and a variety of other volatile compounds (e.g., monoter-
penes) in turmeric, gives its fragrance when used as a food seasoning [23]. The active
constituents in turmeric are known as curcuminoids, with the major curcuminoid be-
ing a bis-α,β-unsaturated diketone. Apart from CUR, also called diferuloylmethane, the
other two bioactive analogs are demethoxycurcumin (DMC) and bisdemethoxycurcumin
(BDMC). The chemical structures of the three curcuminoids are presented in Figure 1.
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CUR is considered the principal curcuminoid that exhibits most of the therapeutic ac-
tivities in turmeric [24]. Moreover, the characteristic yellow color of turmeric is attributable
to CUR [25].

The bright yellow color of curcumin turns red and yellow in basic and acidic media,
respectively [26]. It also fluoresces under ultraviolet light. In aprotic solvents (e.g., ethyl
acetate and acetone), CUR has a noticeable fluorescent intensity variation from 494 to
538 nm. In solvents such as alcohols and dimethyl sulfoxide (DMSO), the fluorescence
shifts to 535–560 nm, while the fluorescence spectrum of CUR in cyclohexane is notably
distinct with two fluorescence maximas at 446 and 470 nm [27–29].

The IUPAC name of CUR is 1,7-bis (4-hydroxy-3-methoxy-phenyl) hepta-1, 6-diene-3,
5-dione, with a molecular weight of 368.37 Da, melting point of 183 ◦C, and three pKa values
of 7.80, 7.35, and 9.0 [14]. It demonstrates keto-enol tautomerism, with the predominant
keto- form in acidic and neutral solutions, and a stable -enol form in alkaline media [30].

CUR is lipophilic and is thus insoluble in water, but soluble in organic solvents such
as DMSO, methanol, acetone, and ethanol [22]. Furthermore, CUR is a potent H-atom
donor at pH 3.0–7.0 and an electron donor at an alkaline pH, at which it dissociates to form
feruloyl methane, ferulic acid, and vanillin [27,31,32]. The bis-keto form of CUR dominates
under acidic and neutral conditions, whereas the enol tautomer prevails at pH values over
8.0 [14,20]. The stability of CUR is considered pH-dependent, with the least stability in
acidic media [32].

Shen and Ji [33] found that CUR degrades to dihydroferulic acid and ferulic acid in cell
culture media with 10% fetal bovine serum and in in vivo studies. Even though the mech-
anism of degradation is still vague today, it is thought to be through its α,β-unsaturated
β-diketo moiety [34]. Fortunately, this constraint can be diminished by encapsulating
CUR into either liposomes, cyclodextrin, lipids, surfactants, or polymeric nanoparticles
(NPs) [29].

The most compelling and key rationale for the therapeutic use of CUR as an anti-
cancer alternative is its extremely superior safety profile; thus, it is declared as GRAS
(generally recognized as safe) by the United States Food and Drug Administration [18].
However, all the preclinical and clinical data from the oral administration of CUR have
revealed that it manifests poor systemic bioavailability with high susceptibility to metabolic
degradation, whereby only about 2.30 µg/mL of CUR was registered in serum levels after
an oral administration of 10 g of CUR [20]. This shows that CUR undergoes extensive
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metabolic degradation prior to absorption within the intestine and liver, which minimizes
its usefulness following oral intake.

2.2. Pharmacological Properties of CUR

In the last few decades, there has been an increased interest by researchers in the
therapeutic effects of CUR as a natural alternative to chemical drugs in the management of
several ailments [34]. Indeed, CUR is reported to possess a variety of pharmacological activi-
ties, including antimalarial [35–37], antibacterial [38,39], antiviral [40–42], antifungal [43,44],
antioxidant [45–47], anti-inflammatory [45,48,49], antidiabetic [50,51], anti-human immun-
odeficiency virus [52–54], and anticancer [38,39,55–58] activities.

2.3. Anticancer Properties of CUR

Generally speaking, normal cells have a restrained balance between growth upholding
and growth opposing signals [59]. Thus, the proliferation and differentiation of cells tran-
spires only when required. However, this balance is disturbed in tumor cells, which show
continuous cell proliferation, loss of differentiation, and programmed cell death. Conse-
quently, a hyper-proliferative state of cells is attained, which presents as cancer [60]. Other
peculiarities recognized in tumor cells include metastasis, angiogenesis, and apoptosis [61].

CUR has been extensively studied as a potential anticancer remedy, as well as a
chemopreventive and direct therapeutic agent. The anticancer properties of CUR have been
proven in vitro, in vivo, and in clinical studies. It is reported that the anticancer properties
of CUR are exhibited via the inhibition of cell proliferation, induction of apoptosis, and
devaluation of tumor load.

2.3.1. Effects of CUR on Transcription Factors

Specific transcription factors that are reported to be involved in the anticancer effect
of CUR include nuclear factor kappa B (NF-κB) [62], activator protein-1 [63], early growth
response-1 [64], peroxisome proliferator-activated receptor-γ [65], signal transducer and
activator of transcription, hypoxia inducible factor-1 [66], β-catenin [67], NF-E2-related
factor 2 [68], electrophile response element [69], and androgen receptor [70]. CUR is be-
lieved to modulate various signaling pathways, thereby contributing to the activation of the
aforementioned transcription factors [71]. Thus, CUR is able to regulate cell proliferation,
inflammation, metastasis, angiogenesis, and invasion [66].

2.3.2. Effects of CUR on Growth Factors and Protein Kinase

CUR suppresses and downregulates the expression of several growth factors that
contribute to the development of various cancers [72]. The activity of several tyrosine
kinases increases due to mutations, which subsequently results in the malignant meta-
morphosis and metastasis of human cancers. CUR downregulates epidermal growth
factor receptor (EGFR) activity and epidermal growth factor (EGF)-induced tyrosine phos-
phorylation of EGFR, eventually resulting in reduced protein kinase activity [73]. In
addition, CUR suppresses the activities of protamine kinase, pp60c-src tyrosine kinase,
autophosphorylation-activated protein kinase, and protein kinase C [74].

2.3.3. Effects of CUR on Inflammatory Cytokines

NF-κB is activated during the initial stages of inflammation. Consequently, the pro-
duction of the multifunctional cytokine tumor necrosis factor (TNF) is upregulated, which,
in turn, activates the production of interleukin (IL)-1 [75]. The activation of both TNF
and IL-1 promotes the expression of several genes and proteins that engender acute and
chronic inflammation [76]. It has been reported that chronic inflammation and activation of
inflammatory cytokines mediate tumorigenesis [75,77,78].

CUR shows a synergistic apoptotic effect when combined with TNF-related apoptosis-
inducing ligand. It also shows anti-inflammatory activity by blocking the phosphorylation
of IκBα and inhibitors of NF-κB. This results in the inhibition of NF-κB activation and,
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subsequently, TNF. Moreover, CUR inhibits TNF expression [79] as well as phorbol-methyl-
acetate-induced TNF-α levels in various cells [80].

2.3.4. Effects of CUR on Enzymes

CUR has regulatory effects on various enzymes associated with inflammation and
cancer, including fatty acid synthase, ATP-citrate lyase (ACLY), stearoyl-CoA desaturase 1,
and cholesterol O-acyl-transferase [78,81]. Additionally, CUR potently inhibits carbonyl re-
ductase [82,83], downregulates the expression of other reductases in the aldo-keto reductase
superfamily, and inhibits the transport of anthracyclines out of tumor cells [84].

Glutathione-S-transferase enzymes (GSTs) are reportedly involved in chemotherapy
resistance in several cancer cell lines due to the methylation of GSTs [85]. CUR covalently
binds to the catalytic thiolate of DNA methyltransferase 1, resulting in the blocking of
DNA methylation of GSTs [86]. High levels of ACLY have been detected in various
cancers such as breast, bladder, colorectal, lung, liver, prostate, and stomach tumors. ACLY
activation is promoted by increased levels of glucose and insulin-like growth factors, which
subsequently intervene in cancer progression [87]. However, CUR decreases the hepatic
expression of ACLY [88].

Cyclooxygenase-2 (COX-2) expression is promoted by growth factors, inflammatory
cytokines, oncogenes, carcinogens, and tumor promoters. However, COX-2 inhibitors are
believed to aid in cancer prevention and treatment [85]. In a previous study, CUR was
found to suppress COX-2 activity directly and selectively. Additionally, it inhibited bile
acid and phorbol-ester-induced COX-2 expression and interferon-alpha-induced COX-2
activation [89]. These data clearly show that CUR has an anticancer effect.

3. Potential of Nanodrug Delivery Systems in Cancer Treatment

Nanodrug delivery has been proposed as the frontier for the effective delivery of
anticancer agents and, hence, for cancer management. Oral nanodrug systems can be
formulated to traverse the gastrointestinal epithelia effectively, and thus circumvent the
metabolic constraints that the payload is subjected to within the gastrointestinal tract.
According to the National Cancer Institute, nanotechnology has the potential of improving
the current status of cancer detection, treatment, and prevention [90].

NPs have several characteristics ideal for the enhanced delivery of CUR in cancer
management [91] (Figure 2). They exhibit a large surface area to volume ratio, high drug
loading propensity, controlled drug release characteristics, and fairly good stability on
storage [92]. NPs can be functionalized to deliver drugs specifically to cancer cells with
minimal interaction with healthy tissue. Such targeting of NPs to cancer tissue is classified
as either passive- or active-targeting [93]. The passive-targeting mechanism, also known
as the EPR effect, occurs when NPs are in the size range of 10–100 nm, and, when in
circulation, can selectively enter tumors through the surrounding leaky blood vessels and
the interstitial space [94]. Owing to this EPR effect, NPs can also improve the safety and
pharmacokinetic characteristics of active pharmaceutical ingredients [95]. Typically, NPs
that employ the EPR effect to deliver drugs are intravenously administered since orally
administered NPs have several hostile barriers to traverse within the gastrointestinal tract
delivery in the systemic circulation. However, the active targeting of NPs to cancer cells
entails specific ligand–receptor recognition and interaction on the cell surface [96].
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Typically, cancer cells express higher levels of cell-surface receptors as compared to
normal cells. This allows NPs conjugated with a targeting ligand to explicitly interact with
them via receptor-mediated molecular recognition. There are several examples of CUR-NP
delivery systems, which may be subdivided into organic and inorganic NPs [97]. Their
particle size, surface charge (zeta potential, ZP), hydrophilicity/hydrophobicity, and com-
position, among other characteristics, can be tailored for a diverse array of applications [98].
However, the primary consideration when designing any drug delivery system is to control
drug concentration within the therapeutic window and improve patient compliance in
order to maintain effective treatment cycles with short recovery periods.

The following sections are a review of potentially useful CUR-containing NP prepara-
tions for the management of different cancers.

4. Prostate Cancer
4.1. Fibrinogen NPs

CUR-loaded fibrinogen NPs (CUR-FNPs) (size: 150–200 nm; ZP: −28 mV, encapsula-
tion efficiency (EE): 90%) fabricated through chemical cross-linking with CaCl2 in a two-step
coacervation process were found to be comparatively non-toxic to normal fibroblast L929
cells, but toxic to PC-3 prostate cancer cells, whereas free CUR showed no cytotoxicity [99].
The CUR-FNPs also showed a dose-dependent apoptotic effect on the cancer cells with
significant internalization and retention within the cells.

4.2. Cyclodextrin (CD)-Based NPs

Yallapu and colleagues [100] fabricated β-CD-CUR-NPs (52.6 nm) and found that
uptake of the NPs by PC-3 cells was higher than that of free CUR. Similarly, the apoptosis
rate was higher with the NPs, indicating the potential of the β-CD-CUR-NPs for managing
prostate cancer. In addition, Ndong Ntoutoume and colleagues [101] prepared CUR-
CD/cellulose nanocrystal complexes (206.8 nm) by ionic interaction with improved CUR
solubility. The NPs showed a higher antiproliferative effect against PC-3 and DU145 cancer
cells compared to free CUR. The half-maximal inhibitory concentration (IC50) values for
the NPs after 48 h of treatment were 7.5 and 5.5 µM against the PC-3 and DU145 cells,
respectively, as opposed to 10 and 18 µM, respectively, for free CUR. These findings are
promising; however, in vivo studies are needed to confirm the potential of these CD-based
CUR-NPs for managing prostate cancer.

4.3. Magnetic and Dendrimer-Based NPs

In the study conducted by Yallapu and colleagues [100], CUR-loaded magnetic and
dendrimer-based NPs (8.6 and 37.4 nm, respectively) were also evaluated in PC-3 cells with
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similar cellular uptake findings. However, uptake was higher for the dendrimers due to
their attachment to the cells. The considerably small sizes of these NPs hold potential for
cancer management, but further studies are required.

4.4. Polymeric NPs

Yallapu and colleagues [100] also found that the uptake of CUR-NPs formulated with
hydroxypropyl methyl cellulose (HPMC-CUR-NPs) and poly(lactic-co-glycolic acid) (PLGA-
CUR-NPs) (5.2 and 58.1 nm, respectively) was higher compared to free CUR in PC-3 cells.
Unlike free CUR, the NPs also induced apoptosis, with superior effects from the HPMC-CUR-
NPs. The HPMC-CUR-NPs had a greater antiproliferative effect and higher cytotoxicity via
higher internalization, retention, and apoptosis compared to free CUR in C4-2, DU-145, PC-3,
and LNCaP cells (IC50: 11.5 ± 4.2–37.4 ± 3.2 µM vs. 7.8 ± 1.78–30.1 ± 1.9 µM). Clearly, the
HPMC-CUR-NPs could be potentially useful in prostate cancer treatment.

In a later study, PLGA-CUR-NPs prepared via nanoprecipitation caused large and
extensive vacuoles in C4-2 and DU-145 cells, but fewer and smaller vacuoles in PC-3 cells,
which is possibly indicative of lesser NP uptake. Conversely, this was not observed in cells
treated with free CUR. The NPs also inhibited cell growth better in vitro (especially at 4 and
6 µM) and reduced tumor volume in mice with C4-2 xenograft tumors better than the free
drug without causing systemic toxicity. Additionally, the conjugation of prostate-specific
membrane antigen (PSMA) monoclonal antibody to the NPs resulted in improved NP
uptake and targeted CUR delivery to PSMA-expressing cells [102].

Rao and colleagues [103] have also prepared thermally-responsive CUR-NPs (EE,
54.3–73.9%) using Pluronic F127 and chitosan via an emulsification–interfacial crosslinking–
solvent evaporation–dialysis method. NP size was reduced as temperature was increased
from 22 ◦C (~300 nm) to 37 ◦C (~22 nm). Mild hyperthermia (43 ◦C for 1–1.5 h) increased
NP uptake, retention, and delivery to the nuclei of PC-3 cells. The IC50 of NPs plus
hyperthermia was >7-fold lower than that of NPs only, suggesting that mild hyperthermia
combined with the CUR-NPs may increase PC-3 cell destruction. However, no in vivo
studies were conducted to support these results.

CUR-loaded, pH-sensitive, redox NPs (PR-CUR-NPs) (35 nm, 82% EE) have been
formulated using poly(ethylene glycol)-b-poly [4-(2,2,6,6-tetramethylpiperidine-1-oxyl)
aminomethylstyrene]) by the dialysis method [104]. The PR-CUR-NPs improved CUR
solubility, suppressed its oxidative degradation, and were significantly more toxic to PC-3
cells compared to free CUR or empty NPs. The PR-CUR-NPs (10 mg/kg, intravenously)
also significantly reduced tumor volume in tumor-bearing nude mice compared to free
CUR by suppressing oxidative stress.

Polyvinyl alcohol (PVA)-CUR-NPs (46–67.3 nm, −34.6 ± 1.4 to −37 ± 4.3 mV,
71.6–90.3% EE) have been fabricated using the flash nanocomplexation technique via
hydrogen bonding interactions [105] without an organic solvent. The cellular uptake and
cytotoxicity of the NPs in PC-3 cells was negatively correlated to drug load. Interest-
ingly, free CUR underwent a higher cellular uptake and was more cytotoxic than the NPs.
Formulation optimization could possibly improve these findings.

4.5. Lipid NPs

In a recent study by Tanaudommongkon and colleagues [106], Miglyol 812 and d-
alpha-tocopheryl PEG succinate 1000 (MT) were used to formulate CUR-NPs (138.7 ± 5.4 nm,
−24.4 mV, 96.3± 6.0% EE) by the nanoemulsion method. The NPs were cytotoxic to docetaxel
(DTX)-resistant castration-resistant prostate cancer (CRPC) cells. Compared to free CUR,
the CUR-MT-NPs were 5-fold and about 2-fold more cytotoxic to PC-3 and DU145 cells,
respectively. The CUR-MT-NPs were also equally cytotoxic to sensitive and resistant cells,
similar to the observation for free CUR against PC-3 cells. The CUR-MT-NPs completely
overcame the resistance to DTX in both PC-3 and DU145 cells.
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5. Lung Cancer
5.1. Liposomes

Rahman and colleagues [107] fabricated liposomes (420 nm, EE > 66%) containing
βCD-CUR complexes with better CUR water solubility than free CUR. The complexes and
NPs were prepared by the methanol reflux and thin-film hydration methods, respectively.
The median effective dose (EC50) values for the CUR-loaded liposomes, free CUR, βCD-
CUR, and βCD-C-loaded liposomes were 0.90, 1.5, 2.4, and 2.9 µM, respectively, on A549
cells (p < 0.05), clearly showing that increasing the aqueous solubility of CUR may not
necessarily correlate with improved cytotoxicity.

5.2. Lipid NPs

Wang and colleagues [108] used the sol–gel method to fabricate CUR-loaded solid
lipid nanoparticles (SLNs) (20–80 nm, −11.6 mV, 75% EE) using stearic acid, lecithin, and
polyoxyethylene (50) stearate. The IC50 of the CUR-SLNs (4 µM) against A549 cells was
20-fold lower than that of free CUR. The NPs (200 mg/kg daily, 5 days/week, 19 days) had
no effect on body weight, but significantly reduced tumor volume by 65.3% in nude female
mice xenografted with A549 cells, compared to 19.5% by free CUR. Additionally, the SLNs
significantly increased CUR bioavailability (26.4-fold) in female BALB/c mice and mostly
accumulated in the lung and tumor tissues after intraperitoneal administration [108].

CUR-loaded cationic lipid NPs (CUR-CLNs) (194.9 ± 7.4 nm, −28.15 ± 2.25 mV,
~98% EE) formulated by the emulsification evaporation-low temperature solidification
method also showed better oral pharmacokinetic characteristics (higher bioavailability,
higher plasma concentration, and lower clearance) compared to free CUR in rats. Following
intravenous administration, the relative bioavailability of the CUR-CLNs to free CUR was
439.76%. The CUR-CLNs also had a better anticancer effect in vitro (Lewis lung cancer,
LLC cells; IC50 20.25 µM vs. 39.70 µM) and in vivo (LLC-bearing C57BL/6J mice; tumor
growth inhibition rate, ~66 vs. ~39%). The higher anticancer efficacy of the CUR-CLNs was
attributed to the increased uptake and higher accumulation in the cells [109].

5.3. Gold NPs

Hoshikawa and colleagues [110] have developed PEGylated gold NPs with photother-
mal effects for CUR delivery. The NPs (<10 mV) were conjugated to CD (α-, β-, and γ-CDs)
for CUR encapsulation, with β-CD producing the highest CUR EE%. The average size of
the NPs, regardless of the CD used, was 25–35 nm (gold nanocore, ~5 nm). The CUR-CD-
Au-NPs were significantly cytotoxic to A549 cells; however, their effect was similar to that
of free CUR.

5.4. Polymeric NPs

Yin and colleagues [111] have fabricated CUR-NPs using three amphiphilic methoxy
PEG (mPEG)–polycaprolactone (PCL) block copolymers via the nanoprecipitation method,
with the mPEG10k–PCL30k giving the highest drug loading efficiency and the most sus-
tained drug release profile. The particle size, zeta potential (ZP), and encapsulation ef-
ficiency ranges were 102.3 + 11.3 − 140.3 + 14.2 nm, −4.7 + 0.4 to −7.8 + 1.4 mV, and
75.2 + 6.3 − 83.1 + 5.8%, respectively. Reduction of A549 cell viability after 24–72 h of treat-
ment was better with the NPs compared to free CUR, but similar at doses >80 µM. CUR
uptake by the cells was also increased by the NPs [111].

CUR-coordinated ROS-responsive NPs (163.8 nm, −0.31 mV, 65% EE) have been
fabricated using a biocompatible 4-(hydroxymethyl) phenylboronic acid-modified PEG-
grafted poly(acrylic acid) polymer (PPH). The NPs improved CUR stability and were
potent against A549 cancer cell proliferation in vitro. ROS inhibition with N-acetylcysteine
resulted in the suppression of the cytotoxic effect of the NPs, which validates the selectivity
of PPH-NPs for high-ROS cancer cells. Importantly, the findings showed that CUR release
from the NPs was enhanced in the presence of ROS [112].
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CUR-containing chitosan NPs (170–200 nm) have been prepared by ionic gelation
and evaluated against human non-small cell lung carcinoma (H1299) cells [113]. Toxi-
city, bioavailability, and chemopreventive efficacy were evaluated in Swiss albino mice
after the mice were administered the NPs or free CUR one week before treatment with
benzo[a]pyrene (B[a]P), and then on alternative days for up to 4 months. CUR retention in
the lungs of the mice was higher for the NPs than for free CUR. One fourth of the NP dose
was also more potent in inhibiting B[a]P-induced lung carcinogenesis than free CUR was.
Additionally, the CUR-loaded NPs were more effective in reducing nodule size, showing
that the NPs can improve the chemopreventive efficacy of CUR against lung cancer.

6. Colorectal Cancer (CRC)
6.1. Liposomes

Pandelidou and colleagues [114] formulated and evaluated CUR-loaded liposomes
(108.0 ± 8.9 nm, 85% EE) for anticancer effect against CRC cells. The liposomes were
taken up by HCT116 cells to a greater extent than free CUR, and were subsequently more
cytotoxic to HCT116, HCT15, and DLD-1 cells compared to free CUR (IC50: < 6 µM vs.
4.5–47.3 µM). The liposomes improved CUR activity against the cells, showing a higher
potency against the HCT116 and HCT15 cells.

In another study, Chen and colleagues [115] formulated CaCO3-encapsulated lipo-
somes containing CUR (LCC) (155.3 ± 3.8 nm, −14.2 ± 0.3 mV, 77.67 ± 1.82% EE) with pH-
sensitive properties for targeted CUR release by W/O emulsion-mediated film dispersion.
The LCC formulation was more cytotoxic to HCT116 cells compared to free CUR or CUR-
only liposomes. Similarly, LCC caused a reduction in tumor volume in C57BL/6 mice with
colon cancer better than CUR, attributable to enhanced CUR accumulation in the tumors.

In the aforementioned study by Rahman and colleagues [107], CUR-containing com-
plexes and liposomes were also tested on SW-620 cancer cells, where the EC50 values for
CUR-loaded liposomes, free CUR, CUR-loaded complexes, and βCD-C-loaded liposomes
were 0.96, 1.9, 2.95, and 3.25 µM, respectively. This finding was similar to the trend ob-
served for the lung cancer cells, with the βCD-C complex preparations having the lowest
antiproliferative effects, possibly due to the higher aqueous solubility of CUR provided by
the complex.

6.2. Micelles

Gou and colleagues [116] prepared CUR-containing monomethoxy PEG-PCL mi-
celles (27.3 ± 1.3 nm, 99.16 ± 1.02% EE) by the single-step nanoprecipitation method.
Although the micelles were less cytotoxic to C-26 cells than free CUR (IC50: 3.95 µg/mL vs.
5.78 µg/mL), the inhibition of angiogenesis was better in an alginate-encapsulated tumor
cell assay. Importantly, the micelles (25 mg/kg CUR, intravenously) inhibited colon tumor
growth in mice more than the free drug, showing their potential use in CRC management.

Another type of CUR-loaded micelles prepared with stearic acid-g-chitosan oligosac-
charide (CSO-SA) (114.7 ± 16.9 nm, 18.5 ± 0.4 mV, 29.9 ± 2.9% EE) was found to protect
CUR from biotransformation and hydrolysis, thereby improving CUR stability. The CUR-
CSO-SA micelles showed higher in vitro uptake and 6-fold higher cytotoxicity in CRC cells
than free CUR. After 14 days of treatment, the CUR-CSO-SA micelles reduced tumor size
and CD44+/CD24+ cell subpopulation both in vitro and in nude mice [117].

Raveendran and colleagues [118] have used solvent dialysis to prepare a CUR-containing
micelles using Pluronic/PCL amphiphilic block copolymer, with PCL, which is hydrophobic,
forming the core of the micelles to improve CUR loading. The micelles (195.7 ± 7.3 nm,
17.6 ± 0.4 mV, 72.08 ± 4.29% EE) improved CUR uptake and cytotoxicity in Caco-2 cells.

In a later study, CUR-loaded micelles (27.6± 0.7 nm, 0.11± 0.34 mV, 96.08 ± 3.23% EE)
were also fabricated using monomethyl PEG-PCL and trimethylene carbonate (TMC) via
a single-step solid dispersion method. TMC stabilized the micelles by inhibiting PCL
crystallization. The micelles increased CUR uptake and cytotoxicity in CT26 cells, and
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were more effective in suppressing tumor growth in female BALB/c mice (50 mg/kg CUR,
intravenously) with fewer toxic effects [119].

Chang and colleagues [120] have also evaluated CUR micelles (34–80 nm, 58–63% EE)
prepared using poly(PEG methyl ether methacrylate)-block-poly(styrene) block copolymer
in WiDr human colon carcinoma cells. Interestingly, larger micelles were more rapidly
endocytosed and exocytosed than the smaller ones were. However, CUR-loaded micelles
were better internalized by the cells than unloaded micelles. Additionally, after 72 h of
exposure, smaller CUR-loaded micelles remarkably reduced cell proliferation compared to
free CUR [120].

6.3. Nanogel (NG)

One benefit of NGs is that they confer structural stability to drug delivery systems
and protect encapsulated drugs from degradation. Madhusudana Rao and colleagues [121]
have used gelatin and acrylamidoglycolic acid to fabricate CUR-loaded pH-sensitive NGs
(100 nm, 42–48% EE) by a simple emulsion polymerization technique. The stabilization of
NG networks was achieved with glutaraldehyde. The in vitro CUR release was higher at
pH 7.4 than at 1.2. Compared to free CUR, the CUR-NGs showed better anticancer activity
against HCT116 cells after 48 h of treatment.

Seok and colleagues [122] have also fabricated a hemocompatible NG using hyaluronic
acid (HA) cross-linked zein for CUR delivery. The CUR-NG (200–250 nm, 20–40 mV,
94.15% EE) were more cytotoxic to CT26 cancer cells than normal NIH3T3 cells (IC50:
37 µg/mL vs. 94 µg/mL) via a higher apoptosis rate. The CUR-NG (3 mg/kg, intra-
venously) also showed a higher anticancer effect in BALB/c nude mice compared to free
CUR [122].

Recently, Borah and colleagues [123] formulated CUR-loaded amylopectin-albumin
core–shell NG functionalized with folic acid (FA) (90 nm, −24 mV, 100% EE) that induced
early-stage apoptosis of human HT29 cells, whereas free CUR did not. The NG also
increased CUR uptake and retention (by 60%) in FA receptor-positive HT29 cells. Addition-
ally, it showed potential for oral delivery as it was resistant to degradation in simulated
gastric and intestinal fluids.

6.4. CD-Based NPs

Ndong Ntoutoume and colleagues [101] have formulated CUR-loaded CD/cellulose
nanocrystal complexes by ionic interaction (206.8 nm, −29.6 ± 2.7 mV) that improved CUR
uptake by HT29 cells and exhibited an anticancer effect that was 3–4 times more effective
than CUR alone. These NPs also increased the aqueous solubility of CUR.

In another study, CUR-NPs (169–338 nm, 17.1 mV, 53.0% EE) fabricated using chitosan,
HA, and sulfobutyl-ether-β-CD by ionic gelation also significantly inhibited HT29 cell
proliferation. The NPs were better internalized by the cancer cells compared to normal I407
cells. The aqueous solubility of CUR was also improved (3.72 µg/mL to 70 µg/mL) after
encapsulation into NPs [124].

6.5. Lipid NPs

Chirio and colleagues [125] have fabricated CUR-SLNs (<300 nm, 22.13 ± 3.19 mV,
28–81% EE) by coacervation based on fatty acid precipitation. The highest EEs were
obtained with palmitic acid or PVA 9000. Interestingly, the different SLNs prepared,
whether loaded with CUR or not, had similar cytotoxic effects against HCT116 cells, which
is attributable to low CUR EE and reduced CUR solubility in NPs with higher EEs.

6.6. Gold NPs

Positively charged CUR-Au-NPs (160 ± 20 nm, 18 ± 3 mV) with pH-, radiofrequency-
and thermo-responsive properties have been formulated by Sanoj Rejinold and colleagues [126].
The NPs remained in tumors in mice bearing CT26 xenografts for up to 2 weeks. Addition-
ally, the circulation time of CUR in the blood was much longer (up to a week) for the NPs
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compared to free CUR. Importantly, CUR accumulation was higher in tumors than in other
organs, showing the potential of the NPs in targeted treatment of colon cancer.

Alibolandi and colleagues [127] have also formulated CUR-loaded hybrid dendrimer
Au-NPs (<10 nm). PEG-Au-poly(amidoamine) (PAMAM) NPs were prepared first and then
loaded with CUR. Mucin-1 conjugated aptamer (Apt) increased the uptake and cytotoxicity
of the NPs in HT29 and C26 cells. The in vivo antitumor effects (survival rate and tumor
growth inhibition) of the NPs (2 mg/kg CUR, intravenously, BALB/c mice) were better
than those of free CUR, and were further improved with the Apt-conjugated NPs.

6.7. Polymeric NPs

Chuah and colleagues [128] have formulated CUR-loaded chitosan NPs (340 ± 4.5 nm,
43.7 ± 0.4 mV, 77.44 ± 0.2% EE) to enhance colonic CUR delivery through mucoadhesion.
The CUR-NPs had better mucoadhesion properties than the empty NPs. Uptake of the
CUR-NPs by HT29 cells was also higher than that of free CUR. Additionally, HT29 cell
viability was better reduced after 72 h of treatment and when CUR was loaded into the NPs.

CUR-NPs have been fabricated with PLGA, soybean lecithin, and DSPE-PEG2000-
COOH via nanoprecipitation, and functionalized with a ribonucleic acid Apt against epithe-
lial cell adhesion molecule, which is overexpressed on colorectal adenocarcinoma cells, for
targeted CUR delivery. The Apt-CUR-NPs (90 ± 1.9 nm, −36.3 ± 4.2 mV, 89.98 ± 3.8% EE)
showed 64-fold higher binding and/or internalization by HT29 cells than CUR-NPs func-
tionalized with negative control Apt. The Apt-CUR-NPs also had a higher antiproliferative
activity against HT29 colon cells than free CUR and a significantly higher bioavailability
and 6-fold longer half-life in male Sprague Dawley rats than the free drug, showing their
potential benefit in CRC treatment [129].

CUR-loaded polymeric NPs (136 nm, 48 mV, 95% EE) have also been fabricated using
chitosan and gum arabic by Udompornmongkol and Chiang [130] via emulsification-
solvent diffusion. The NPs were stable in simulated gastrointestinal fluids. Their uptake by
HCT116 and HT29 cells, as well as their antiproliferative effect against the cells, were better
than those of free CUR, showing the anti-CRC potential of the NPs.

In another study, CUR-NPs prepared by emulsification-diffusion-evaporation using
Eudragit E 100 (248.40 ± 3.89 nm, 65.77 ± 3.17% EE) had a 19-fold higher inhibition rate
on the growth of Colon-26 cells, had a better oral bioavailability in Wistar rats, and a
reduced tumor volume in Colon-26 tumor-bearing BALB/c mice (50 mg/kg CUR, orally,
daily for 30 days) as compared to free CUR, showing the potential of the CUR-NPs in CRC
management [131].

Silk fibroin (SF) has been used to fabricate CUR-NPs (<100 nm) via solution-enhanced
dispersion by the supercritical CO2 technique. The IC50s of free CUR, CUR-SF-NPs, and fluo-
rouracil against HCT116 cells were 5.339, 4.383, and 0.432 µg/mL, respectively; however, the
CUR-SF-NPs had the most superior anticancer effect at CUR concentrations >10 µg/mL [132].

Polymeric self-emulsifying NPs (100–180 nm, 64.85 ± 0.12% EE) were formulated by
Wadhwa and colleagues [133] via quasi-emulsion solvent diffusion using HPMC acetate
succinate. The in vitro release studies showed that up to a 5 h lag time preceded CUR
release from the NPs, which approximates the time for cecal arrival following oral intake.
Furthermore, the optimized NPs were more cytotoxic to HT29 cells than free CUR (IC50:
20.32 µM vs. 28.56 µM), and CUR was successfully delivered to the colon in guinea pigs by
the NPs, even though they were not well absorbed in this region.

Alkhader and colleagues [134] have prepared CUR-containing chitosan-pectinate NPs
(CUR-CS-PEC-NPs) (206.0 ± 6.6 nm, 32.8 ± 0.5 mV, 64% EE) that are more mucoadhesive
at an alkaline pH than at an acidic pH. A very high CUR release (>80%) was achieved in a
pectinase-enriched medium (pH 6.4), indicating that the NPs are suited for colon-targeted
CUR delivery. In a further study, Alkhader and colleagues [135] found that free CUR and
CUR-CS-PEC-NPs inhibited HT29 cell proliferation in a dose- and time-dependent manner.
Uptake of free CUR and CUR-CS-PEC-NPs by HT29 cells was comparable; however, the
oral bioavailability of CUR in Sprague Dawley rats was significantly higher for the NPs.
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Sabra and colleagues [136] have also formulated CUR-loaded modified citrus pectin-
chitosan NPs (MCPC-CUR-NPs; 178 ± 0.896 nm, 35.7 ± 1.41 mV, 69.43% EE) that exhibit
mucoadhesive properties using a one-step ionic gelation technique. Similar to the findings
of Alkhader and colleagues [134], the MCPC-CUR-NPs exhibited a better mucoadhesive
property at pHs of 7.0, 5.5, and 6.25 than at 1.2. Additionally, CUR release over 24 h
from the NPs was higher in a 33% (w/v) cecal medium than in an acidic medium (pH 1.2)
(68% versus 18%). In a further study, the MCPC-CUR-NPs showed more toxicity to HT29
and HCT-116 cells compared to unmodified NPs or free CUR, particularly after ≥48 h of
treatment. Additionally, pectin modification significantly increased the cellular uptake of
the NPs, especially at low CUR concentrations [137]. These results show that MCPC-CUR-
NPs may be beneficial in the management of CRC.

7. Breast Cancer
7.1. Lipid NPs

CUR-loaded transferrin-mediated SLNs (Tf-CUR-SLNs; 206 ± 3.2 nm, 8.21 ± 0.89 mV,
77.27± 2.34% EE) prepared by homogenization have been shown to increase CUR photosta-
bility and inhibit MCF-7 cell proliferation. Cellular uptake of the Tf-CUR-SLNs was higher
than that for free CUR or CUR-SLNs, possibly due to the targeting effect by Tf-CUR-SLNs
on MCF-7 cells [138].

Sun and colleagues [139] fabricated CUR-loaded SLNs (152.8 ± 4.7 nm, 90% EE) by
high-pressure homogenization, where cell viability was inhibited for a prolonged period,
whereas cells treated with free CUR recovered viability after 72 h, confirming the superiority
of the NPs. The cellular uptake of the NPs increased from 10 min to 3 h of incubation, then
decreased after 3–6 h. On the other hand, uptake of free CUR was rapid in the first 10 min,
but decreased sharply afterwards. Additionally, the bioavailability of CUR in Sprague
Dawley rats after intravenous administration was 1.25-fold higher from the NPs compared
to free CUR.

Wang and colleagues [140] have also prepared CUR-SLNs by low-temperature solid emul-
sification using stearic acid and lecithin as lipids. The CUR-SLNs (40 nm, −25.3 ± 1.3 mV,
72.47% EE) induced a higher level of cytotoxicity and apoptosis (IC50: 28.42 µM vs. 18.78 µM)
and were better taken up by SK-BR-3 breast cancer cells than free CUR. Similar to several of
the reported studies on CUR-loaded NPs, no in vivo anticancer evaluations were performed.

Minafra and colleagues [141] produced CUR-SLNs (302.5 nm, 41.4 ± 4.6 mV, 68.62% EE)
with radiosensitizing ability by ethanolic precipitation followed by homogenization. Free
CUR and the CUR-SLNs had a comparable cytotoxic effect on MDA-MB-231 breast cancer
cells. Irradiation of cancer cells that had accumulated by CUR-SLNs with 2 Gy of photon
beam resulted in the protection against radiation-induced oxidative stress and an antitumor
effect through the activation of autophagy simultaneously. These findings necessitate further
studies on the concomitant use of CUR-SLNs and radiotherapy for treating breast cancer.

7.2. NG

Wei and colleagues [142] have prepared a NG loaded with CUR conjugated to cholesteryl-
HA (CHA) for targeted CUR delivery to CD44-expressing drug-resistant cancer cells. The
NG particles (20 nm) were stable in simulated gastrointestinal fluids and had a 400-fold
higher aqueous solubility than pure CUR. The NG was also more cytotoxic to 4T1 cells
(IC50: 2 µg/mL vs. 5 µg/mL) and inhibited tumor growth in BALB/c mice better than free
CUR did.

7.3. Silica NPs

Li and colleagues [143] found that CUR-loaded mesoporous silica NPs (MSNs) modi-
fied with HA or polyethyleneimine (PEI)-FA were more cytotoxic to MDA-MB-231 cells at
20–60 µg/mL than free CUR, CUR-MSNs, or CUR-PEI-MSNs were. This was attributed
to the affinity of the CUR-PEI-FA-MSNs for FA and CD44 receptors, which are typically
overexpressed on MDA-MB-231 cells. Cellular uptake was in the order: CUR-PEI-FA-
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MSNs > CUR-HA-MSNs > CUR-PEI-MSNs > CUR-MSNs > free CUR. The CUR-PEI-FA-
MSNs (8 mg/kg CUR, every 3 days via the tail vein) showed the best antitumor effect
in female BALB/c nude, pointing to the importance of suitably surface-modified NPs in
cancer management.

7.4. ZnO NPs

CUR-loaded phenyl boronic acid (PBA)-conjugated and pH-responsive ZnO NPs
(CUR-ZnO-PBA-NPs) (413.63 ± 9.5 nm, −16.4 ± 0.30 mV, 27% EE) have been fabricated
by Kundu and colleagues [144]. The uptake of ZnO-PBA-NPs was higher than ZnO-NPs
by MCF-7 cells. Furthermore, CUR-ZnO-PBA-NPs were more cytotoxic to MCF-7 cells,
accumulated more in tumors, and reduced tumor volume better in Swiss albino mice
(10 mg/kg CUR, intravenously on alternate days for 14 days) compared to free CUR.
Intriguingly, the CUR-ZnO-PBA-NPs alleviated tumor-induced splenomegaly, which could
be valuable in breast cancer patients.

7.5. Hybrid Magnetic-Polymeric NPs

CUR-loaded magnetic alginate/chitosan NPs (CUR-MAC-NPs) (172–199 nm, −28.7
to −34.2 mV, 67.5% EE) prepared via co-precipitation were internalized by MDA-MB-231
3–6 fold higher than free CUR. The CUR-MAC-NPs were also significantly less toxic to
normal human dermal fibroblasts. However, in vivo studies are needed to clarify the
potential of the CUR-MAC-NPs using an external magnetic field [145].

7.6. Human Serum Albumin (HSA) NPs

Saleh and colleagues [146] have formulated CUR-containing HSA-NPs decorated with
human epidermal growth factor receptor 2 (HER2) Apt (Apt-CUR-HSA-NPs; 281.1 ± 11.1 nm,
−33.3 ± 2.5 mV, 71.3% EE%) through desolvation. The NPs increased the aqueous solubility
of CUR 400-fold. Additionally, the presence of Apt increased the cytoplasmic uptake and
cytotoxicity of the NPs in HER2-overexpressing SK-BR-3 cells, indicating that the Apt-CUR-
HSA-NPs may be a promising treatment for HER2-positive breast cancer. Recently, Hasanpoor
and colleagues (2020) similarly fabricated CUR-HSA-NPs and functionalized the particles
with programmed death ligand 1 (PDL1) binding peptide, with the peptide-CUR-HSA-NPs
(246.5 nm, −24.5 ± 1.5 mV, 77.8% EE) showing a similar trend of uptake and cytotoxicity
in high PDL1-expressing MDA-MB-231 cells. Matloubi and Hassan [147] have likewise
fabricated CUR-HSA-NPs (220 nm, −7 mV, 70% EE), but without surface functionalization.
The cytotoxicity of the NPs was lesser on peripheral blood mononuclear cells, but higher on
MCF7 and SK-BR3 cells from 48 h of treatment compared to free CUR. These findings are
promising, with regard to improved anticancer effects due to NP surface functionalization.
However, further studies in animal models are needed to show their potential in breast
cancer management.

7.7. Magnetic NPs

Ashkbar and colleagues [148] found that Fe3O4-SiO2-CUR-NPs (20–60 nm, −57.5 mV)
combined with photodynamic therapy (PDT) and photothermal therapy (PTT) produced
the highest reduction of 4T1 tumor volume in female BALB/c mice compared to the NPs
only, free CUR plus PDT, NPs plus PTT, or PDT plus PTT. Importantly, tumor volume was
decreased by 58% by the NPs alone compared to the untreated group. These show the
benefit of the CUR-NPs and, even more significantly, the potential of the triple therapy in
breast cancer management.

7.8. Polymeric NPs

Khan and colleagues [149] fabricated CUR-PLGA NPs (265–606 nm,−3.1 to−13.7 mV,
>50% EE) by solvent evaporation and tested them on MDA-MB-231 cells, whereby a 10-fold
increase in solubility and 3-fold increase in anticancer activity compared to CUR was
observed. Sampath and colleagues [150] have investigated the use of tocopherol PEG 1000
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succinate (TPGS, as emulsifier) with different capping agents (chitosan, dextran, and PEG)
to fabricate CUR-PLGA-NPs by emulsion solvent evaporation (<200 nm, 7.94–40.47 mV,
82–89% EE). All NPs produced reduced MCF-7 cell proliferation better than free CUR did,
with the highest cellular uptake observed when TPGS and dextran were used.

CUR-loaded poly-glycerol-malic acid-dodecanedioic acid NPs (110–218 nm, −17.5 to
−18.9 mV, 75–81% EE) fabricated via nanoprecipitation have shown a higher antiprolifera-
tive effect against MCF-7 and MDA-MB 231 cells compared to free CUR. Interestingly, the
cytotoxicity of free CUR decreased with increasing incubation periods, whereas the reverse
was observed for the NPs after 7 days [151].

7.9. Phospholipid-Polymeric NPs

CUR-loaded phospholipid NPs conjugated with EGF have been formulated via thin-
film hydration by Jung and colleagues [152]. The EGF-CUR-NPs (229.3± 6.0 nm, 63.3% EE)
exhibited a dose-dependent suppression of MDA-MB-468 TNBC cell survival and were
more cytotoxic than free CUR or CUR-only NPs. The EGF-CUR-NPs (10 mg/kg, intraperi-
toneally, three times weekly, total of 8 injections) also suppressed tumor growth in mice
bearing MDA-MB-468 tumors better compared to empty or CUR-only NPs, showing that
they may be beneficial for treating TNBCs with an overexpression of EGF receptors.

7.10. Polymer-Coated Gold NPs

FA-functionalized CUR-Au-PVP-NPs (358.7 nm, −12.5 mV) prepared by layer-by-
layer assembly have been shown to be cytotoxic to MDA-MB-231, MCF-7, and 4T1 cancer
cells, but not to normal L929 and MCF-10A cells at CUR concentrations of <100 µg/mL.
The FA-CUR-Au-PVP NPs (10 mg/kg, intratumorally, 2 weeks) inhibited tumor growth in
BALB/c mice bearing 4T1 tumors more than free CUR [153].

7.11. Radiolabeled NPs

Huang and colleagues [154] used membrane dialysis to fabricate self-assembled 99mTc-
radiolabeled CUR-NPs with HA-cholesteryl hemisuccinate conjugates and D-a-TPGS.
The NPs (144 nm, −21.25 ± 1.66 mV, 84.0 ± 5.0% EE) inhibited 4T1 cell growth by two-
fold compared CUR (IC50 values: 38 µg/mL vs. 77 µg/mL). Tumor growth in tumor-
bearing BALB/c mice was also inhibited by the NPs (50 mg/kg, every 2 days, total of
5 injections) without toxicities to major organs; however, the in vivo effect of free CUR was
not determined.

7.12. NG

Setayesh and colleagues [155] grafted octadecylamine (ODA) to chondroitin sulfate (CS)
to form a CS-ODA conjugate that was used to prepare CUR-loaded NG (311 ± 20.29 nm,
−13.25 ± 0.35 mV, 79.56 ± 5.56% EE). Interestingly, the CS-ODA-NG and free CUR were
equally cytotoxic to MCF-7 cells after ≥48 h of incubation; however, cellular uptake of the NG
was higher.

8. Oral, Cervical, Ovarian, and Pancreatic Cancers

Reported studies on the evaluation of CUR nanoformulations for oral, cervical, ovarian,
and pancreatic cancers have been summarized in Table 1.
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Table 1. Summary of details from studies on CUR nanoformulations for ovarian, oral, cervical, and pancreatic cancers.

Study Authors
(Reference) NP Type and Details

Cancer Cell
Line/Cytotoxicity (IC50 of

NPs vs. Free CUR)
Cellular Uptake of

CUR-NPs vs. Free CUR Animal Model Treatment
Regimen

In Vivo Antitumor
Activity Toxicity

Ovarian cancer

[156]

Polymeric NPs
(PLGA, PVA, and

poly-L-lysine)
PM: Nanoprecipitation

SZ: ~72 nm
ZP: N/I
EE: N/I

A2780CP (resistant to
cisplatin) paired cells
CUR-NPs inhibit cell

proliferation compared to
blank NPs
IC50: N/I

N/D N/D N/D N/D N/D

[157]

Nanostructured lipid carriers
(Compritol 888 ATO, Captex

355 EP/NF, Miglyol 812)
PM: Precipitation
SZ: 100–160 nm

ZP: N/I
EE: 40–100%

A2780S cells
(cisplatin-sensitive)
NPs: 21.2 ± 3.5 µM

Free CUR: 22.2 ± 1.8 µM
A2780CP cells (cisplatin-

resistant)
NPs: 19.0 ± 1.4 µM

Free CUR: 20.2 ± 2.5 µM

Similar N/D N/D N/D N/D

[158]

Polymeric NPs
(PLGA, PVA)

PM: Emulsion–diffusion–
evaporation

Non-lyophilized NPs
SZ: 203.6 ± 7.8 nm

ZP: −5.24 ± 0.86 mV
EE: 80.4 ± 10.6%
Lyophilized NPs

SZ: 201.8 ± 6.0 nm
ZP: −5.43 ± 0.67 mV

EE: N/I

SK-OV-3 cells
↑ for NPs (measured as

amount of ROS generated)

↑ for NPs (with or without
irradiation from LED-based

photodynamic therapy)
N/D N/D N/D N/D

Oral cancer

[159]

Polymeric NPs
(PLGA and PVA)

PM: Single emulsion solvent
evaporation
SZ: 180 nm

ZP: N/I
EE: N/I

CAL27-cisplatin resistant cells
IC50: N/I

>80 µM for normal human
gingival fibroblasts cells oral

keratinocyte cells

N/D for free CUR N/D N/D N/D N/D
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Table 1. Cont.

Study Authors
(Reference) NP Type and Details

Cancer Cell
Line/Cytotoxicity (IC50 of

NPs vs. Free CUR)
Cellular Uptake of

CUR-NPs vs. Free CUR Animal Model Treatment
Regimen

In Vivo Antitumor
Activity Toxicity

[160]

Silica NPs
(Vinyltriethoxysilane,

3-aminopropyl-
trimethoxysilane)

PM: N/I
SZ: ~32 nm

ZP: −39 ± 1.0 mV
EE: N/I

Human squamous cell
carcinoma (4451) cells

IC50: N/I
↑ for NPs N/D N/D N/D N/D

[161]

Chitosan-coated
PCL NPs

PM: Nanoprecipitation
SZ: 115.3–127.3 nm
ZP: 23.5–40.1 mV

EE: >99%

SCC-9 cells
24 h

NPs: 271.5 ± 1.17 µM
Free CUR: 93.40 ± 4.26 µM

48 h
NPs: 260.3 ± 8.35 µM

Free CUR: 75.21 ± 3.25 µM
72 h

NPs: 92.04 ± 1.53 µM
Free CUR: 17.46 ± 1.20 µM
(p < 0.05 in each instance)

Free CUR was more cytotoxic
than the NPs

N/D N/D N/D N/D N/D

Cervical cancer

[27]

Polymeric NPs
(PLGA; co-polymerization

ratios 50:50 and 75:25,
lactic/glycolic)

PM: Single emulsion
(solvent evaporation)

SZ: 100–200 nm
ZP: N/I

EE: 74.73–90.03%

HeLa cells
Comparable cytotoxicity ↑ for NPs ND ND ND ND

[162]

NG (FA-conjugated
cross-linked polymeric NPs)
(acrylic acid, PEG diacrylate, FA)

PM: Inverse emulsion
polymerization
SZ: 160–190 nm

ZP: N/I
EE: 61.2 ± 1.2%

HeLa cells
↑ for NPs
IC50: N/I

↑ for NPs ND ND ND ND
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Table 1. Cont.

Study Authors
(Reference) NP Type and Details

Cancer Cell
Line/Cytotoxicity (IC50 of

NPs vs. Free CUR)
Cellular Uptake of

CUR-NPs vs. Free CUR Animal Model Treatment
Regimen

In Vivo Antitumor
Activity Toxicity

[163]

Liposomes
(soybean lecithin and

cholesterol, Montanov82®,
and/or DDAB)
PM: Thin film

hydration method
CUR-NPs (with
Montanov82®)

SZ: 161.5 ± 0.8 nm
ZP: −1.4 ± 0.8 mV

EE: 63.9 ± 3.8%
CUR-NPs (with cholesterol)

SZ: 161.8 ± 0.4 nm
ZP: −0.1 ± 0.1 mV

EE: 70.6 ± 0.5%
CUR-NPs (with

Montanov82® and DDAB)
SZ: 252.4 ± 5.3 nm
ZP: 28.8 ± 1.0 mV

EE: 34.7 ± 0.3%
CUR-NPs (with cholesterol

and DDAB)
SZ: 219.5 ± 9.3 nm
ZP: 27.7 ± 0.9 mV

EE: 68.9 ± 0.6%

HeLa cells
↑ for NPs than free CUR

NPs: N/I
Free CUR: 21 µM

SiHa cells
↑ for NPs than free CUR

NPs: N/I
Free CUR: 16 µM

For both cells, cytotoxicity ↑
for NPs containing DDAB

N/I ND ND ND ND

[164]

Micelles
(N-benzyl-N,O-succinyl

chitosan synthesized from
chitosan by

successive reductive
N-benzylation, and
N,O-succinylation)

PM: Dialysis method
SZ: 80 ± 4.0–97 ± 5.0 nm

ZP: −27.1 ± 1.4 to
−29.2 ± 1.4 mV

EE: 7.57 ± 0.01–38.30 ±
5.70%

HeLa cells
NPs: 4.34 ± 0.12 µM (4.7-fold

↓)
Free CUR: 21.17 ± 1.80 µM

SiHa cells
NPs: 4.34 ± 0.12 µM (3.6-fold

↓)
Free CUR: 16.28 ± 1.34 µM

C33A cells
NPs: 4.34 ± 0.12 µM (12.2-fold

↓)
Free CUR: 54.29 ± 3.62 µM

Significantly ↑ for all NPs - - - -
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Table 1. Cont.

Study Authors
(Reference) NP Type and Details

Cancer Cell
Line/Cytotoxicity (IC50 of

NPs vs. Free CUR)
Cellular Uptake of

CUR-NPs vs. Free CUR Animal Model Treatment
Regimen

In Vivo Antitumor
Activity Toxicity

[165]

Polymeric NPs
(chitosan, sodium
tripolyphosphate)
PM: Ionic gelation
SZ: 197 ± 16.8 nm
ZP: 71 ± 6.4 mV

EE: ~85%

SiHa cells
NPs: 97.27 µg/mL

HeLa cells
NPs: 88.41 µg/mL

CasKi cells
NPs: 81.48 µg/mL

C33A cells
NPs: 95.46 µg/mL
IC50: Values at 72 h

Value N/I for free CUR

N/I
Among cells, NP uptake

over 25 h was CasKi > C33A
> HeLa > SiHa

- - - -

[166]
Polymeric NPs

(PLGA, PVA, poly(l-lysine))
PM, SZ, ZP, EE: N/I

Caski cells
and

SiHa cells
IC50: N/I

↑ cytotoxicity for NPs

↑ for NPs

Female NOD scid
gamma mice

Caski cells (4 × 106

cells, injection into
cervix)

TV: ~200 mm3

(maximum tumor
burden allowed
post treatment:

1100 mm3)

100 µg
intra-tumoral

injection

Changes in TV
NPs: 637 ± 68 mm3

Free CUR: 816 ±
94 mm3

N/I

[167]

Polymeric NPs
(Chitosan, alginate, sodium

tripolyphosphate)
PM: Ultrasonic-assisted

method
SZ: ~50 nm

ZP: N/I
EE: 70%

HeLa cells
IC50: N/I

↑ cytotoxicity for NPs
N/I ND ND ND ND

[168]

Micelles
(Pectin)

PM: Self-assembly method
SZ: 70–190 nm

ZP: N/I
EE: N/I

HeLa cells NPs: 14.1 ± 3.0 µM
Free CUR: 40.9 ± 2.6 N/I ND ND ND ND
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Table 1. Cont.

Study Authors
(Reference) NP Type and Details
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Line/Cytotoxicity (IC50 of

NPs vs. Free CUR)
Cellular Uptake of

CUR-NPs vs. Free CUR Animal Model Treatment
Regimen

In Vivo Antitumor
Activity Toxicity

[169]

Silica/titania mesoporous NPs
(coated with

polyethylenimine-FA)
PM: Hydrolysis,

condensation reactions, and
surface functionalization.

Drug loading (solvent
deposition)

SZ: 173 ± 15 nm
ZP: N/I

EE: 43.36 ± 0.32%

HeLa cells
↑ cytotoxicity for NPs

(synergetic
chemo-sonodynamic therapy

observed)

N/I ND ND ND ND

[170]

Liposomes
(DSPE, PEG2000, FA, SPC,

cholesterol)
PM: Thin-film hydration

SZ: 112.3 ± 4.6 nm
ZP: −15.3 ± 1.4 mV

EE: 87.6%

HeLa cells
NPs: 0.82 µg/mL

Free CUR: 1.47 µg/mL

↑
NPs-66.4 ± 6.2%

Free CUR-5.7 ± 1.6%

Female BALB/c
mice

(~5 × 106 cells in
100 µL PBS, lower

right flank)
TV: 100–150 mm3

25 mg/kg CUR, on
alternate days for

three weeks

Final TV
NPs: 77.3 ± 56.5 mm3

Free CUR: 634.3 ±
67.4 mm3

No obvious acute
toxicity

[171]

Nano-niosomes
(Fe3O4, PLGA, PEG, FA)

PM: Double emulsion
method (W/O/W) and

vacuum drying
SZ: 190.4 ± 5.3 nm

ZP: N/I
EE: 86.46%

HeLa229 cells
IC50: N/I ↑ - - - -

[172]

Micelles
PM: Co-assembly of CUR

and cystine/lysine-bridged
peptide (CBP/LBP)

SZ: ~250 nm
ZP: N/I

EE: 63.44%

HeLa cells
↑ cytotoxicity for NPs (but

higher with the CBP)
IC50: N/I

↑ for NPs (but higher with
the CBP)

Female
BALB/c nude mice
bearing HeLa cells

Treatment was
started on the

10th day when the
tumor volume

reached 100 mm3

2.5 mg/kg
intravenous

injection into tail,
every three days for

14 days

TGI
NPs (CBP): 69.12%

NPs (LBP):
10.66%

Free CUR: 36.14%

NPs: Minimal
effects on healthy

tissues
Free CUR:

Apoptosis in liver,
kidney, spleen

All formulations:
No significant
Effect on body

weight
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Study Authors
(Reference) NP Type and Details

Cancer Cell
Line/Cytotoxicity (IC50 of

NPs vs. Free CUR)
Cellular Uptake of

CUR-NPs vs. Free CUR Animal Model Treatment
Regimen

In Vivo Antitumor
Activity Toxicity

Pancreatic cancer

[173]

Polymeric micelles
(methoxy(polyethylene

glycol), PCL)
PM: Modified dialysis

SZ: 110 ± 6.4 nm
ZP: −16 ± 2.77 mV

EE: 57.6 ± 1.23%

PANC-1 cells
NPs: 22.8 µM

Free CUR: 24.75 µM
MiaPaCa-2 cells
NPs: 13.85 µM

Free CUR: 14.96 µM

Test performed on PANC-1
cells only
At 10 µM

NP uptake 2.95-fold ↑
At 30 µM

NP uptake 1.88-fold ↑

- - - -

[174]

Magnetic NPs
(Fe(III) chloride

hexahydrate (99%), Fe(II)
chloride tetrahydrate, CD,

Pluronic F-127)
PM: N/I

SZ: 109 nm
ZP: −0.99 mV

EE: N/I

HPAF-II and PANC-1 human
pancreatic cancer cell lines

IC50: N/I
Similar cytotoxicity between

NPs and free CUR to both cell
lines

↑
Similar uptake by both cell
lines (54.06% vs. 53.86%)

Male athymic nude
(nu/nu) mice

Inoculated
subcutaneously, left

flank (5 × 106

HPAF-II cells)

13th day after
inoculation

Intratumoral
administration, 20
µg CUR in 100 µL

vehicle
Animals sacrificed

at the end of
treatment or when

TV = 1000 mm3

TV ↓ by NPs more
than by free CUR N/D

[175]

Self-assembled casein
(sodium caseinate) NPs

PM: Self-assembly
SZ: 104–213 nm

ZP: −37.63 mV to
−39.07 mV

EE: 70% to ∼100%

BxPC3 cells
NPs: 25.3 µg/mL

Free CUR: 29.4 µg/mL
↑ - - - -

[142]

NG
(Cholesteryl-HA)

PM: N/I
SZ: 29.2 ± 5.4 nm

ZP: −38.4 ± 3.9 mV
EE: N/I

MiaPaCa-2 cells
NPs: 9 µg/mL

Free CUR: 18 µg/mL
N/I

Female nu-nu mice
(5 × 106 cells,
subcutaneous
injection, right

flank)

10th day after
inoculation

Intraperitoneal
injection

6 mg/kg CUR twice
every week

NG ↓ TV 5-fold vs
free CUR by day 49

No significant
weight loss

[176]

Polymeric NPs (Chitosan,
PEG, PLGA)

PM: Emulsion solvent
evaporation
SZ: 264 nm
ZP: 19.1 mV

EE: 60%

PANC-1 cells
NPs: 14.2 ± 4.6 µM

Free CUR: 28 ± 4.1 µM
MiaPaca-2 cells

NPs: 6.1 ± 0.6 µM
Free CUR: 20.3 ± 1.1 µM

PANC-1 cells
6.7-fold ↑ for NPs
MiaPaca-2 cells

7.5-fold ↑ for NPs
- - - -
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Line/Cytotoxicity (IC50 of

NPs vs. Free CUR)
Cellular Uptake of

CUR-NPs vs. Free CUR Animal Model Treatment
Regimen

In Vivo Antitumor
Activity Toxicity

[177]

Chitosan-coated lipid NPs
(chitosan, stearoyl chloride,

cholesterol)
PM: Cold dilution of

microemulsion
SZ: 190.6 ± 1.5 nm
ZP: 2.10 ± 0.51 mV

EE: 73.4 ± 0.3%

PANC-1 cell lines
IC50: N/I

↑ cytotoxicity of NPs at 5 and
10 µM CUR concentration

- - - - -

[178]

SLNs
(trilaurin)

PM: Cold dilution of
microemulsion
SZ: ∼200 nm

ZP: −10.06 ± 2.66 mV
EE: 75 ± 1.0%

CFPAC-1 and PANC-1 cells
IC50: N/I

↑ cytotoxicity of NPs
- - - - -

Abbreviations: CD, cyclodextrin; CUR, curcumin; EE, encapsulation efficiency; FA, folic acid; HA, hyaluronic acid; IC50: half-maximal inhibitory concentration; N/D, not determined;
N/I, not indicated; NG, nanogel; NP, nanoparticle; PCL, polycaprolactone; PEG, polyethylene glycol; PM, preparation method; ROS, reactive oxygen species; SZ, size; TGI, tumor growth
inhibition; TV, tumor volume; ZP, zeta potential.
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9. Synergistic Effect of CUR-NPs with Other Anticancer Drugs

Combination drug treatment is a popular strategy that can be beneficial in overcom-
ing drug resistance and dose-limiting toxicity, which are typical concerns associated with
the management of cancer [179]. Some studies have shown that NPs containing CUR in
addition to other drugs can have synergistic anticancer effects. For instance, NPs co-loaded
with CUR and doxorubicin have been shown to be effective against lung cancer [180]. In
other studies, NPs containing CUR and paclitaxel [181], methotrexate [182], GANT61 [183],
or doxorubicin [184] have been shown to be effective against breast cancer. It has also
been found that CUR and docetaxel [185] or CUR and cabazitaxel [186] have synergistic
effects against prostate cancer. Finally, it has been revealed that CUR and oxaliplatin [187],
5-fluorouracil [188], camptothecin [189,190], chrysin [191], doxorubicin [192,193], or cetux-
imab [194] may synergistically inhibit the growth of colon cancer cells. From the foregoing,
it is possible that the abovementioned cancers may be better managed with NPs loaded
with both CUR and the other anticancer drugs. However, clinical trials are required to
clarify the effectiveness of these proposed combination therapies.

10. Clinical Trials Conducted on CUR-NPs

Pharmaceutical formulations that show promise in preclinical studies must be eval-
uated in clinical trials, because preclinical findings may not be necessarily be reflected
in humans.

There is only a handful of clinical trials (ongoing or completed) covering the thera-
peutic evaluation of CUR-NPs, with trials related to CUR-NPs for cancer management
being even more scarce. A clinical trial has been conducted on a CUR-NP formulation
called THERACURMIN, in which six healthy volunteers were orally administered two
doses (150 and 210 mg) of the preparation. The trial showed a high CUR bioavailability
following administration to human subjects. However, the subjects were not administered
free CUR [195]. It was also found from a randomized, placebo-controlled, double-blind
phase I dose escalation study performed in healthy participants (n = 50, male and female)
that short-term administration of intravenous liposomal CUR (<0.2 µm; dose, 120 mg/m2)
may be safe but can cause changes in red blood cell morphology [196].

A clinical trial on the use of plant exosomes (50–100 nm) to deliver CUR to colon tumors
and normal colon tissue started in January 2011. Subjects are being administered CUR
tablets, CUR conjugated with plant exosomes, or no treatment, with the primary outcome
measure being CUR concentration in normal and cancerous tissue. The study is ongoing
and therefore no outcomes have been published yet (NCT number: NCT01294072, 2011).

CUR-containing nanostructured lipid particles (100 mg p.o. bid daily) have been eval-
uated in an open-label phase II clinical trial (50 colorectal cancer patients with unresectable
metastasis) in addition to standard chemotherapy treatment (Avastin/FOLFIRI [folinic
acid, fluorouracil, irinotecan]). The primary end point was to evaluate progression-free
survival (time frame, 2 years) (NCT number: NCT02439385, 2015).

Saadipoor and colleagues [197] have conducted a randomized controlled trial to assess
the benefit of CUR-loaded nanomicelles (10 nm, ∼100% EE) in radiation-induced proctitis
in prostate cancer patients undergoing radiotherapy. Unfortunately, the CUR formulation
was not found to be efficacious in the patients.

From the foregoing, it is very evident that more evaluations of CUR nanoformulations
in human subjects are required. This is important because several studies have shown
promising anticancer benefits of some CUR-NPs in vitro and in animal models.

11. Conclusions

CUR has received extensive interest for its diverse health benefits in general and its
anticancer effects in particular. It has been proposed as a natural and effective anticancer
agent with mild to no side effects. A plethora of studies have shown multiple anticancer
mechanisms of CUR and the synergistic effects of combining CUR with other anticancer
agents. Since poor bioavailability is the main obstacle in the use of CUR for cancer treat-
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ment, research has been devoted towards fabricating advanced drug delivery systems to
improve CUR stability and bioavailability. A good number of in vitro, in vivo, and clinical
studies have shown that CUR has an anticancer effect, and that NPs improve the oral
bioavailability, stability, and targeted delivery of CUR, which could make CUR-NPs useful
in cancer management.
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