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Abstract: Polyphenols, organic acids and metal ions are an important group of compounds that affect
the human health and quality of food and beverage products, including wines. It is known that a
specific correlation between these groups exist. While wines coming from the New World and the
Old World countries are extensively studied, wines coming from cool-climate countries are rarely
discussed in the literature. One of the goals of this study was to determine the elemental composition
of the wine samples, which later on, together as polyphenols and organic acids content, was used as
input data for chemometric analysis. The multivariate statistical approach was applied in order to
find specific correlations between the selected group of compounds in the cool-climate wines and the
features that distinguish the most and differ between red and white wines and rosé wines. Moreover,
special attention was paid to resveratrol and its correlation with selected wine constituents.

Keywords: ICP-MS; chemometric analysis; cool-climate wines; resveratrol; multivariate statistics;
chemical compound

1. Introduction

Wine is among the most often consumed alcoholic drinks around the world, mainly
due to its sensory traits and health benefits [1]. Wine contains many compounds from
different groups such as alcohols, acids, saccharides, minerals and others including biogenic
amines, phenolic compounds and organic acids [2]. All of these compound groups have
been shown to be, to a varying degree, related to wine quality as well as its health-promoting
properties [3,4]. Polyphenols are among the group of compounds which not only to a high
degree determine the organoleptic properties of wine such as flavor, taste and color, but
also health benefits related to its consumption due to their antioxidant and cardioprotective
properties [3]. In fact, the relation between phenolic composition and the commercial value
of wine has been reported [5,6]. This is why the knowledge on the phenolic composition of
wine is of high importance.

Another group of compounds that also has a significant impact on the quality of
wine are organic acids. These compounds are usually considered to have a weak antiox-
idant power and thus are often discarded in the extraction process, which is why their
pharmacological effects have not been sufficiently studied [7]. However, an increasing
amount of research focused on this group of compounds is performed nowadays, with
special emphasis on the positive effects of organic acids on the human body, such as their
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antibacterial and anti-inflammatory activity and promotion of the absorption of specific
elements [8,9]. In addition, organic acids play a principal role in maintaining the quality
and nutritional value of food. The same role can also be assigned to some metals present in
the wine. On the other hand, the content of trace metals in wine has to be controlled due to
their adverse effect on human health and wine quality [10].

It is well-known that the occurrence of some of the aforementioned groups of com-
pounds is interrelated—information that is valuable to manufacturers and consumers alike,
mostly due to the possible adverse effect of ingestion of, e.g., heavy metals on the human
body. Several interactions between phenolic compounds and metal content in wine have
been reported. Bai et al. (2004) indicated that all the transition metals can form complexes
with a particular flavanol (rutin) [11]. Esparza et al. (2004) studied the Zn and Cu inter-
actions with three selected flavonoids (catechin, quercetin and rutin) [12]. In the case of
the comparison of the total concentration of metals, polyphenols and anthocyanins, the
concentrations of the latter increased, while the content of Fe and Cu decreased, giving rise
to an inverse relationship. This can be explained by the participation of these metals in
condensation reactions of tannins and anthocyanins.

To the best of our knowledge, there are no studies on the correlations between the
content of specific phenolic compounds such as resveratrol, organic acids and metals in
wines produced from grapes cultivated in cool climates. Based on a literature review, it
can be summarized that interactions between several parameters exist and are proven;
therefore, we believe that interactions between the mentioned group of compounds may
also exist. Hence, the aim of this work was to determine the elemental composition of the
studied wine samples and, together with the results of the polyphenols and organic acids
content, evaluate the parameters that characterizes the wine originating from cool climates.
Emphasis was put on the differentiation between white, rosé and red wines. Moreover, the
work aimed to determine specific correlations between chemical compounds determined
in different kinds of wines produced in a cool climate. Particular attention was paid to
resveratrol and its correlation with other compounds.

2. Results

The elemental analysis included the determination of Ag, Al, As, B, Ba, Be, Ca, Cd,
Co, Cr, Cu, Fe, Hg, K, Li, Mg Mn, Na, Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, Zn and Zr, and was
performed based on the method previously published by [13]. Results of the determination
of these elements are gathered in Table S2, while the concentrations of organic acids and
polyphenols are listed in Table S3.

The gathered data set consists of 23 objects (wine samples from different regions and
with different quality parameters) described by 43 chemical descriptors (variables). One of
the descriptors (coded as FeA, or ferulic acid) is excluded from the chemometric analysis
since it lacks any level of variation (all samples have one and the same concentration
level recorded).

The major goals of the multivariate data mining include: identification of groups of
similarity (patterns, clusters) between the objects of the study (wine samples) or between the
descriptor variables; determination of latent factors responsible for the data structure and
of the descriptors responsible for the formation of the similarity patterns of objects. In this
way, it becomes possible to interpret the analytical data in a specific way, namely, reaching
a classification of the different samples into several classes of analogy and explaining the
reasons for achieving this partitioning of the samples. It makes it possible to better interpret
the wine quality of each identified class and to select specific descriptors responsible for
different wine quality classes.

In order to fulfil the goals of the study, several established multivariate statistical
methods for intelligent data analysis are used—hierarchical and non-hierarchical (K-means)
clustering and principal components analysis. All the mentioned methods are fully de-
scribed in [14] and do not need detailed description.
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In Figure 1 the hierarchical clustering of 42 variables is presented. HCA was performed
after the z-standardization of the input raw data, squared Euclidean distances as similarity
measure, Ward’s method of linkage and Sneath’s test for cluster significance.
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Figure 1. Hierarchical dendrogram for clustering of 42 variables.

Two major clusters were identified. The members (18) in cluster 1 (the lower part of
the dendrogram) are FA, MA, CA, Cd, Sb, Zr, Al, Be, Ca, Na, Cr, Cu, B, Ti, Co, Fe, Pb and V,
and the remaining 24 variables belong to cluster 2 (the upper part of the dendrogram) as
follows ( LA, K, Res, CAT, GA, CafA, Ba, SA, P-CoumA, SinA, TA, protocat, Ni, Mg, Sr, Li,
Mn, Zn, Ag, Hg, As, Se, Sn, Tl). It is important to note that cluster 1 includes dominantly
metal descriptors (15 out of a total of 18 members) and only 3 organic acid descriptors,
and it could be conditionally named “soil major metal descriptors components”. The
second cluster consists of 12 organic acids descriptors and 12 metal descriptors. Its content
reveals the organic soil composition and soil trace metal descriptors (Ag, Hg, As, Se, Sn,
Tl, Ni, Sr belonging to the group of potentially toxic elements), which form a subcluster in
cluster 2 and the rest of some major soil metal components (Mg, Li, Mn, Zn). Therefore,
cluster 2 could be conditionally marked as “organic descriptors components and soil trace
metal components”.

It can be concluded that two specific patterns of descriptors determine the quality
of the wine samples of interest. In Figure S1 the hierarchical dendrogram for clustering
of the 23 wine samples is presented. Again, two patterns of similarity could be easily
distinguished—the lower cluster 1 includes samples 11–23, and the upper cluster 2-samples
1–10. Both groups are well-separated and represent two different types of wine quality.
This separation is reasonable if the input data are carefully checked. The wine samples from
1 to 10 are red wines, dominantly from the grape types Rondo and Regent, and dry with
respect to sugar content, since the other 13 (11–23) are white and rosé wines originating
from various grape types, and semidry and sweet according to the sugar content.

In order to better understand this sample partitioning, K-means clustering was applied
as an unsupervised pattern recognition technique. The priori hypothesis required separa-
tion of both samples and variables into two clusters. The results of the non-hierarchical
clustering confirmed entirely those of the hierarchical separation (white, rosé and red wine
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classes). Additionally, a plot was constructed (Figure S2), which presents the averages
of each variable for each one of the identified clusters. This plot makes it possible to
determine the specific descriptors responsible for the chemical-caused partitioning of the
wine samples.

Cluster 1 includes samples (11–23) and cluster 2 those from 1 to 10. It has to be
mentioned that sample 1 differs significantly from the other members of cluster 2 and
could be defined as an outlier. Not all of the variables on the plot are presented, but they
always follow the sequence used in the input table (Table S4) from LA (variable 1) to Zr
(variable 42), with a distance of 3 not indicated on the axis members.

The results of the partitioning procedure indicated that samples 1–10 (cluster 2) are
characterized (with respect to the organic acid components) by high levels of LA, protocat,
p-CoumA, GA, CafA, SinA, Res and CAT, and by lower levels of FA, MA and CA as
compared to the members of cluster 1; the organic acids SA and TA are almost of one and
the same level for the members of both clusters. If the metal descriptors are compared,
samples 1–10 are characterized by higher levels of Ag, As, Be, Hg, K, Mg, Sn, Se, Sr and Ti,
and lower levels for Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Li, Na, Pb, V and Zr, as compared to the
concentration levels of the metal components in cluster 1. For the rest of the metal species
B, Mn, Ni, Sb, Zn and Tl, the concentration levels for both clusters are almost equal. The
first stage of variables (descriptors) reduction proves that SA, TA, B, Mn, Ni, Sb, Zn and
Tl could be eliminated as sufficient parameters for the determination of the wine quality.
A better partitioning of both clusters with less variables (34 instead of 42) is indicated in
Figure S3.

This multivariate statistical method determines the data set structure and reveals
hidden factors (principal components) responsible for this structure. The definition of the
new directions in the space of the variables (latent components) leads to the reduction of
the initial number of variables and options to present the data location on a plane. Very
often this approach is called projection method. Our goal when applying factor analysis is
to try to reduce the variable numbers and to select specific descriptors able to explain the
data structure.

The result of the analysis is a table of the so-called factor loadings, which interpret
the relationship between the input variables within the newly defined latent components.
Additionally, it is possible to use another table of the so-called factor scores representing the
new space coordinates of the objects and indicating patterns of similarity (classes) between
the objects. In Table S5 the factor loadings for all 42 variables are listed.

The loadings marked by bold are statistically significant and of substantial interest
for the data interpretation. Four latent factors explain over 80% of the total variance. The
numbers of each factor are related to the percentage of variance explanation by each one of
them. Keeping in mind the factor loadings values, we could select significant descriptors
from the list of all variables (the higher the factor loading, the higher the significance of the
variable). In Figures 2 and 3 the biplot of the factor loadings for two combinations of latent
factors are shown.

The variables with high factor loadings with respect to factor 3 and factor 4 are K,
CAT, LA, Res, GA, CA and MA. The other two marked groups, Co and Ca, and SinA and
p-CoumA, do not indicate high loadings to factors 3 and 4, but as seen in Figure 3 they
show high loadings with respect to factors 1 and 2.
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Figure 2. Biplot of factor loadings for factor 3 vs. factor 4.
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From all the available variables, one could select 12 as possible descriptors for the easy
and reliable partitioning of the 23 wine objects: LA, MA, CA, p-CoumA, GA, SinA, Res,
CAT, Ca, Co, K and Se. Most of the chosen descriptors are organic compounds, but there
are also 4 metal descriptors obviously related to the soil specificity. When using only these
12 descriptors, one could reach a very good partitioning between the objects (Figure 4).
Two groups (classes) are well-separated by the difference of the concentration levels of the
12 descriptors. Again, one of the clusters formed using only 12 variables is the class of red
wine (cluster 2) and the other one—that of white wines (cluster 1).
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Figure 4. Plot of mean values (standardized) for each selected descriptor (final reduced number) for
each identified cluster.

As compared to the separation shown in Figures S2 and S3, the presented partitioning
is much better and simpler. The concentration of resveratrol—which is of particular impor-
tance due to health-beneficial properties including anti-obesity, anti-aging, anti-cancer and
lipid/glucose metabolism-regulating properties, as well as reducing oxidative damage and
inflammation, neuroprotection and chemoprevention [15,16]—varies significantly between
the samples of white, red and rosé wines, and also within the red wines (Figure 5), with the
highest concentration in the 7R and 10R samples. Based on the ReliefF scoring (Table S6),
its concentration is best predicted based on the concentration of (in decreasing order) Zr, K,
B, Pb and Ba; however, in the case of Zr and Pb, the correlation between their concentration
in wine samples is negative.
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Figure 5. Heat map combined with hierarchical clustering with averaged linkage showing the
difference in concentration of selected organic compounds and polyphenols in samples of white, red
and rosé wines.
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3. Materials and Methods
3.1. Reagents, Chemicals and Standards

The ICP IV multi-element standard (Merck KGaA, Darmstadt, Germany) and single
standards—As, Sb, Se, Mo and V (Merck KGaA, Darmstadt, Germany), Hg (Merck KGaA,
Darmstadt, Germany)—were used for the calibration of ICP-MS. Sc, Rh, Tb and Ge in supra-
pure 1% HNO3 (Merck KGaA, Darmstadt, Germany) were used as internal standards, and
deionized water obtained from the Milli-Q Direct 8 Water Purification System (Merck-
Millipore, Molsheim, France) was used for sample dilution.

3.2. Samples

For the analysis, samples drawn from 23 bottles of wine originating from different
regions of Poland were used (10 red wines, 10 white wines and 3 rosé wines). All samples
were stored at room temperature (21 ◦C) and were protected from light. Details regarding
the analyzed wines are gathered in Table S1.

3.3. Instrumentation

The elemental analysis with the use of ICP-MS was performed on the ICP-MS 2030
(Shimadzu, Kyoto, Japan) with the operation conditions summarized in Table 1.

Table 1. ICP-MS measurement conditions.

Parameters ICP-MS

Radio frequency power generator [kW] 1.2

Gas type Argon

Plasma gas flow rate [L min−1] 8.0

Auxiliary gas flow rate [L min−1] 1.1

Nebulization gas flow rate [L min−1] 0.7

Torch Mini-torch (quartz)

Nebulizer Coaxial

Spray chamber temperature [◦C] 3

Drain Gravity fed

Internal standard Automatic addition

Sampling depth [mm] 5

Collision cell gas flow (He) [mL min−1] 6.0

Cell voltage [V] −21

Energy filter [V] 7.0

Number of replicates 3

Integration conditions/number of scans 10

3.4. Chemometric Analysis

The software package used for multivariate data cluster analysis (hierarchical and
non-hierarchical clustering) was STATISTICA 8.0 (New York, NY, USA). Standardization of
raw input data, application of squared Euclidean distances as similarity measures, Ward’s
method of linking, Sneath’s test for cluster significance and a hierarchical dendrogram as
a graphical output were all necessary to carry out the hierarchical clustering operation.
In addition, non-hierarchical clustering of items using K-means was conducted. This is
a typical supervised pattern recognition method, in which objects or variables are sorted
into an a priori predetermined number of clusters; this number should prove or disprove
preliminary hypotheses proposed by experts or particular preliminary data. In addition,
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the Varimax rotation mode was used for factor analysis. LOD/2 values were used to fill in
for missing data.

The results of elemental analysis and the chromatographic results of polyphenols
and organic acids content [17] were used as inputs for further supervised analysis, which
was carried out using Orange v. 3.28 and Scikit-Learn v. 0.23 Python packages [18,19].
The relative values of variables with respect to grape type were visualized using heat
maps combined with hierarchical clustering with average linkage. In the particular case
of resveratrol, a supervised method (ReliefF) was used to rank the importance of features
obtained using elemental analysis [20].

4. Conclusions

The study was focused on the cool-climate wines whose chemical characteristic is still
not well-known. Due to this fact, this work raised an important issue of specific corre-
lation between selected chemical compounds present in examined wine. Application of
chemometric analysis with a multivariate statistical approach (which could be considered
as a training procedure) could help in the categorization of wines with unknown origin
to some of the classes above using rapid analytical testing. It is readily seen that the most
crucial are the concentration of LA, p-CoumA, GA, SinA, Res, CAT, K and Se, which are
higher in red wines than for the same descriptors for white and rosé wines. Conversely,
the white wines and rosé wines have higher concentrations of MA, CA, Ca and Co. Fur-
thermore, ReliefFscoring indicates a possible correlation between resveratrol and several
metals such as Zr, K B, Pb and Ba, which needs further investigation by the application
other analytical instruments.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules27196566/s1. Figure S1: hierarchical dendrogram for
clustering of 23 wine samples (objects); Figure S2: plot of mean values (standardized) for each variable
for each identified cluster; Figure S3: plot of mean values (standardized) for each variable (reduced
number) for each identified cluster; Table S1: wine sample characteristics; Table S2: elemental compo-
sition of studied wine samples [µg/mL] and * [mg/mL]; Table S3: organic acids and polyphenols
concentration in studies’ wine samples [mg/mL]; Table S4: input table; Table S5: factor loadings;
Table S6: ReliefFscoring of chemical elements with relation to the concentration of resveratrol.
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