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Abstract: In this study, hybrid analogs of benzimidazole containing a thiazole moiety (1–17) were af-
forded and then tested for their ability to inhibit α-amylase and α-glucosidase when compared
to acarbose as a standard drug. The recently available analogs showed a wide variety of in-
hibitory potentials that ranged between 1.31 ± 0.05 and 38.60 ± 0.70 µM (against α-amylase) and
between 2.71 ± 0.10 and 42.31 ± 0.70 µM (against α-glucosidase) under the positive control of
acarbose (IC50 = 10.30 ± 0.20 µM against α-amylase) (IC50 = 9.80 ± 0.20 µM against α-glucosidase).
A structure–activity relationship (SAR) study was carried out for all analogs based on substitution
patterns around both rings B and C respectively. It was concluded from the SAR study that analogs
bearing either substituent(s) of smaller size (−F and Cl) or substituent(s) capable of forming hydrogen
bonding (−OH) with the catalytic residues of targeted enzymes enhanced the inhibitory potentials.
Therefore, analogs 2 (bearing meta-fluoro substitution), 3 (having para-fluoro substitution) and 4
(with ortho-fluoro group) showed enhanced potency when evaluated against standard acarbose drug
with IC50 values of 4.10 ± 0.10, 1.30 ± 0.05 and 1.90 ± 0.10 (against α-amylase) and 5.60 ± 0.10,
2.70 ± 0.10 and 2.90 ± 0.10 µM (against α-glucosidase), correspondingly. On the other hand, analogs
bearing substituent(s) of either a bulky nature (−Br) or that are incapable of forming hydrogen bonds
(−CH3) were found to lower the inhibitory potentials. In order to investigate the binding sites for
synthetic analogs and how they interact with the active areas of both targeted enzymes, molecular
docking studies were also conducted on the potent analogs. The results showed that these analogs
adopted many important interactions with the active areas of enzymes. The precise structure of
the newly synthesized compounds was confirmed using several spectroscopic techniques as NMR
and HREI-MS.

Keywords: synthesis; benzimidazole bearing thiazole analogs; α-glucosidase; α-amylase; molecu-
lar docking
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1. Introduction

Hyperglycemia, which can be characterized as a high blood glucose level, describes
the metabolic disorder known as diabetes mellitus (DM), which is non-infectious and
chronic. The alarming incidence of diabetes mellitus already includes 415 million cases
worldwide [1], and that figure is expected to rise to 642 million by 2040 [2,3]. Carbohy-
dratesare hydrolyzed by the enzymes glucosidase and amylase to produce blood glucose.
Inhibitors such α-glucosidase, which hydrolyze oligosaccharides into simple sugar, are
secreted by the pancreas and salivary glands to decrease the absorption of glucose from
the small intestine. The inhibitors of α-amylase and α-glucosidase delay the absorption
of glucose, which lowers postprandial blood glucose levels and is thought to be a thera-
peutic strategy for the treatment of diabetes. Diabetes has been treated using a variety of
methods, but the most popular strategy relies on blocking α-glucosidase and α-amylase,
the carbohydrase enzymes that delay glucose absorption [4,5]. The α-amylase initiates
the hydrolysis of maltodextrins, starch and maltooligosaccharide, which in turn releases
glucose molecules [6,7]. Similar to α-amylase, the α-glucosidase enzyme catalyzes the
hydrolytic reaction that releases glucose molecules from the carbohydrates [8,9]. Type-2
diabetes (T2DM) risk is decreased by inhibitors of α-amylase and α-glucosidase including
acarbose, voglibose and miglitol. Oral diabetes medications offer a quick onset of action
and strong therapeutic effects, but they can also cause negative side effects. The primary
disadvantage is their manner of action, which typically lessens diabetic symptoms rather
treating the pathophysiology of the condition as a whole. Therefore, exploring active
compounds with low risk of side effects is important for treating T2DM [10–12].

Proton pump inhibitors, anti-histaminic, anti-convulsant, anti-analgesic, anti-
coagulant, anti-hypertensive, anti-cancer, anti-fungal and antiviral are only a few of the
biological properties that benzimidazole and its derivatives are known to exhibit [13–19].
Some pharmacologically bioactive drugs, including those of albendazole, benoxaprofen,
astemizole, enviradine, omeprazole and bendamastin, have a benzimidazole component in
their structural framework (Figure 1) [20].
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Figure 1. Benzimidazole skeleton containing drugs.

The thiazole motif bearing scaffolds displayed a diverse range of biological profile in-
cluding anti-bacterial, anti-diuretic and anti-Alzheimer’s [21]. Additionally, thiazole-based
hybrid scaffolds find applications as biologically interesting scaffolds and were known to
have promising pharmacological significance such as anti-microbial [22], anti-inflammatory,
analgesic [23], anti-hypoxic profile [24], anticancer [25], anti-hypertensive [26] and anti-
asthmatic [27] effects. Moreover, it was noted that numerous commercially available
biologically active drugs, such as abafungin, ruvaconazole, azereonam and vorelaxin con-
tain thiazole skeleton in their structures due to the wide spectrum of the pharmacological
activities of the thiazole ring (Figure 2) [28,29].
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Figure 2. Biologically active drugs having a thiazole skeleton.

Keeping in mind the biological significance of previously reported benzimidazole [30–32]
and thiazole [33,34] analogs as α-amylase and α-glucosidase inhibitors for the treatment of
diabetic patients, benzimidazole and thiazole rings were combined in the same molecules to
find lead molecules in an effort to further enhance the α-amylase and α-glucosidase inhibitory
potentials (Figure 3).
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2. Results and Discussion
2.1. Chemistry

The preparation of benzimidazole-based thiazole derivatives (1–17) was completed
in two steps. In the first step, 2-mercapto benzimidazole thiol (I) was treated with 4-nitro-
substituted phenacyl bromide (II) in ethanol along with a catalytic amount of tri-ethyl amine
under reflux condition to afford an intermediate (III) [35]. This intermediate was washed
with petroleum ether in order to remove the impurities, and further this intermediate
(III) was again reacted thiosemicarbazide and different substituted 2-bromoacetophenone
via one-pot reaction in dioxane solvent and diethyl amine, and the subsequent residue was
stirred under reflux for 8h to offer the synthesis of targeted benzimidazole-based thiazole
derivatives (1–17). A thin-layer chromatographic (TLC) plate was used to monitor the
conversion of reactants into products. All of the synthesized derivatives were purified by
washing with petroleum ether and recrystallized from ethyl acetate to afford a purified form
of the targeted benzimidazole-based thiazole analogs (1–17), which were then characterized
through 1HNMR, 13CNMR and HREI-MS techniques (Scheme 1).
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Scheme 1. Preparation of hybrid analogs of thiazole incorporating a benzimidazole skeleton (1–17).

The precise structures of all newly afforded derivatives (1–17) were verified by NMR
and HRMS. To better understand the spectral analysis of synthesized scaffolds (1–17), the
synthesized compounds were divided into three major parts, including a benzimidazole
part, a thiazole part and a 4-nitro benzene ring B and ring C respectively. The 1H-NMR
results showed that protons of thiazole and benzimidazole (-NH) were resonated as a
singlet at a chemical shift value of δH 7.28 and 12.55 ppm (for benzimidazole). In ad-
dition, a singlet was observed for the -NH proton present between benzimidazole and
thiazole rings at δH11.98ppm. Besides that, the remaining protons of benzimidazole were
recorded as multiplets at approximately δH 7.43–7.12 ppm, and the characteristic -S-CH2-
groups between the benzimidazole and thiazole heterocyclic rings were observed at δH
3.782 ppm asa singlet. The remaining protons of ring C were resonated at approximately δH
7.36–8.35 ppm as multiplets (d, t, dt, dd), depending on the attached electron-withdrawing
(EW) or electron-donating (ED) groups. In the 13C-NMR spectra, the typical shifts near δ13C
171.7 (C-thiazole), 155.6 (C=N), 150.2 (C-thiazole), 105.0 (CH-thiazole) and 37.5 (-S-CH2-)
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ppm reveal the presence of a thiazole ring, C=N and (-S-CH2-) moieties of the targeted
benzimidazole-based thiazole analogs.

2.2. In Vitroα-Amylase and α-Glucosidase Inhibitory Activities (1–17)

All of the newly afforded benzimidazole-based thiazole analogs were tested for
inhibitory activities against α-amylase and α-glucosidase and were illustrated to have
moderate to good inhibition properties, having IC50 values ranging between 1.30 ± 0.05
to 38.60 ± 0.70 µM (against α-amylase) and 2.70 ± 0.10 to 42.30 ± 0.70 µM (α-
glucosidase) when compared to standard acarbose (IC50 = 10.30 ± 0.20 µM for α-amylase)
(IC50 = 9.80 ± 0.20 µM for α-glucosidase) (Table 1). Based on substitutions pattern around
aryl part C, SAR studies were conducted for all synthesized derivatives, and the obtained
results showed that each part of the synthesized analogs including benzimidazole ring
A, the thiazole moiety and ring B and ring C are actively contributing in the activity of
α-glucosidase and α-amylase, and any variation found in potency was owed to varying
number(s),positions, and EW or ED natures of substituent(s)that are attached to aryl part
C, respectively (Figure 4).
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Table 1. The α-amylase and α-glucosidase inhibition properties (in vitro) by benzimidazole-
containing thiazole analogs along with different substituent(s) (1–17).

Synthesized
Compounds R α-Amylase

IC50 [µM]
α-Glucosidase

IC50 [µM]

1 3,4-dichloro 2.20 ± 0.10 3.90 ± 0.20

2 3-fluoro 4.10 ± 0.10 5.60 ± 0.10
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Table 1. Cont.

Synthesized
Compounds R α-Amylase

IC50 [µM]
α-Glucosidase

IC50 [µM]

3 4-fluoro 1.30 ± 0.05 2.70 ± 0.10

4 2-fluoro 1.90 ± 0.10 2.90 ± 0.10

5 4-hydroxy 3.60 ± 0.20 4.30 ± 0.30

6 4-bromo 18.50 ± 0.30 25.80 ± 0.50

7 3-bromo 34.70 ± 0.70 36.40 ± 0.70

8 2-bromo 20.30 ± 0.50 29.30 ± 0.60

9 4-nitro 16.40 ± 0.30 19.60 ± 0.40

10 2-nitro 7.20 ± 0.20 9.60 ± 0.20

11 4-methyl 24.40 ± 0.30 25.90 ± 0.40

12 3-methyl 38.60 ± 0.70 34.40 ± 0.70

13 2-methyl 34.20 ± 0.60 37.50 ± 0.70

14 4-chloro 16.40 ± 0.30 17.30 ± 0.30

15 2-chloro 5.20 ± 0.10 6.30 ± 0.10

16 3-chloro 12.50 ± 0.20 13.60 ± 0.20

17 3-nitro 28.40 ± 0.40 29.60 ± 0.40

Standard acarbose drug 10.30 ± 0.20 9.80 ± 0.20

Structure–Activity Relationship (SAR) for Inhibitory Actions of α-Amylase and
α-Glucosidase (1–17)

Analog 3 showed excellent potency among the synthesized series. By comparing
analog 3bearing ortho-fluoro substitution on ring C along with a para-nitro group on
ring B, with analogs 2 and 4 bearing a fluoro group at the meta- and ortho-positions of
ring C; analog 3 displayed better activity toward α-amylase and α-glucosidase than its
counterparts, 2 and 4. The difference in the inhibitory potentials of these three fluoro-
substituted analogs toward α-amylase and α-glucosidase may be caused by different
positions of the fluoro group around ring C (Table 1).

Analogs bearing chloro group(s) were found to display considerable inhibition against
both these targeted enzymes (α-amylase and α-glucosidase). Among chloro-substituted
analogs, analog 1 bearing di-Cl substitutions at the 3,4-position of the phenyl ring showed
enhanced inhibitory potentials against both α-amylase and α-glucosidase enzymes when
compared to other analogs, 14 (having a para-chloro group), 15 (bearing an ortho-chloro
group) and 16 (with a meta-chloro group) bearing only one chloro group. This higher
inhibitory potential of analog 1 might be due to greater numbers of attached chloro groups
in comparison to other analogs 14, 15 and 16. However, analog 15 (IC50 = 5.20 ± 0.10 µM)
bearing ortho-chloro substitution on the phenyl ring showed a superior activity for both
alpha-amylase and alpha-glucosidase enzymes than its structurally similar counterparts
14 (IC50 = 16.40 ± 0.30 µM) and 16 (IC50 = 12.50 ± 0.20µM), demonstrating that altering
the location of the substituent(s) around the phenyl ring has a significant impact on the
inhibitory potentials (Table 1).

By comparing analog 10, bearing ortho-nitro substitution on phenyl ring C, with
analogs 9 (having para-nitro substitution on ring C) and 17 (bearing meta-nitro substitution
on ring C), analog 10exhibited better inhibitory potential than its structurally similar
analogs 9 and 17. This suggests that the inhibitory potentials are increased by the nitro
group’s ortho-position, which is more efficient for interactions with the active sites of
both amylase and glucosidase enzymes. By moving the ortho-nitro group of ring C to
its para-position, like in the case of analog 9, the inhibitory potential of analog 10 was
drastically reduced. The potency was further decreased by shifting the ortho-nitro group
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to the meta-position as in analog 17. This difference in potency of these nitro-substituted
analogs might be due to a different position of the nitro group around ring C (Table 1).

It was noteworthy that the attachment of substituent(s) of either a bulky nature (–Br
group) or substituent(s) incapable of interactions through hydrogen bonding (-CH3 group)
at various position of ring C along with the nitro-substitution at the 4-position of ring
B resulted in decreased inhibitory potentials against both α-amylase and α-glucosidase.
Therefore, analogs 6 (bearing para-bromo on ring C), 7 (having meta-bromo on ring C) and
8 (with an ortho-bromo moiety on ring C) showed many-fold less potency when compared
to either chloro-substituted analogs 16 (meta-chloro-substitution on ring C), 14 (having
para-chloro-substitution on ring C) and 15 (with ortho-chloro-substituted ring C) or fluoro-
substituted analogs 2 (meta-fluoro-substitution on ring C), 3 (having para-fluoro-substituted
on ring C) and 4 (with ortho-fluoro-substitution on ring C) respectively (Table 1).

On the basis of aforementioned observation, it was concluded that analogs bearing
substituent(s) of smaller size was found to be a better competitor of both targeted α-amylase
and α-glucosidase, compared to analogs that bear substituent(s) of larger size. Moreover, it
was also noted that inhibition properties for both α-amylase and α-glucosidase enzymes
were greatly influenced by varying the number(s), positions and natures (electron-donating
or electron-withdrawing groups) of substituent(s) around both rings B and C, respectively.

2.3. Molecular Docking Study

Understanding how synthetic analogs interact with enzymes (both α-amylase and
α-glucosidase) was the main goal of the molecular docking study. After using a command
prompt, a docking procedure was completed, and nine different poses of each ligand was
obtained in a log file in which the top-ranked conformations (having the lowest binding
affinity) were selected in order to conduct a more complete visualization of protein–ligand
interactions (PLI).

To explore the binding modalities of the ligand with the active site of the protein,
a molecular docking study was carried out (Table 2). Varied software has been used to
achieve the significant results; these software were Auto Dock Vina and discovery studio
visualizer (DSV) [36–39]. α-Amylase and α-glucosidase protein were retrieved from an
online source (https://www.rcsb.org/ (18 May 2022)). α-Amylase and α-glucosidase
protein 1b2y and 3w37, respectively, were downloaded in PDB format. A different step
procedure was adopted for the exploration of protein–ligand interactions (PLI). In the first
step, the retrieved protein was opened in Auto Dock Vina; the water molecule was removed,
and, in addition, polar hydrogen and Kollman and Gasteiger charges were added. This
was followed by the addition of a ligand molecule wherein charges added, and coordinates
for configuration (X, Y and Z) and the dimension of these coordinates were 80 and grid box
center X = 25.555Å, Y = 61.538Å and Z = 51.515Å with exhaustiveness = 8. The saved file in
text format and both protein and ligand were also saved in PDBQT format. 1b2y (chain-A,
resolution = 3.20 Å, native ligand pyroglutamic acid and residue == 496 amino acid) and
3w37 (chain-A, resolution = 1.70 Å, native ligand acarbose and residue == 913 amino acid).

Interactions were discovered by using a command prompt in which the location of the
target file was mentioned, and then processes were carried out. A total of nine poses for
each ligand were obtained, which were explored in DSV to visualize binding interactions.
A protein–ligand interaction (PLI) profile was summarized in (Figures 5–7).

https://www.rcsb.org/
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Table 2. The number(s) of hydrogen bond, IC50 values, binding energies, interacting residues and
the closest residues of the selected docked analogs into the active site of both α-amylase and α-
glucosidase enzymes.

Active
Derivatives

Name of
Enzyme

IC50
[µM]

Free Binding
Energy (kcal/mol)

Number of
HBs

Number of Closest
Residues Interacting Residues

3

α-amylase 1.30 ± 0.05 −12.13 1 17 His305, Trp59, Ala198, Leu162,
Lys200, His201 and Ile235

α-glucosidase 2.70 ± 0.10 −11.48 2 16
Phe476, Asp232, Trp432,
Met470, Asp469, Arg552,

Trp329 and Lys506

4
α-amylase 1.90 ± 0.10 −10.87 1 17 Trp59, His201, Lys200, Ile235,

Leu162, Ala198 and His305

α-glucosidase 2.90 ± 0.10 −10.19 1 16 Phe476, Ser505, Asn496,
Lys506 and Arg552

1

α-amylase 2.20 ± 0.10 −9.23 1 17 Tyr151, Lys200, His201, Ile235
and Gln63

α-glucosidase 3.90 ± 0.20 −8.98 1 15
Phe476, Ala 234, Ile233,
Ala231, Asn496, Asp232

and Lys506
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3. Experimental
3.1. General Information

The Bruker AM 500 MHz machine NMR was used for the characterization of new
compounds, and all necessary chemicals and reagents were bought from Sigma Aldrich,
St. Louis, MO, USA. The splitted pattern of the peak was recorded as follows: dt, doublet
of triplets, dd, doublet of doublets; sextet; sext, quintet; quint, q, quartet; t, triplet; d,
doublet; m, multiplet, s, singlet. The coupling constant (J) was measured in hertz (Hz).
High-resolution electron impact mass spectra (HREI-MS) were recorded on a Finnigan
MAT-311A mass spectrometer (Germany). On precoated silica gel aluminium plates, thin-
layer chromatography (TLC) was carried out (Kieselgel 60254, E. Merck, Germany). TLC
plates were visualized by a UV lamp with a wavelength of 254 and 365 nm; the melting
point was recorded with a Buchi M-560.

3.2. General Method for the Production of Thiazole Scaffolds Based on Benzimidazole (1–17)

Initially, benzimidazole-2-thiol I (1 equivalent) was reacted and stirred with 4-nitro-
substituted phenacyl bromide II (1 equivalent) in ethanol (10mL) and Et3N (a few drops)
to afford the formation of substrate III [35]. In the next step, substrate III (1 equivalent),
thiosemicarbazide (1 equivalent) and different substituted phenacyl bromide (1 equivalent)
were reacted and refluxed in dioxane (10mL) and diethyl amine (1.5 equivalent) via a
one-pot reaction. The residue was stirred for 8hrs under reflux. The solvent was evaporated
on the completion of the reaction by employing reduced pressure to give a solid residue,
which was further washed with petroleum ether and then recrystallized with ethyl acetate
to access the formation of targeted benzimidazole-based thiazole derivatives (1–17) in
appropriate yield. The precise structures of all of the newly synthesized derivatives were
confirmed by using NMR and HREI-MS spectroscopic methods.

Appendix: 3.2. α-amylase inhibition assay, 3.2. α-glucosidase inhibition assay, 3.4. Doc
king protocol [32] and 3.5. General procedures along with spectral analysis are provided in
Supplementary Materials [40–42].

4. Conclusions

In conclusion, by employing acarbose as a standard drug, an approach was established
for the synthesis of hybrid analogs of benzimidazole containing thiazole (1–17), which were
then tested for their inhibition properties against α-amylase and α-glucosidase. All of the
synthesized analogs were found to display a varied range of inhibition properties against
both enzymes, with IC50 values of 1.31 ± 0.05 to 38.60 ± 0.70 µM (for α-amylase) and
2.71 ± 0.10 to 42.31 ± 0.70 µM (for α-glucosidase) when compared to standard acarbose
(IC50 = 10.30 ± 0.20 µM for α-amylase) (IC50 = 9.80 ± 0.20µM for α-glucosidase). Among
the synthesized series, seven analogs such as 1, 2, 3, 4, 5, 10 and 15 were found to be more
potent than standard acarbose, with IC50 values of 2.20 ± 0.10, 4.10 ± 0.10, 1.30 ± 0.05,
1.90 ± 0.10, 3.60 ± 0.20, 7.20 ± 0.20 and 5.20 ± 0.10 (against α-amylase) and 3.90 ± 0.20,
5.60 ± 0.10, 2.70 ± 0.10, 2.90 ± 0.10, 4.30 ± 0.30, 9.60 ± 0.20 and 6.30 ± 0.10, respectively
(against α-glucosidase). Besides that, the remaining ten analogs also exhibited considerable
inhibitory potentials but were found to be less potent than standard acarbose. For active
analogs, molecular docking was devised in order to examine the binding locations of
synthetic analogs and how they interact with the catalytic cavity of amino acids in enzymes.
The findings showed that these analogs adopted a number of significant interactions with
the active regions of enzymes. In addition, various spectroscopic tools such as HREI-MS
and NMR were employed to confirm the precise structure of the synthesized compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196457/s1, Supplementary Information file [40–42].
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